1
|
Ushakov PY, Sukhorukov AY. Umpolung Approach to Aldol Products via Isoxazoline N-Oxides as Intermediates. J Org Chem 2024; 89:15590-15597. [PMID: 39393025 DOI: 10.1021/acs.joc.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
A two-step umpolung approach to the diastereoselective synthesis of aldols was developed, in which a conjugated nitroalkene is used as the synthetic equivalent of the enolonium cation, while a sulfur ylide acts as the equivalent of the α-carbinol anion. The resulting isoxazoline N-oxides undergo catalytic reductive cleavage to aldols under mild conditions at room temperature and under 1 atm hydrogen pressure. The efficiency of the method was demonstrated by the synthesis of a series of polysubstituted β-hydroxyketones that are difficult to synthesize using the classical aldol reaction. The developed approach allows for the regiodivergent assembly of aldols by selecting a nitroalkene isomer with the appropriate position of the C,C double bond.
Collapse
Affiliation(s)
- Pavel Yu Ushakov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Liu Y, Deng H, Zhang Y. Electrochemical Umpolung α-Alkoxylation of Thiophene-Containing Amides. J Org Chem 2024; 89:15568-15573. [PMID: 39418390 DOI: 10.1021/acs.joc.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Traditional methods of the α-oxidation of amides often require preactivation or umpolung of amides. In this study, we introduce a general electrochemical approach for the direct α-C(sp3)-H alkoxylation of thiophene-containing amides. This mild and selective electrochemical method provides a modular and alternative efficient route to the highly valuable α-oxygenated thiophene-containing amide scaffolds.
Collapse
Affiliation(s)
- Yunge Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Han Deng
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Pilkington RL, Ross HJ, Atkin L, Priebbenow DL. Benzocyclobutenone synthesis exploiting acylsilanes as photofunctional directing groups. Chem Sci 2024:d4sc05715e. [PMID: 39502503 PMCID: PMC11533050 DOI: 10.1039/d4sc05715e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The visible-light irradiation of acylsilane tethered vinyl ketones promotes an intramolecular Stetter-type reaction via siloxycarbene intermediates. To exploit this unique mode of reactivity, we herein describe the innovative use of acylsilanes as photofunctional directing groups. First, an acylsilane directed ruthenium catalysed C-H olefination reaction was developed to generate benzoylsilanes bearing vinyl ketone functionality. Then, visible-light irradiation initiated the 1,4-conjugate addition of transient siloxycarbene intermediates with pendent vinyl ketones to afford unique benzocyclobutenone scaffolds primed for further synthetic elaboration.
Collapse
Affiliation(s)
- Rowan L Pilkington
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Hannah J Ross
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Liselle Atkin
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Daniel L Priebbenow
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
4
|
Das D, Jena S, Ghorai P. Umpolung Reactivity of in Situ Derived Aryl Hydrazones: An Asymmetric Brønsted Acid Catalyzed Strategy to Access Fused Pyrazolidines. Org Lett 2024; 26:6853-6858. [PMID: 39088554 DOI: 10.1021/acs.orglett.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Herein, we report an intriguing cascade strategy for synthesizing optically active fused pyrazolidines featuring three contiguous stereogenic centers. The formyl-tethered enones are templates for the developed umpolung reactivity, showcasing diverse substrate adaptability with various arylhydrazines. The chiral phosphoric acid catalyst offers stereochemical guidance, forming the fused pyrazolidines with commendable to excellent stereoselectivities. Additionally, the scalability, postsynthetic transformations, and instability of unacylated pyrazolidines have been successfully demonstrated.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Smrutismarak Jena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
5
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
6
|
Wessig P, Schmidt P, Badetko D, Sperlich E, Kelling A. Total synthesis of Comfreyn A and structural analogues via two photochemical key steps. Photochem Photobiol Sci 2024; 23:1485-1494. [PMID: 38935211 DOI: 10.1007/s43630-024-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
In this work the influence of o-fluorine substituents on the photo-dehydro-Diels-Alder (PDDA) reaction was investigated and the findings of this study were applied to the total synthesis of natural products. The reactant molecules consisted of two alkyl arylpropiolates, connected by a suberic acid tether and bearing fluorine substituents in each of the o-positions. While quantum chemical calculations suggested that a fluorine substituent prevents an attack of the adjacent carbon atom in the second C-C bond forming step of the PDDA reaction, this attack took place nevertheless. The subsequent fluoride elimination, assisted by protic solvents or trialkylsilanes, resulted in an "Umpolung" of the 4-position of the cycloallene intermediate enabling the introduction of nucleophiles at this position. The nucleophilic replacement of the second fluorine substituent could also be triggered photochemically. After removal of the tether, the two arene moieties stand nearly perpendicular to each other and a selective excitation of the naphthalene moiety was possible. This led to an intramolecular photoinduced electron transfer (PET) followed by a nucleophilic replacement of the fluoride according to a SR+N1Ar* mechanism. The formed phenolic hydroxyl group underwent spontaneous lactonization with the adjacent ester group. Based on these results, the first total synthesis of the lignan Comfreyn A and some structural analogues were developed.
Collapse
Affiliation(s)
- Pablo Wessig
- Institut für Chemie, Bioorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Peter Schmidt
- Institut für Chemie, Bioorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Dominik Badetko
- Institut für Chemie, Bioorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Eric Sperlich
- Institut für Chemie, Bioorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Alexandra Kelling
- Institut für Chemie, Bioorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Yang DS, Chen XL, Wu CY, Tang BC, Xiao YC, Wu YD, Wu AX. Synthesis of β,β-Dithioketones by Merging C-C and C-S Bond Cleavage in [1 + 1 + 1 + 1 + 1 + 1] Annulation. Org Lett 2024; 26:4340-4345. [PMID: 38743916 DOI: 10.1021/acs.orglett.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unconventional [1 + 1 + 1 + 1 + 1 + 1] annulation process was developed for the construction of β,β-dithioketones by merging C-C and C-S bond cleavage. In this reaction, rongalite concurrently served as triple C1 units, dual sulfur(II) synthons, and a reductant for the first time. Mechanism investigation indicated that the reaction involved the self-mediated valence state change of rongalite. By performing this step-economical method, the challenging construction of C5-substituted 1,3-dithiane can be achieved under mild and simple conditions.
Collapse
Affiliation(s)
- Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chun-Yan Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Bo-Cheng Tang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yong-Cheng Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Tobisch S. Copper-catalysed electrophilic carboamination of terminal alkynes with benzyne looked at through the computational lens. Dalton Trans 2024; 53:8154-8167. [PMID: 38536069 DOI: 10.1039/d3dt04301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A detailed computational mechanistic study of the copper-catalysed three-component-type electrophilic carboamination of terminal alkynes with benzyne and an archetypal O-benzoylhydroxylamine electrophile is presented. Probing various plausible pathways for relevant elementary steps and scrutinising performance degradation pathways, with the aid of a reliable computational protocol applied to a realistic catalyst model combined with kinetic analysis, identified the pathways preferably traversed in productive catalysis. It entails rapid alkynylcupration of in situ generated benzyne to deliver the arylcopper nucleophile that undergoes amination with the O-benzoylhydroxylamine electrophile to afford copper benzoate. Umpolung-enabled electrophilic amination favours a multistep SN2-type oxidative addition/N-C bond-forming reductive elimination sequence involving a short-lived formal {P^P}CuIII carboxylate amido aryl intermediate. SN2-type displacement of the benzoate leaving group at the arylcopper nucleophile, which represents the catalyst resting state, is predicted to be the turnover limiting step. Alkynolysis transforms copper benzoate back to catalytically competent alkynylcopper. The computational probe of a wider range of substrates reveals that only severely ring-strained C6-arynes, C6-cycloalkynes and electron-deficient cyclopropenes featuring a highly reactive C≡C linkage could replace benzyne. Moreover, strict control of stationary benzyne concentration is indispensable for electrophilic carboamination to ever become achievable.
Collapse
Affiliation(s)
- Sven Tobisch
- University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
9
|
Chen CL, Huang TS, Chang PH, Hsu CS. Iodide-umpolung catalytic system for non-traditional amide coupling from nitroalkanes and amines. Org Biomol Chem 2024; 22:2780-2790. [PMID: 38498332 DOI: 10.1039/d4ob00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
An N-iodosuccinimide (NIS) catalyst was developed for use in the non-traditional synthesis of amide derivatives from nitroalkanes and amines. In contrast to traditional oxidative catalysis, this catalytic system involves reversing the polarities of two catalytic components (umpolung) by means of a hypervalent iodine reagent. A variety of functional groups were tolerated in the reaction, suggesting that they have the potential for use in other types of oxidative catalytic reactions.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan.
| | - Tian-Sih Huang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan.
| | - Po-Hsiang Chang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan.
| | - Che-Sheng Hsu
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan.
| |
Collapse
|
10
|
Bai D, Guo X, Wang X, Xu W, Cheng R, Wei D, Lan Y, Chang J. Umpolung reactivity of strained C-C σ-bonds without transition-metal catalysis. Nat Commun 2024; 15:2833. [PMID: 38565533 PMCID: PMC10987681 DOI: 10.1038/s41467-024-47169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Umpolung is an old and important concept in organic chemistry, which significantly expands the chemical space and provides unique structures. While, previous research focused on carbonyls or imine derivatives, the umpolung reactivity of polarized C-C σ-bonds still needs to explore. Herein, we report an umpolung reaction of bicyclo[1.1.0]butanes (BCBs) with electron-deficient alkenes to construct the C(sp3)-C(sp3) bond at the electrophilic position of C-C σ-bonds in BCBs without any transition-metal catalysis. Specifically, this transformation relies on the strain-release driven bridging σ-bonds in bicyclo[1.1.0]butanes (BCBs), which are emerged as ene components, providing an efficient and straightforward synthesis route of various functionalized cyclobutenes and conjugated dienes, respectively. The synthetic utilities of this protocol are performed by several transformations. Preliminary mechanistic studies including density functional theory (DFT) calculation support the concerted Alder-ene type process of C-C σ-bond cleavage with hydrogen transfer. This work extends the umpolung reaction to C-C σ-bonds and provides high-value structural motifs.
Collapse
Affiliation(s)
- Dachang Bai
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiuli Guo
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Xinghua Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Xu
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Ruoshi Cheng
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Donghui Wei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Lan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Li Y, Gong Y. Formation of N, N, N', N'-tetramethylethylenediamine via coupling of the two charge reversed C-N bonds of Me 3NO in the presence of an Eu(II) bis(trimethylsilyl)amide complex. Dalton Trans 2024; 53:5342-5345. [PMID: 38303679 DOI: 10.1039/d4dt00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An N,N,N',N'-tetramethylethylenediamine (TMEDA) complex of Eu(II) was synthesized via an unprecedented self-aminomethylation of Me3NO in the presence of Eu[N(SiMe3)2]2(THF)2. The neutral TMEDA ligand is formed via the coupling of two charge reversed carbon centres from the same precursor Me3NO. In contrast, the reactions of LnII[N(SiMe3)2]2(THF)2 (Ln = Yb, Sm) with Me3NO led to the oxygen-bridged dinuclear complexes of Ln(III).
Collapse
Affiliation(s)
- Yangjuan Li
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
12
|
Morris RH. Reactivity umpolung (reversal) of ligands in transition metal complexes. Chem Soc Rev 2024; 53:2808-2827. [PMID: 38353155 DOI: 10.1039/d3cs00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The success and power of homogeneous catalysis derives in large part from the wide choice of transition metal ions and their ligands. This tutorial review introduces examples where the reactivity of a ligand is completely reversed (umpolung) from Lewis basic/nucleophilic to acidic/electrophilic or vice versa on changing the metal and co-ligands. Understanding this phenomenon will assist in the rational design of catalysts and the understanding of metalloenzyme mechanisms. Labelling a metal and ligand with Seebach donor and acceptor labels helps to identify whether a reaction involving the intermolecular attack on the ligand is displaying native reactivity or reactivity umpolung. This has been done for complexes of nitriles, carbonyls, isonitriles, dinitrogen, Fischer carbenes, alkenes, alkynes, hydrides, methyls, methylidenes and alkylidenes, silylenes, oxides, imides/nitrenes, alkylidynes, methylidynes, and nitrides. The electronic influence of the metal and co-ligands is discussed in terms of the energy of (HOMO) d electrons. The energy can be related to the pKLACa (LAC is ligand acidity constant) of the theoretical hydride complexes [H-[M]-L]+ formed by the protonation of pair of valence d electrons on the metal in the [M-L] complex. Preliminary findings indicate that a negative pKLACa indicates that nucleophilic attack by a carbanion or amine on the ligand will likely occur while a positive pKLACa indicates that electrophilic attack by strong acids on the ligand will usually occur when the ligand is nitrile, carbonyl, isonitrile, alkene and η6-arene.
Collapse
Affiliation(s)
- Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S3H6.
| |
Collapse
|
13
|
Chen YH, Duan M, Lin SL, Liu YW, Cheng JK, Xiang SH, Yu P, Houk KN, Tan B. Organocatalytic aromatization-promoted umpolung reaction of imines. Nat Chem 2024; 16:408-416. [PMID: 38062248 DOI: 10.1038/s41557-023-01384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/24/2023] [Indexed: 03/07/2024]
Abstract
The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Strong nucleophiles are often required to react with the N-electrophiles without catalytic and stereochemical control. Here we show an effective strategy to realize umpolung of imines promoted by organocatalytic aromatization. The attachment of strongly electron-withdrawing groups to imines could enhance the umpolung reactivity by both electronegativity and aromatic character, enabling the direct amination of (hetero)arenes with good efficiencies and stereoselectivities. Additionally, the application of chiral Brønsted acid catalyst furnishes (hetero)aryl C-N atropisomers or enantioenriched aliphatic amines via dearomative amination from N-electrophilic aromatic precursors. Control experiments and density functional theory calculations suggest an ionic mechanism for the umpolung reaction of imines. This disconnection expands the options to forge C-N bonds stereoselectively on (hetero)arenes, which represents an important synthetic pursuit, especially in medicinal chemistry.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Si-Li Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Wei Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
14
|
Wu SY, Li Y, Shen P, Yang XH, Ran GY. Palladium-catalysed fragmentary esterification-induced allylic alkylation of allyl carbonates and cyclic vinylogous anhydrides. Chem Commun (Camb) 2024; 60:1416-1419. [PMID: 38204402 DOI: 10.1039/d3cc05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An unprecedented palladium-catalysed fragmentary esterification-induced allylic alkylation (FEAA) of cyclic vinylogous anhydrides (CVAs) and allyl carbonates has been disclosed. The protocol features broad sp3-rich scaffold tolerance, rendering highly functionalized 1,6 and 1,7-dicarbonyls in up to high yields and diastereoselectivities. Three-component FEAA is also well tolerant to generate 1,6-dicarbonyls through the addition of extra O/N-nucleophiles. Furthermore, cyclic allyl carbonate-involved FEAA provides an efficient approach for the synthesis of structurally complex medium-sized rings.
Collapse
Affiliation(s)
- Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xin-Han Yang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Shiina I, Iizumi T, Taniguchi S, Sugimoto M, Shimazaki T, Yamai YS, Ogawa G, Yamada T, Shinohara S, Kageyama Y, Kuboki T, Suwa Y, Yonekura K, Ito K, Toyoyama K, Tateyama S, Mori T, Murata T. Total Synthesis of the Sesquiterpene (-)-Merrillianin. Org Lett 2023. [PMID: 38160411 DOI: 10.1021/acs.orglett.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The first total synthesis of (-)-merrillianin (1), which is a natural sesquiterpene with a tricyclic structure having a cyclopentane ring and five- and seven-membered lactone parts, is demonstrated. This asymmetric total synthesis enabled the absolute stereostructure determination of naturally occurring (-)-1.
Collapse
Affiliation(s)
- Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takashi Iizumi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saori Taniguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masuhiro Sugimoto
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahisa Shimazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yu-Suke Yamai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Go Ogawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tetsuro Yamada
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shojiro Shinohara
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yosuke Kageyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Teppei Kuboki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Suwa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keita Yonekura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keiichi Ito
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kiyotaka Toyoyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Satoru Tateyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahiro Mori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
16
|
Dong W, Zhao Z, Gu CZ, Liu JG, Yang S, Fang X. Copper-Catalyzed Umpolung Reactivity of Propargylic Carbonates in the Presence of Diboronates: One Stone Four Birds. J Am Chem Soc 2023; 145:27539-27554. [PMID: 38019885 DOI: 10.1021/jacs.3c09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Allylation and propargylation are two powerful synthetic strategies for making new substances that have been of significant importance in chemistry, medicine, and material fields. Conventional tactics employ various preformed allylation and propargylation reagents. In this study, a conceptually novel copper-catalyzed and B2pin2-mediated Umpolung reactivity of propargylic carbonates has been achieved for the first time, realizing both allylation and propargylation of aldehydes and ketones without additional reductants. Three types of allylation products and one type of propargylation product are generated efficiently, and all allylation products are formed with syn-configurations predominantly. The choice of ligands plays a vital role in modulating the Umpolung modes. The synthetic applications have been demonstrated in a myriad of further transformations including natural product synthesis, and systematic mechanistic studies have been conducted to reveal detailed insights into the Umpolung processes.
Collapse
Affiliation(s)
- Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Jing-Gong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
17
|
Zhou J, Wang W, Zuo F, Liu S, Mosim Amin P, Zhong K, Bai R, Wang Y. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes. Angew Chem Int Ed Engl 2023; 62:e202302545. [PMID: 37856619 DOI: 10.1002/anie.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,β- and β,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.
Collapse
Affiliation(s)
- Junrui Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Weilin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Fenfang Zuo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Pathan Mosim Amin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
Hart AP, DeGraw CJ, Rustin GJ, Donahue MG, Pigza JA. Squaramide Organocatalyzed Addition of a Masked Acyl Cyanide to β-Nitrostyrenes. J Org Chem 2023; 88:16666-16670. [PMID: 37966138 DOI: 10.1021/acs.joc.3c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A method for the squaramide-organocatalyzed enantioselective addition of a silyl-protected masked acyl cyanide (MAC) reagent to various β-nitrostyrenes is described. Reactions are carried out in a freezer and provide products cleanly and in high enantioselectivities at very low catalyst loadings. Adducts are then unmasked, providing various oxidation state 3 functional groups, thereby highlighting the utility of these MAC reagents and a new strategy for the preparation of β-amino acids.
Collapse
Affiliation(s)
- Alison P Hart
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Caroline J DeGraw
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Gavin J Rustin
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Matthew G Donahue
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Julie A Pigza
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
19
|
Bankar OS, Laha D, Meher KB, Bhat RG. Umpolung Reactivity of Diazo Arylidene Succinimides: Distal C-H Functionalization of α-Thiocarbonyls from the Reactive Carbenoid Center. Chem Asian J 2023; 18:e202300774. [PMID: 37828837 DOI: 10.1002/asia.202300774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Herein, for the first time we have explored the umpolung reactivity of the vinylogous carbon center of diazo arylidene succinimide (DAS) through rhodium catalysis to achieve [2,3]-Stevens rearrangement of α-thioether esters. The protocol has successfully demonstrated the distal C-H bond functionalization of the α-thioether esters. Alongside, the carbenoid reactivity of DAS has also been achieved with Doyle-Kirmse reaction of allyl/propargyl phenyl sulfides. The protocol proved to be practical to synthesize a wide variety of [2,3]-Stevens rearrangement products exclusively and the possible side products emanating from Pummerer rearrangement and [1,2]-Stevens rearrangement were not observed. This catalytic protocol works smoothly in environmentally benign solvent under open air to afford the corresponding desired products with excellent diastereo-, regio- and chemo-selectivities in good to excellent yields. The protocol also proved to be scalable on gram quantity.
Collapse
Affiliation(s)
- Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Kajal B Meher
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| |
Collapse
|
20
|
Zhou R, Fan S, Fang L, Chu B, Zhu J. Rh(III)-Catalyzed N-Amino-Directed C-H Coupling with 3-Methyleneoxetan-2-ones for 1,2-Dihydroquinoline-3-carboxylic Acid Synthesis. Org Lett 2023. [PMID: 37996082 DOI: 10.1021/acs.orglett.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dynamic polarity analysis is proposed herein as a general tool for investigating static polarity and transient polarity and revealing expanded reactivity patterns. Through this analysis formalism, polarity matching has been established for Rh(III)-catalyzed N-amino-directed C-H coupling with 3-methyleneoxetan-2-ones, providing efficient access to 1,2-dihydroquinoline-3-carboxylic acids. The identified reaction, by virtue of the internal oxidative mechanism, showcases mild reaction conditions (room temperature), a short reaction time (2 h), and a generally high product yield.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Benfa Chu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Engbers S, Guo Y, Klein JEMN. A Porphyrin Iron(III) π-Dication Species and its Relevance in Catalyst Design for the Umpolung of Nucleophiles. Angew Chem Int Ed Engl 2023; 62:e202313006. [PMID: 37751302 DOI: 10.1002/anie.202313006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Isoporphyrins have recently been identified as remarkable species capable of turning the nucleophile attached to the porphyrin ring into an electrophile, thereby providing umpolung of reactivity (Inorg. Chem. 2022, 61, 8105-8111). They are generated by nucleophilic attack on an iron(III) π-dication, a class of species that has received scant attention. Here, we explore the effect of the porphyrin meso-substituent and report a iron(III) π-dication bearing the meso-tetraphenylporphyrin (TPP) ligand. We provide an extensive study of the species by UV/Vis absorption, 2 H NMR, EPR, applied field Mössbauer, and resonance Raman spectroscopy. We further explore the system's highly dynamic and tunable properties and address the nature of the axial ligands as well as the conformation of the porphyrin ring. The insights presented are essential for the rational design of catalysts for the umpolung of nucleophiles. Such catalytic avenues could for example provide a novel method for electrophilic chlorinations. We further examine the importance of electronic tuning of the porphyrin by nature of the meso-substituent as a factor in catalyst design.
Collapse
Affiliation(s)
- Silène Engbers
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania, 15213, United States
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| |
Collapse
|
22
|
Zhang B, He J, Gao Y, Levy L, Oderinde MS, Palkowitz MD, Dhar TGM, Mandler MD, Collins MR, Schmitt DC, Bolduc PN, Chen T, Clementson S, Petersen NN, Laudadio G, Bi C, Kawamata Y, Baran PS. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 2023; 623:745-751. [PMID: 37788684 PMCID: PMC10754231 DOI: 10.1038/s41586-023-06677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.
Collapse
Affiliation(s)
- Benxiang Zhang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Jiayan He
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yang Gao
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Laura Levy
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Cambridge, MA, USA
| | - T G Murali Dhar
- Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Michael D Mandler
- Bristol Myers Squibb Research & Early Development, Princeton, NJ, USA
| | - Michael R Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, San Diego, CA, USA
| | - Daniel C Schmitt
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, USA
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | - Cheng Bi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
23
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
24
|
Bhowmick A, Chatterjee A, Pathak SS, Bhat RG. A visible light-driven direct synthesis of industrially relevant glutaric acid diesters from aldehydes. Chem Commun (Camb) 2023; 59:11875-11878. [PMID: 37724011 DOI: 10.1039/d3cc02557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A straightforward and practical method has been developed to access α-substituted glutaric diesters from acrylates and aldehydes using visible light, with Eosin Y facilitating hydrogen atom transfer (HAT) and subsequent Giese-type addition. Also, sunlight has been successfully used as an alternative sustainable light source. The method has also been explored to access substituted 4,5-dihydro-2H-pyridazinones, which have potential biological and industrial applications. Comprehensive mechanistic investigations have been carried out.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Sidharth S Pathak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India.
| |
Collapse
|
25
|
Shi Q, Liu WH. Reactivity Umpolung of Tertiary Amide Enabled by Catalytic Reductive Stannylation. Angew Chem Int Ed Engl 2023; 62:e202309567. [PMID: 37479672 DOI: 10.1002/anie.202309567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
Reactivity umpolung is an important concept in organic chemistry. Established reactivity umpolung mainly focuses on the aldehyde and umpolung of amide carbonyl group is not known. In this report, we describe a process to obtain the umpolung reactivity of tertiary amide. This process hinges on the efficient reductive stannylation catalyzed by Ir/silane and facile Sn-Li exchange. By leveraging this umpolung reactivity, drug Fluoxetine was derivatized to 12 different analogues via reacting with various electrophiles and four biologically active molecules were prepared concisely. This unlocked umpolung reactivity of tertiary amide is expected to find applications to synthesize complex amines from amides.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Collins S, Sieber JD. Development of regiodivergent asymmetric reductive coupling reactions of allenamides to access heteroatom-rich organic compounds. Chem Commun (Camb) 2023; 59:10087-10100. [PMID: 37529849 DOI: 10.1039/d3cc03013j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Organic compounds of biological importance often contain multiple stereogenic C-heteroatom functional groups (e.g. amines, alcohols, and ethers). As a result, synthetic methods to access such compounds in a reliable and stereoselective fashion are important. In this feature article, we present a strategy to enable the introduction of multiple C-heteroatom functional groups in a regiodivergent cross-coupling approach through the use of reductive coupling chemistry employing allenamides. Such processes allow for opportunities to access different heteroatom substitution patterns from the same starting materials.
Collapse
Affiliation(s)
- Stephen Collins
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| | - Joshua D Sieber
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
27
|
Panda J, Sahoo J, Dutta J, Biswal HS, Sahoo G. Spectroscopic and Computational Study of the Organocatalytic Umpolung of Bromocations: An Accelerated Stereoselective Dibromination Protocol. Chemistry 2023; 29:e202300675. [PMID: 37276362 DOI: 10.1002/chem.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10 mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.
Collapse
Affiliation(s)
- Jeetendra Panda
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Jigyansa Sahoo
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Himansu Sekhar Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Gokarneswar Sahoo
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
28
|
Kaur R, Singh RP. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach. J Org Chem 2023; 88:10325-10338. [PMID: 37460945 DOI: 10.1021/acs.joc.3c01055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
[1,2]-Phospha-Brook rearrangement entails the generation of α-oxygenated carbanions via the umpolung process. Recently, these anionic species have been widely utilized for several C-C bond forming strategies, providing various useful frameworks that are difficult to access through conventional approaches. However, the application of this powerful methodology in the development of chiral strategies is still at the nascent stage due to challenges involved in controlling chemoselectivity and enantioselectivity. This synopsis provides a detailed summary of diastereo- and/or enantioselective chemical transformations using [1,2]-phospha-Brook rearrangement.
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
29
|
Hinton H, Patterson J, Hume J, Patel K, Pigza J. Scalable Preparation of the Masked Acyl Cyanide TBS-MAC. Molecules 2023; 28:5087. [PMID: 37446749 DOI: 10.3390/molecules28135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This paper describes the three-step synthesis of TBS-MAC, a masked acyl cyanide (MAC) and a versatile one-carbon oxidation state three synthon. We have developed a scalable and detailed synthesis that involves: (1) acetylation of malononitrile to form the sodium enolate, (2) protonation of the enolate to form acetylmalononitrile, and (3) epoxidation of the enol, rearrangement to an unstable alcohol, and TBS-protection to form the title compound. Both the sodium enolate and acetylmalononitrile are bench-stable precursors to the intermediate hydroxymalononitrile, which can be converted to other MAC reagents beyond TBS by varying the protecting group (Ac, MOM, EE, etc.).
Collapse
Affiliation(s)
- Haley Hinton
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jack Patterson
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jared Hume
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Krunal Patel
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Julie Pigza
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
30
|
Haroon M, Zahoor AF, Ahmad S, Mansha A, Irfan M, Mushtaq A, Akhtar R, Irfan A, Kotwica-Mojzych K, Mojzych M. The Corey-Seebach Reagent in the 21st Century: A Review. Molecules 2023; 28:molecules28114367. [PMID: 37298842 DOI: 10.3390/molecules28114367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The Corey-Seebach reagent plays an important role in organic synthesis because of its broad synthetic applications. The Corey-Seebach reagent is formed by the reaction of an aldehyde or a ketone with 1,3-propane-dithiol under acidic conditions, followed by deprotonation with n-butyllithium. A large variety of natural products (alkaloids, terpenoids, and polyketides) can be accessed successfully by utilizing this reagent. This review article focuses on the recent contributions (post-2006) of the Corey-Seebach reagent towards the total synthesis of natural products such as alkaloids (lycoplanine A, diterpenoid alkaloids, etc.), terpenoids (bisnorditerpene, totarol, etc.), polyketide (ambruticin J, biakamides, etc.), and heterocycles such as rodocaine and substituted pyridines, as well and their applications towards important organic synthesis.
Collapse
Affiliation(s)
- Muhammad Haroon
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Aqsa Mushtaq
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rabia Akhtar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Chemistry, Superior University, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
31
|
Barbasiewicz M, Fedoryński M, Loska R, Mąkosza M. Analogy of the Reactions of Aromatic and Aliphatic π-Electrophiles with Nucleophiles. Molecules 2023; 28:molecules28104015. [PMID: 37241756 DOI: 10.3390/molecules28104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this essay is to disclose the similarity of a great variety of reactions that proceed between nucleophiles and π-electrophiles-both aromatic and aliphatic. These reactions proceed via initial reversible addition, followed by a variety of transformations that are common for the adducts of both aliphatic and aromatic electrophiles. We hope that understanding of this analogy should help to expand the scope of the known reactions and inspire the search for new reactions that were overlooked.
Collapse
Affiliation(s)
| | - Michał Fedoryński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mieczysław Mąkosza
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
32
|
Hu C, Mena J, Alabugin IV. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 2023:10.1038/s41570-023-00479-w. [PMID: 37117812 DOI: 10.1038/s41570-023-00479-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.
Collapse
|
33
|
Seong CM, Ansel AQ, Roberts CC. Redox Inversion: A Radical Analogue of Umpolung Reactivity for Base- and Metal-Free Catalytic C(sp 3)-C(sp 3) Coupling. J Org Chem 2023; 88:3935-3940. [PMID: 36877204 DOI: 10.1021/acs.joc.2c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The construction of alkyl-alkyl bonds is a powerful tool in organic synthesis. Redox inversion, defined as switching the donor/acceptor profile of a functional group to its acceptor/donor profile, is used for C(sp3)-C(sp3) coupling. We report a photocatalytic coupling of carboxylic acids to form bibenzyls through a radical-radical coupling. Mechanistic insight is gained through control reactions. This unexplored redox-opposite relationship between a carboxylic acid and its redox-active ester is implemented in catalysis.
Collapse
Affiliation(s)
- Chris M Seong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annabel Q Ansel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Pokluda A, Zubova E, Chudoba J, Krupička M, Cibulka R. Catalytic artificial nitroalkane oxidases - a way towards organocatalytic umpolung. Org Biomol Chem 2023; 21:2768-2774. [PMID: 36919409 DOI: 10.1039/d3ob00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works via an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes. In our system, aldehydes immediately reacted with other nitroalkane molecules to form β-nitroalcohols. The reduced flavin catalyst was re-oxidised by oxygen. An alternative mechanism towards β-nitroalcohols via 5-(2-nitrobutyl)-1,5-dihydroflavin was suggested through quantum chemical calculations and by trapping and characterising this dihydroflavin intermediate. Interestingly, 5-(2-nitrobutyl)-1,5-dihydroflavin is an analogue of the flavin adenine dinucleotide adduct previously observed in an NAO X-ray structure. In both mechanistic pathways, flavin-5-iminium species is formed by nitroalkanide addition to flavin. This process represents flavin-based umpolung of an original donor to an acceptor.
Collapse
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Josef Chudoba
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
35
|
Dharpure PD, Behera M, Thube AS, Bhat RG. Base Dependent Rearrangement of Dithiane and Dithiolane under Visible-light Photoredox catalysis. Chem Asian J 2023; 18:e202201128. [PMID: 36630181 DOI: 10.1002/asia.202201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The rearrangement of dithiolanes and dithianes to access disulfide-linked-dithioesters under visible-light photoredox catalysis via controlled C-S bond cleavage has been disclosed. Unlike, the usual deprotection of dithioacetals to corresponding aldehydes under the oxidative conditions, we observed unique regioselective oxidative reactivity of five and six membered cyclic dithioacetals to form disulfide-linked-dithioesters by exchanging DMAP and imidazole bases. The generality of the protocol has been demonstrated by exploring a wide range of substrates. As an application, in situ generated thiyl radical has been trapped with disulfides to prepare hetero-disulfides of potential utility. The protocol proved to be practical on gram scale quantity and relied on clean energy source for the transformation. Based on the series of control experiments, cyclic voltammetry and Stern-Volmer studies the plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
36
|
Ryckaert B, Demeyere E, Degroote F, Janssens H, Winne JM. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures. Beilstein J Org Chem 2023; 19:115-132. [PMID: 36761474 PMCID: PMC9907017 DOI: 10.3762/bjoc.19.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
This review covers the synthetic applications of 1,4-dithianes, as well as derivatives thereof at various oxidation states. The selected examples show how the specific heterocyclic reactivity can be harnessed for the controlled synthesis of carbon-carbon bonds. The reactivity is compared to and put into context with more common synthetic building blocks, such as 1,3-dithianes and (hetero)aromatic building blocks. 1,4-Dithianes have as yet not been investigated to the same extent as their well-known 1,3-dithiane counterparts, but they do offer attractive transformations that can find good use in the assembly of a wide array of complex molecular architectures, ranging from lipids and carbohydrates to various carbocyclic scaffolds. This versatility arises from the possibility to chemoselectively cleave or reduce the sulfur-heterocycle to reveal a versatile C2-synthon.
Collapse
Affiliation(s)
- Bram Ryckaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Ellen Demeyere
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Frederick Degroote
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| |
Collapse
|
37
|
Villaseñor-Granados TO, Sánchez-Ruiz SA, Rojas-Sáenz HJ, Flores-Parra A. New 1,3,5-dithiazinanes bearing β-alcohol or β-sulphonates chains at C2. Non classical S→phenyl and S→C interactions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Odagi M, Mori I, Sugimoto K, Nagasawa K. Enantioselective Oxidative Enolate Coupling of Oxindoles Catalyzed by Chiral Guanidinium Hypoiodite. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Io Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kota Sugimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
39
|
Li Q, Zhang W, Zhu C, Pan H, Shi KY, Zhang Y, Han MY, Tan CH. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. J Org Chem 2023; 88:1245-1255. [PMID: 36628963 DOI: 10.1021/acs.joc.2c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel organobase-catalyzed umpolung reaction of amides was disclosed. This method provides an efficient method to generate and transfer carbamoyl anions. In this transformation, some of the inherent disadvantages of carbamoyl metal were avoided. The mechanistic analysis revealed that the reaction proceeds through polarity inversion of amide, and various carbamoyl anions were applied in the reaction. Moreover, a wide range of substrates was achieved with moderate to excellent yield.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Kang-Yue Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| |
Collapse
|
40
|
Nakamura S, Nishino S, Hirano K. Synthesis of α-Aminophosphonates by Umpolung-Enabled Cu-Catalyzed Regioselective Hydroamination. J Org Chem 2023; 88:1270-1281. [PMID: 36628565 DOI: 10.1021/acs.joc.2c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A copper-catalyzed regioselective hydroamination of α,β-unsaturated phosphonates has been developed to form corresponding α-aminophosphonates of interest in medicinal chemistry. The introduction of an umpolung, electrophilic amination strategy with the hydroxylamine derivative is the key to achieving the α-amination regioselectivity, which is otherwise difficult under the conventional nucleophilic hydroamination conditions with the parent amine. Asymmetric synthesis with a chiral bisphosphine ligand and application to a related silylamination reaction are also described.
Collapse
Affiliation(s)
- Shogo Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Barman D, Lo R, Maiti DK, Manna D, Ghosh T. Mechanistic Exploration of Umpolung Guided Stetter‐Aldol Reaction and Its Dependence on the Choice of Imine. ChemistrySelect 2023. [DOI: 10.1002/slct.202204558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Debabrata Barman
- Department of Chemistry University of Calcutta Kolkata 700009 India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University Olomouc Křížkovského 511/8 Olomouc 77900 Czech Republic
| | - Dilip K. Maiti
- Department of Chemistry University of Calcutta Kolkata 700009 India
| | - Debashree Manna
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology West Bengal, Simhat Haringhata 741249, W.B. India
| | - Tapas Ghosh
- Department of Chemistry Jadavpur University Kolkata 700032 India
| |
Collapse
|
42
|
Zeng Z, Gao H, Zhou Z, Yi W. Intermolecular Redox-Neutral Carboamination of C–C Multiple Bonds Initiated by Transition-Metal-Catalyzed C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| |
Collapse
|
43
|
Murray PD, Leibler INM, Hell SM, Villalona E, Doyle AG, Knowles RR. Radical Redox Annulations: A General Light-Driven Method for the Synthesis of Saturated Heterocycles. ACS Catal 2022; 12:13732-13740. [PMID: 36366762 PMCID: PMC9638994 DOI: 10.1021/acscatal.2c04316] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Indexed: 11/29/2022]
Abstract
We introduce here a two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Sandrine M. Hell
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Eris Villalona
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Abigail G. Doyle
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California90095, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
44
|
Polimera SR, Ilangovan A, Meanwell NA, Subbaiah MAM. Synthetic Access to α-Oxoketene Aminals by the Nucleophilic Addition of Enol Silane-Derived Palladium(II) Enolates to Carbodiimides. J Org Chem 2022; 87:14778-14792. [PMID: 36285601 DOI: 10.1021/acs.joc.2c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthetically important α-oxoketene aminal intermediates can now be accessed from readily available and inexpensive carbodiimides as starting materials via the nucleophilic addition of palladium enolates derived from enol silane precursors. This operationally simple method features mild reaction conditions, including open air atmosphere, ligand-free metal catalysis, broad substrate scope, and multi-gram scalability. Select synthetic applications that take advantage of the enamine character of α-oxoketene aminals and involve C-nucleophilic additions to electrophilic systems, including an α,β-unsaturated ester, an azo dicarboxylate, an aralkyl halide, and an aldehyde, are demonstrated.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| |
Collapse
|
45
|
Ramar T, Ilangovan A, Meanwell NA, Subbaiah MAM. Electrophilic Hydrazination of Cyclopropanols Using Azodicarboxylates via Copper(II) Catalysis: An Umpolung Strategy to Access β-Hydrazino Ketone Motifs. J Org Chem 2022; 87:14596-14608. [PMID: 36190309 DOI: 10.1021/acs.joc.2c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The scope of an umpolung approach to expand synthetic access to bifunctional γ-keto hydrazine intermediates via electrophilic amination of β-homoenolates derived from cyclopropanol precursors that took advantage of azodicarboxylates or azodicarboxamides as electron-deficient nitrogen sources was examined. This new synthetic procedure avails commercially available or readily accessible starting materials along with a ligand-free Cu(II) salt as an inexpensive catalyst. Using this operationally simple reaction, which proceeds under mild conditions (open-flask and ambient temperature) and is suitable for multigram scale, preparative applications were established with a range of aryl- and alkyl-substituted cyclopropanols and azodicarboxylate/azodicarboxamide substrates (26 examples, 74-95% yields). Further, the obtained products have been shown to provide convenient synthetic access to γ-hydroxy hydrazide, γ-amino hydrazide, and heterocyclic derivatives.
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
| |
Collapse
|
46
|
Basemann K, Riley KM, Becker JJ, Gagné MR. Iodenium or Phosphonium: The Ambi-Valent Character of Iodophosphonium Complexes. Inorg Chem 2022; 61:17550-17556. [DOI: 10.1021/acs.inorgchem.2c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin Basemann
- Caudill Laboratories, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| | - Kathleen M. Riley
- Caudill Laboratories, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| | - Jennifer J. Becker
- U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina27709, United States
| | - Michel R. Gagné
- Caudill Laboratories, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| |
Collapse
|
47
|
Wheaton A, Chipman JA, Roy MD, Berry JF. Metal-Metal Bond Umpolung in Heterometallic Extended Metal Atom Chains. Inorg Chem 2022; 61:15058-15069. [PMID: 36094078 PMCID: PMC9632685 DOI: 10.1021/acs.inorgchem.2c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Understanding the fundamental properties governing metal-metal interactions is crucial to understanding the electronic structure and thereby applications of multimetallic systems in catalysis, material science, and magnetism. One such property that is relatively underexplored within multimetallic systems is metal-metal bond polarity, parameterized by the electronegativities (χ) of the metal atoms involved in the bond. In heterobimetallic systems, metal-metal bond polarity is a function of the donor-acceptor (Δχ) interactions of the two bonded metal atoms, with electropositive early transition metals acting as electron acceptors and electronegative late transition metals acting as electron donors. We show in this work, through the preparation and systematic study of a series of Mo2M(dpa)4(OTf)2 (M = Cr, Mn, Fe, Co, and Ni; dpa = 2,2'-dipyridylamide; OTf = trifluoromethanesulfonate) heterometallic extended metal atom chain (HEMAC) complexes that this expected trend in χ can be reversed. Physical characterization via single-crystal X-ray diffraction, magnetometry, and spectroscopic methods as well as electronic structure calculations supports the presence of a σ symmetry 3c/3e- bond that is delocalized across the entire metal-atom chain and forms the basis of the heterometallic Mo2-M interaction. The delocalized 3c/3e- interaction is discussed within the context of the analogous 3c/3e- π bonding in the vinoxy radical, CH2CHO. The vinoxy comparison establishes three predictions for the σ symmetry 3c/3e- bond in HEMACS: (1) an umpolung effect that causes the Mo-M interactions to become more covalent as Δχ increases, (2) distortion of the σ bonding and non-bonding orbitals to emphasize Mo-M bonding and de-emphasize Mo-Mo bonding, and (3) an increase in Mo spin population with increasing Mo-M covalency. In agreement with these predictions, we find that the Mo2···M covalency increases with increasing Δχ of the Mo and M atoms (ΔχMo-M increases as M = Cr < Mn < Fe < Co < Ni), an umpolung of the trend predicted in the absence of σ delocalization. We attribute the observed trend in covalency to the decreased energic differential (ΔE) between the heterometal d z 2 orbital and the σ bonding molecular orbital of the Mo2 quadruple bond, which serves as an energetically stable, "ligand"-like electron-pair donor to the heterometal ion acceptor. As M is changed from Cr to Ni, the σ bonding and nonbonding orbitals do indeed distort as anticipated, and the spin population of the outer Mo group is increased by at least a factor of 2. These findings provide a predictive framework for multimetallic compounds and advance the current understanding of the electronic structures of molecular heteromultimetallic systems, which can be extrapolated to applications in the context of mixed-metal surface catalysis and multimetallic proteins.
Collapse
Affiliation(s)
- Amelia
M. Wheaton
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jill A. Chipman
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael D. Roy
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John. F. Berry
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
48
|
Yadav S, Nanubolu JB, Suresh S. Sequential One-Pot Carbene-Catalyzed Intramolecular Stetter Reaction and Acid-Mediated Condensation: Access to Heteroatom Analogues of π-Extended Polyaromatic Hydrocarbons. Org Lett 2022; 24:6930-6935. [PMID: 36129395 DOI: 10.1021/acs.orglett.2c02693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Letter, we disclose a simple and effective method to access a variety of phenanthro[9,10-b]furan and 1H-dibenzo[e,g]indole derivatives based on the design of a carbene-catalyzed intramolecular Stetter reaction followed by a Paal-Knorr reaction in one-pot. These compounds are a class of π-extended polycyclic aromatic hydrocarbon (PAH) derivatives containing an oxygen/nitrogen atom. The practical utility of the developed transformation was demonstrated on the gram scales and postsynthetic transformations thereof.
Collapse
Affiliation(s)
- Sanjay Yadav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
49
|
Djukanovic D, Ganiek MA, Nishi K, Karaghiosoff K, Mashima K, Knochel P. Preparation of Functionalized Amides Using Dicarbamoylzincs. Angew Chem Int Ed Engl 2022; 61:e202205440. [PMID: 35561099 PMCID: PMC9401601 DOI: 10.1002/anie.202205440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/15/2022]
Abstract
We report a new convenient preparation of dicarbamoylzincs of type (R1 R2 NCO)2 Zn by the treatment of ZnCl2 and formamides R1 R2 NCHO with LiTMP in THF (15 °C, 15 min) or by the reaction of formamides R1 R2 NCHO with TMP2 Zn (25 °C, 16 h). This second method tolerates sensitive groups such as an ester, ketone or nitro function. Reaction of these dicarbamoylzincs with allylic, benzylic, aryl, alkenyl bromides, acid chlorides, aldehydes or enones provided various polyfunctional amides in 47-97 % yields. 13 C NMR characterization of these new carbamoylzinc derivatives is reported.
Collapse
Affiliation(s)
- Dimitrije Djukanovic
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Maximilian A. Ganiek
- Patheon, by Thermo Fisher ScientificPatheon Regensburg GmbhDonaustaufer Straße 37893055RegensburgGermany
| | - Kohei Nishi
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Kazushi Mashima
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
50
|
Kumar G, Das C, Acharya A, Bhal S, Joshi M, Kundu CN, Choudhury AR, Guchhait SK. Organocatalyzed umpolung addition for synthesis of heterocyclic-fused arylidene-imidazolones as anticancer agents. Bioorg Med Chem 2022; 67:116835. [PMID: 35617791 DOI: 10.1016/j.bmc.2022.116835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
A strategy of "Nature-to-new" with iterative scaffold-hopping was considered for investigation of privileged ring/functional motif-elaborated analogs of natural aurones. An organocatalyzed umpolung chemistry based method was established for molecular-diversity feasible synthesis of title class of chemotypes i.e. (Z)-2-Arylideneimidazo[1,2-a]pyridinones and (Z)-2-Arylidenebenzo[d]imidazo[2,1-b]thiazol-3-ones. Various biophysical experiments indicated their important biological properties. The analogs showed characteristic anticancer activities with efficiency more than an anticancer drug. The compounds induced apoptosis with arrest in the S phase of the cell cycle regulation. The compounds' significant effect in up/down-regulation of various apoptotic proteins, an apoptosis cascade, and the inhibition of topoisomerases-mediated DNA relaxation process was identified. The analysis of the structure-activity relationship, interference with biological events and the drug-likeness physicochemical properties of the compounds in the acceptable window indicated distinctive medicinal molecule-to-properties of the investigated chemotypes.
Collapse
Affiliation(s)
- Gulshan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Chinmay Das
- School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Subhasmita Bhal
- School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Mayank Joshi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Chanakya Nath Kundu
- School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|