1
|
Wu T, Jiang X, Wu C, Hu Y, Lin Z, Huang Z, Humphrey MG, Zhang C. Ultrawide Bandgap and Outstanding Second‐Harmonic Generation Response by a Fluorine‐Enrichment Strategy at a Transition‐Metal Oxyfluoride Nonlinear Optical Material. Angew Chem Int Ed Engl 2022; 61:e202203104. [DOI: 10.1002/anie.202203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Mark G. Humphrey
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
2
|
Wu T, Jiang X, Wu C, Hu Y, Lin Z, Huang Z, Humphrey MG, Zhang C. Ultrawide Bandgap and Outstanding Second‐Harmonic Generation Response by a Fluorine‐Enrichment Strategy at a Transition‐Metal Oxyfluoride Nonlinear Optical Material. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Mark G. Humphrey
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
3
|
Dong X, Huang L, Zeng H, Lin Z, Ok KM, Zou G. High-Performance Sulfate Optical Materials Exhibiting Giant Second Harmonic Generation and Large Birefringence. Angew Chem Int Ed Engl 2022; 61:e202116790. [PMID: 34984782 DOI: 10.1002/anie.202116790] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/07/2022]
Abstract
Discovering novel sulfate optical materials with strong second-harmonic generation (SHG) and large birefringence is confronted by a great challenge attributed to the intrinsically weak polarizability and optical anisotropy of tetrahedral SO4 groups. Herein, two superior-performing sulfate optical materials, namely, noncentrosymmetric Hg3 O2 SO4 and centrosymmetric CsHgClSO4 ⋅ H2 O, have been successfully synthesized through the introduction of a highly polarizable d10 metal cation, Hg2+ . The unique component layers in the reported compounds, [Hg3 O2 SO4 ]∞ layers in Hg3 O2 SO4 and [HgClSO4 (H2 O)] ∞ - layers in CsHgClSO4 ⋅ H2 O, induce enlarged birefringence in each sulfate. Remarkably, Hg3 O2 SO4 exhibits a very large SHG response (14 times that of KH2 PO4 ), which is the strongest efficiency among all the reported nonlinear optical sulfates. Detailed theoretical calculations confirm that the employment of highly polarizable Hg2+ is an effective strategy to design superior optical materials with large birefringence and strong SHG response.
Collapse
Affiliation(s)
- Xuehua Dong
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P.R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107 (Republic of, Korea
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
4
|
Wu C, Jiang X, Hu Y, Jiang C, Wu T, Lin Z, Huang Z, Humphrey MG, Zhang C. A Lanthanum Ammonium Sulfate Double Salt with a Strong SHG Response and Wide Deep‐UV Transparency. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Chunbo Jiang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Mark G. Humphrey
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
5
|
Dong X, Huang L, Zeng H, Lin Z, Ok KM, Zou G. High‐Performance Sulfate Optical Materials Exhibiting Giant Second Harmonic Generation and Large Birefringence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuehua Dong
- College of Chemistry Sichuan University Chengdu 610064 P.R. China
| | - Ling Huang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610066 P.R. China
| | - Hongmei Zeng
- College of Chemistry Sichuan University Chengdu 610064 P.R. China
| | - Zhien Lin
- College of Chemistry Sichuan University Chengdu 610064 P.R. China
| | - Kang Min Ok
- Department of Chemistry Sogang University Seoul 04107 (Republic of Korea
| | - Guohong Zou
- College of Chemistry Sichuan University Chengdu 610064 P.R. China
| |
Collapse
|
6
|
Wu C, Jiang X, Hu Y, Jiang C, Wu T, Lin Z, Huang Z, Humphrey MG, Zhang C. A Lanthanum Ammonium Sulfate Double Salt with a Strong SHG Response and Wide Deep-UV Transparency. Angew Chem Int Ed Engl 2021; 61:e202115855. [PMID: 34894166 DOI: 10.1002/anie.202115855] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/08/2022]
Abstract
The targeted synthesis of deep-ultraviolet (deep-UV) nonlinear optical (NLO) materials, especially those with non-π-conjugated sulfates, has experienced considerable difficulties due to the need to reconcile the oft-competing requirements for deep-UV transparency and strong second-harmonic generation (SHG). We report herein the designed synthesis of the first rare-earth metal-based deep-UV sulfate La(NH4 )(SO4 )2 by a double-salt strategy involving introduction of complementary cations, together with optical studies that reveal a short-wavelength deep-UV absorption edge (below 190 nm) and the strongest SHG response among deep-UV NLO sulfates (2.4×KDP). Theoretical calculations and crystal structure analysis suggest that the excellent balance between SHG response and deep-UV transparency can be attributed to a synergistic interaction of the hetero-cations La3+ and [NH4 ]+ , which optimize alignment of the [SO4 ] tetrahedra and highly polarizable [LaO8 ] polyhedra.
Collapse
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunbo Jiang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|