1
|
Priyadarshini A, Divya S, Swain J, Das N, Swain S, Hajra S, Panda S, Samantaray R, Belal M, Kaja KR, Kumar N, Kim HJ, Oh TH, Vivekananthan V, Sahu R. Advancements in framework materials for enhanced energy harvesting. NANOSCALE 2025; 17:1790-1811. [PMID: 39666371 DOI: 10.1039/d4nr04570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Energy harvesting, the process of capturing ambient energy from various sources and converting it into usable electrical power, has attracted a lot of attention due to its potential to provide long-term and self-sufficient energy solutions. This comprehensive review thoroughly explores the use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for energy harvesting by piezoelectric and triboelectric nanogenerators (PENGs and TENGs). It begins by classifying and outlining the structural diversity of MOFs and COFs, which is key to understanding their importance in energy applications. Key characterization techniques are focused on emphasizing their importance in optimizing material properties for efficient energy conversion. The working mechanisms of PENGs and TENGs are discussed, focusing on their ability to transform mechanical energy into electrical energy and their advantages in operation. The use of MOFs and COFs in energy harvesting applications is then discussed, including synthesis procedures, unique characteristics relevant to electricity conversion, and various practical applications such as self-powered sensors and wearable electronics. Current challenges such as stability, scalability, and performance improvements are explored, as well as proposed future improvements to help advance current research. Finally, the study highlights the importance of framework materials for the development of energy harvesting systems, providing an invaluable resource for academics and engineers seeking to exploit the potential of these materials for renewable energy sources. The goal of this article is to stimulate further invention and implementation of efficient materials-based energy harvesting framework devices by integrating recent advances and mapping future possibilities.
Collapse
Affiliation(s)
- Anulipsa Priyadarshini
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - S Divya
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jaykishon Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Niharika Das
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Subrat Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Raghabendra Samantaray
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mohamed Belal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Kushal Ruthvik Kaja
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Naveen Kumar
- Department Materials Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, 560012, India
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Tae Hwan Oh
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
- Department of Integrated Research and Discovery, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
| | - Rojalin Sahu
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Chen Z, Fang P, Zou X, Shi Z, Zhang J, Sun Z, Guo S, Yan F. Interlayer Polymerization to Construct a Fully Conjugated Covalent Organic Framework as a Metal-Free Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401880. [PMID: 38678520 DOI: 10.1002/smll.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) have a multilayer skeleton with a periodic π-conjugated molecular array, which can facilitate charge carrier transport within a COF layer. However, the lack of an effective charge carrier transmission pathway between 2D COF layers greatly limits their applications in electrocatalysis. Herein, by employing a side-chain polymerization strategy to form polythiophene along the nanochannels, a conjugated bridge is constructed between the COF layers. The as-synthesized fully conjugated COF (PTh-COF) exhibits high oxygen reduction reaction (ORR) activity with narrowed energy band gaps. Correspondingly, PTh-COF is tested as a metal-free cathode catalyst for anion exchange membrane fuel cells (AEMFCs) which showed a maximum power density of 176 mW cm-2 under a current density of 533 mA cm-2. The density functional theory (DFT) calculation reveals that interlayer conjugated polythiophene optimizes the electron cloud distribution, which therefore enhances the ORR performance. This work not only provides new insight into the construction of a fully conjugated covalent organic framework but also promotes the development of new metal-free ORR catalysts.
Collapse
Affiliation(s)
- Zhiwei Chen
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Pengda Fang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300, China
| | - Zheng Shi
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiamin Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Siyu Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Rejali NA, Dinari M, Wang Y. Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications. Chem Commun (Camb) 2023; 59:11631-11647. [PMID: 37702105 DOI: 10.1039/d3cc03091a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Covalent organic frameworks (COFs) are porous and crystalline organic polymers, which have found usage in various fields. These frameworks are tailorable through the introduction of diverse functionalities into the platform. Indeed, functionality plays a key role in their different applications. However, sometimes functional groups are not compatible with reaction conditions or can compete and interfere with other groups of monomers in the direct synthetic method. Also, pre-synthesis of bulky moieties in COFs can negatively affect crystal formation. To avoid these problems a post-synthetic modification (PSM) approach is a helpful tactic. Also, with the assistance of this strategy porous size can be tunable and stability can be improved without considerable effect on the crystallite. In addition, conductivity, hydrophobicity/ hydrophilicity, and chirality are among the features that can be reformed with this method. In this review, different types of PSM strategies based on recent articles have been divided into four categories: (i) post-functionalization, (ii) post-metalation, (iii) chemical locking, and (iv) host-guest post-modifications. Post-functionalization and chemical locking methods are based on covalent bond formation while in post-metalation and host-guest post-modifications, non-covalent bonds are formed. Also, the potential of these post-modified COFs in energy storage and conversion (lithium-sulfur batteries, hydrogen storage, proton-exchange membrane fuel cells, and water splitting), heterogeneous catalysts, food safety evaluation, gas separation, environmental domains (greenhouse gas capture, radioactive element uptake, and water remediation), and biological applications (drug delivery, biosensors, biomarker capture, chiral column chromatography, and solid-state smart nanochannels) have been discussed.
Collapse
Affiliation(s)
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
4
|
Lin C, Sun L, Meng X, Yuan X, Cui C, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022; 61:e202211601. [DOI: 10.1002/anie.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Lin
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xutong Meng
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xin Yuan
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Cheng‐Xing Cui
- School of Chemistry and Chemical Engineering Henan Institute of Science and Technology Xinxiang 453003 P. R. China
| | - Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Pengjing Chen
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Siwen Cui
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| |
Collapse
|
5
|
Lin C, Sun L, Meng X, Yuan X, Cui CX, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Lin
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Linhai Sun
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xutong Meng
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xin Yuan
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Cheng-Xing Cui
- Henan Institute of Technology: Henan Institute of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huijie Qiao
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Pengjing Chen
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Siwen Cui
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Lipeng Zhai
- Zhongyuan University of Technology Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials NO.41 Zhongyuan Road 450007 Zhengzhou CHINA
| | - Liwei Mi
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| |
Collapse
|
6
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photo‐induced Energy‐Transfer Reversible Complexation‐Mediated Radical Polymerization (PET‐RCMP). Angew Chem Int Ed Engl 2022; 61:e202208898. [DOI: 10.1002/anie.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Lu
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- College of Chemistry Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Yulai Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Linxi Hou
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| |
Collapse
|
7
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of Building Unit on the Covalent Organic Framework in Mediating Photo‐induced PET‐RCMP. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Lu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Rui Zhao
- Fuzhou University Qingyuan Innovation Laboratory CHINA
| | - Hongjie Yang
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Xiaoling Fu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Yulai Zhao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Longqiang Xiao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Linxi Hou
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering Xueyuan Road No. 2, Fuzhou 350116, China CHINA
| |
Collapse
|
8
|
Bai Y, Liu Y, Liu M, Wang X, Shang S, Gao W, Du C, Qiao Y, Chen J, Dong J, Liu Y. Near‐Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yichao Bai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Qiao
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Bai Y, Liu Y, Liu M, Wang X, Shang S, Gao W, Du C, Qiao Y, Chen J, Dong J, Liu Y. Near-Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021; 61:e202113067. [PMID: 34699115 DOI: 10.1002/anie.202113067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/22/2021] [Indexed: 11/11/2022]
Abstract
Facile synthesis and post-processing of covalent organic frameworks (COFs) under mild synthetic conditions are highly sought after and important for widespread utilizations in catalysis and energy storage. Here we report the synthesis of the chemically stable aza-fused COFs BPT-COF and PT-COF by a liquid-phase method. The process involves the spontaneous polycondensation of vicinal diamines and vicinal diketones, and is driven by the near-equilibrium growth of COF domains at a very low monomer concentration. The method permits in situ assembly of COFs and COF-GO hybrid materials and leads to the formation of a uniform conducting film on arbitrary substrates on vacuum filtration. When used as electrocatalysts, the as-prepared membranes show a fast hydrogen evolution reaction (HER) with a low overpotential (45 mV at 10 mA cm-2 ) and a small Tafel slope (53 mV dec-1 ), which are the best among metal-free catalysts. Our results may open a new route towards the preparation of highly π-conjugated COFs for multifunctional applications.
Collapse
Affiliation(s)
- Yichao Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Qiao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|