1
|
Wang XH, Liu X, Xue YW, Wei XH, Wang YB, Su Q. Acid-Promoted Multicomponent Reaction To Synthesize 4-Phosphorylated 4 H-Chromenes. J Org Chem 2024; 89:8531-8536. [PMID: 38838346 DOI: 10.1021/acs.joc.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
An effective multicomponent reaction for the synthesis of 4-phosphorylated 4H-chromenes via a tandem phosphorylation/alkylation/cyclization/dehydration sequence with water as the only byproduct was developed. Extensive mechanistic investigations involving in situ NMR experiments, time control experiments, and in situ HRMS experiment allowed us to elucidate the order of each subreaction to arrive at a complete understanding of the underlying mechanism of this multicomponent reaction. Mechanistic data confirm that the reaction begins with a phospha-aldol-elimination, followed by addition of a ketone enolate, intermolecular alkylation, intramolecular cyclization, and dehydration under acidic conditions.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| | - Xuan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| | - Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou, 730030, P. R. China
| |
Collapse
|
2
|
Ansari MF, Maurya AK, Kumar A, Elangovan S. Manganese-catalyzed C-C and C-N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer. Beilstein J Org Chem 2024; 20:1111-1166. [PMID: 38887586 PMCID: PMC11181258 DOI: 10.3762/bjoc.20.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Transition-metal-mediated "borrowing hydrogen" also known as hydrogen auto-transfer reactions allow the sustainable construction of C-C and C-N bonds using alcohols as hydrogen donors. In recent years, manganese complexes have been explored as efficient catalysts in these reactions. This review highlights the significant progress made in manganese-catalyzed C-C and C-N bond-formation reactions via hydrogen auto-transfer, emphasizing the importance of this methodology and manganese catalysts in sustainable synthesis strategies.
Collapse
Affiliation(s)
- Mohd Farhan Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Atul Kumar Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Charki P, Müller DS. Al(III)-Promoted Formation of All-Carbon Quaternary Centers from Aliphatic Tertiary Chlorides and Alkynyl Silanes. J Org Chem 2024; 89:7324-7329. [PMID: 38712758 DOI: 10.1021/acs.joc.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite the accessibility of numerous alkynes through coupling or substitution reactions, the synthesis of trialkyl-substituted alkynes is still a major challenge. Within this context, we reexplored the electrophilic alkynyl substitution between tertiary aliphatic chlorides and silylated alkynes. We were able to demonstrate that this approach is significantly more general than originally demonstrated by Capozzi and even tolerates several functional groups. Furthermore, we report diastereoselective reactions which in some instances gave excellent diastereoselectivity (dr >95:5).
Collapse
Affiliation(s)
- Paul Charki
- Univerity of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Daniel S Müller
- Univerity of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| |
Collapse
|
4
|
Fujita H, Shimada D, Kudo J, Kosha K, Kakuyama S, Terasaki H, Kunishima M. Carbocationoids, a concept for controlling highly reactive cationic species. Commun Chem 2024; 7:55. [PMID: 38480821 PMCID: PMC10937719 DOI: 10.1038/s42004-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Carbocations, which are positively charged highly electrophilic intermediates, are efficacious for the direct alkylation of low-reactive nucleophiles. The utilization of carbocations in SN1 reactions relies on the activation of their precursors in the presence of a nucleophile. However, undesirable interactions between the nucleophile and the leaving group activator limit the scope of acceptable nucleophiles. Here we report a strategy to conduct SN1 reactions involving unstable carbocations in an alternative stepwise procedure, which was demonstrated by the benzylation of various neutral nucleophiles. In the first step, carbocations were accumulated in a nucleophile-free solution in the form of carbocationoids utilizing the coordinative stabilization of triazinediones. Subsequently, the addition of these solutions in the second step enabled room-temperature alkylation without the need for acidic additives. This methodology overcomes the inherent challenges of carbocations in SN1 reactions.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daichi Shimada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Jotaro Kudo
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuyuki Kosha
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Kakuyama
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiromitsu Terasaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
5
|
Das KM, Pal A, Surya T L, Roy L, Thakur A. Cu(II) Promoted C(sp 3 )-H Activation in Unactivated Cycloalkanes: Oxo-Alkylation of Styrenes to Synthesize β-Disubstituted Ketones. Chemistry 2024; 30:e202303776. [PMID: 38055713 DOI: 10.1002/chem.202303776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
We report the Cu(II) catalyzed synthesis of β-disubstituted ketones from styrene via oxo-alkylation with unactivated cycloalkanes as the alkylating agent in presence of tert-butylhydroperoxide (TBHP) and 1-methylimidazole as oxidant and base respectively. β-disubstituted ketones are known to be synthesized by using either expensive Ru/Ir complexes, or low-cost metal complexes (e. g., Fe, Mn) with activated species like aldehyde, acid, alcohol, or phthalimide derivatives as the alkylating agent, however, use of unactivated cycloalkanes directly as the alkylating agent remains challenging. A wide range of aliphatic C-H substrates as well as various olefinic arenes and heteroarene (35 substrates including 14 new substrates) are well-tolerated in this method. Hammett analysis shed more light on the substitution effect in the olefinic part on the overall mechanism. Furthermore, the controlled experiments, kinetic isotope effect study, and theoretical calculations (DFT) enable us to gain deeper insight of mechanistic intricacies of this new simple and atom-economic methodology.
Collapse
Affiliation(s)
- Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Lakshmi Surya T
- Institute of Chemical Technology Mumbai, IOC Odisha Campus, Bhubaneswar, Odisha, 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus, Bhubaneswar, Odisha, 751013, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
6
|
Jalwal S, Regina A, Atreya V, Paranjothy M, Chakraborty S. NNN manganese complex-catalyzed α-alkylation of methyl ketones using alcohols: an experimental and computational study. Dalton Trans 2024. [PMID: 38251673 DOI: 10.1039/d3dt04321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We present here a phosphine-free, quinoline-based pincer Mn catalyst for α-alkylation of methyl ketones using primary alcohols as alkyl surrogates. The C-C bond formation reaction proceeds via a hydrogen auto-transfer methodology. The sole by-product formed is water, rendering the protocol atom efficient. Electronic structure theory studies corroborated the proposed mechanism.
Collapse
Affiliation(s)
- Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Anitta Regina
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| |
Collapse
|
7
|
Jena S, Frenzen L, Chugh V, Wu J, Weyhermüller T, Auer AA, Werlé C. A Cooperative Cobalt-Driven System for One-Carbon Extension in the Synthesis of ( Z)-Silyl Enol Ethers from Aldehydes: Unlocking Regio- and Stereoselectivity. J Am Chem Soc 2023; 145:27922-27932. [PMID: 38086018 PMCID: PMC10755702 DOI: 10.1021/jacs.3c10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
The research presented herein explores a cobalt-based catalytic system, distinctively featuring a cooperative boron-centric element within its intricate ligand architecture. This system is strategically engineered to enable the integration of a singular carbon atom into aldehydes, a process culminating in the production of (Z)-silyl enol ethers. Beyond offering an efficient one-pot synthesis route, this method adeptly overcomes challenges inherent to conventional techniques, such as the need for large amounts of additives, restrictive functional group tolerance, and extreme reaction temperatures. Initial mechanistic studies suggest the potential role of a cobalt-carbene complex as a catalytically significant species and underscore the importance of the borane segment. Collectively, these observations highlight the potential of this system in advancing complex bond activation pursuits.
Collapse
Affiliation(s)
- Soumyashree Jena
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr
University Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| | - Lars Frenzen
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Vishal Chugh
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr
University Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| | - Jiajun Wu
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Werlé
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr
University Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Kumar N, Sankar RV, Gunanathan C. Ruthenium-Catalyzed Self-Coupling of Secondary Alcohols. J Org Chem 2023. [PMID: 38039390 DOI: 10.1021/acs.joc.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A simple catalytic method for self-coupling of secondary alcohols leading to the synthesis of β-branched ketones under mild conditions is reported. Well-defined ruthenium pincer complex catalyzed the reactions. Optimization studies revealed that sodium tert-butoxide is an appropriate base for this transformation. Functionalized aryl methanols, heteroaryl methanols, and linear and branched aliphatic secondary alcohols underwent facile catalytic self-coupling reactions. Mechanistic studies revealed that both catalyst and base are crucial to achieve dehydrogenation of secondary alcohols to ketones, their subsequent controlled aldol condensation, and further hydrogenation of α,β-unsaturated intermediates, leading to the selective formation of β-branched ketone products. Notably, the noninnocent PNP ligand which displays amine-amide metal-ligand cooperation operative in a catalyst played a key role in facilitating this catalytic self-coupling of secondary alcohols. Liberated molecular hydrogen and water are the only byproducts.
Collapse
Affiliation(s)
- Nitin Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
9
|
Pranesh Kavin S, Ramesh R. Synthesis and structure of Pd(II) pincer complexes: catalytic application in β-alkylation of secondary alcohols involving sequential dehydrogenation of alcohols via the borrowing hydrogen approach. Dalton Trans 2023. [PMID: 37409425 DOI: 10.1039/d3dt01628e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Herein, we report an efficient and sustainable approach for the selective synthesis of ketones by palladium pincer catalyzed β-alkylation of secondary alcohols with aromatic primary alcohols via the borrowing hydrogen (BH) approach for the first time. A set of new Pd(II) ONO pincer complexes was synthesized and characterised by elemental analysis and spectral techniques (FT-IR, NMR and HRMS). The solid-state molecular structure of one the complexes was corroborated by X-ray crystallography. A range of α-alkylated ketone derivatives (25 examples) was obtained in excellent yields up to 95% through sequential dehydrogenative coupling of secondary and primary alcohols with 0.5 mol% catalyst loading with a substoichiometric amount of the base. Control experiment studies were carried out for the coupling reactions which revealed that the reaction involves an aldehyde, a ketone and chalcone intermediates, and eventually established the borrowing hydrogen strategy. Gratifyingly, this protocol is simple and atom economical, with water/hydrogen as byproducts. In addition, large-scale synthesis also demonstrated the synthetic usefulness of the present protocol.
Collapse
Affiliation(s)
- Sekar Pranesh Kavin
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu, India.
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu, India.
| |
Collapse
|
10
|
Hayashi R, Narita Y, Sai M. One-pot synthesis of 3-functionalized ( Z)-silyl enol ethers from 1-arylallylic alcohols by C, O-difunctionalization of dipotassio α,β-dianion intermediates. Org Biomol Chem 2023; 21:4206-4209. [PMID: 37144448 DOI: 10.1039/d3ob00199g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Previously reported syntheses of 3-functionalized silyl enol ethers using allyloxysilanes are hindered by undesirable reactions owing to retro Brook rearrangements. In this study, various 3-functionalized (Z)-silyl enol ethers were synthesized from readily available 1-arylallylic alcohols using (trimethylsilyl)methylpotassium as a base. C,O-Difunctionalization of the in situ-generated dipotassio α,β-dianion with electrophiles and silyl chlorides is key to the success of this transformation. Control experiments confirmed that the dianion has higher nucleophilicity and thermal stability than related siloxyallylpotassiums.
Collapse
Affiliation(s)
- Rikuo Hayashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yutaka Narita
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Masahiro Sai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
11
|
Manojveer S, Garg NK, Gul Z, Kanwal A, Goriya Y, Johnson MT. Ligand-Promoted [Pd]-Catalyzed α-Alkylation of Ketones through a Borrowing-Hydrogen Approach. ChemistryOpen 2023; 12:e202200245. [PMID: 36592045 PMCID: PMC9807026 DOI: 10.1002/open.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
A new class of palladium complexes bearing bidentate 2-hydroxypyridine based ligands have been prepared and fully characterized. The applications of these new complexes towards ketone alkylation reactions with alcohols through a metal-ligand cooperative borrowing-hydrogen (BH) process were demonstrated.
Collapse
Affiliation(s)
- Seetharaman Manojveer
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Nitish K. Garg
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Zarif Gul
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Ayesha Kanwal
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Yogesh Goriya
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Magnus T. Johnson
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
- Perstorp ABPerstorp Industrial Park284 80PerstorpSweden
| |
Collapse
|
12
|
Yang DY, Wang H, Chang CR. Recent Advances for Alkylation of Ketones and Secondary Alcohols using Alcohols in Homogeneous Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
14
|
Charvet S, Médebielle M, Vantourout JC. Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. J Org Chem 2022; 87:5690-5702. [DOI: 10.1021/acs.joc.2c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| |
Collapse
|
15
|
Hu H, Wu X, Qiu Y, Wang C, Wang W, Yue G, Wang H, Feng J, Wang G, Ni H, Zou P. Arylboronic Acid Catalyzed Dehydrative Mono-/Dialkylation Reactions of β-Ketoacids and Alcohols. Org Lett 2022; 24:832-836. [PMID: 35043629 DOI: 10.1021/acs.orglett.1c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dehydrative mono-/dialkylation reactions of alcohols and β-ketoacids were realized under arylboronic acid catalysis, furnishing a series of β-aryl ketones and β-ketoesters in yields of 15-99%, with CO2 and H2O being the byproducts. In this context, the decarboxylative alkylation reaction occurred to give β-aryl ketones at 50 °C, while the decarboxylation was suppressed to generate dialkylated ester products at 0 °C. A possible catalytic cycle was proposed based on control experiments.
Collapse
Affiliation(s)
- Haipeng Hu
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Xin Wu
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Yuqian Qiu
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Cuilin Wang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Hanguang Wang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Juhua Feng
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Guangtu Wang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Hailiang Ni
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| |
Collapse
|
16
|
Akter M, Anbarasan P. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chem Asian J 2021; 16:1703-1724. [PMID: 33999506 DOI: 10.1002/asia.202100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/22/2022]
Abstract
(Cyclopentadienone)iron tricarbonyl complexes are catalytically active, inexpensive, easily accessible and air-stable that are extensively studied as an active pre-catalyst in homogeneous catalysis. Its versatile catalytic activity arises exclusively due to the presence of a non-innocent ligand, which can trigger its unique redox properties effectively. These complexes have been employed widely in (transfer)hydrogenation (e. g., reduction of polar multiple bonds, Oppenauer-type oxidation of alcohols), C-C and C-N bond formation (e. g., reductive aminations, α-alkylation of ketones) and other synthetic transformations. In this review, we discuss the remarkable advancement of its various synthetic applications along with synthesis and mechanistic studies, until February 2021.
Collapse
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Guven S, Kundu G, Weßels A, Ward JS, Rissanen K, Schoenebeck F. Selective Synthesis of Z-Silyl Enol Ethers via Ni-Catalyzed Remote Functionalization of Ketones. J Am Chem Soc 2021; 143:8375-8380. [PMID: 34033717 PMCID: PMC8193638 DOI: 10.1021/jacs.1c01797] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We report a remote
functionalization strategy, which allows the Z-selective
synthesis of silyl enol ethers of (hetero)aromatic
and aliphatic ketones via Ni-catalyzed chain walking from a distant
olefin site. The positional selectivity is controlled by the directionality
of the chain walk and is independent of thermodynamic preferences
of the resulting silyl enol ether. Our mechanistic data indicate that
a Ni(I) dimer is formed under these conditions, which serves
as a catalyst resting state and, upon reaction with an alkyl bromide,
is converted to [Ni(II)-H] as an active chain-walking/functionalization
catalyst, ultimately generating a stabilized η3-bound
Ni(II) enolate as the key selectivity-controlling intermediate.
Collapse
Affiliation(s)
- Sinem Guven
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Gourab Kundu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Andrea Weßels
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40114 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40114 Jyväskylä, Finland
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Luo N, Zhong Y, Wen H, Shui H, Luo R. Iridium Complexes as Efficient Catalysts for Construction of
α
‐Substituted Ketones via Hydrogen Borrowing of Alcohols in Water. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nianhua Luo
- School of Pharmaceutical Sciences Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Yuhong Zhong
- School of Pharmaceutical Sciences Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Huiling Wen
- School of Pharmaceutical Sciences Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Hongling Shui
- School of Pharmaceutical Sciences Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| | - Renshi Luo
- School of Pharmaceutical Sciences Gannan Medical University 341000 Ganzhou Jiangxi Province P. R. China
| |
Collapse
|
19
|
Verma A, Hazra S, Dolui P, Elias AJ. Ruthenium‐Catalyzed Synthesis of α‐Alkylated Ketones and Quinolines in an Aqueous Medium via a Hydrogen‐Borrowing Strategy Using Ketones and Alcohols. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashutosh Verma
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Susanta Hazra
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Pritam Dolui
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India
| |
Collapse
|
20
|
Acevedo-Rocha CG, Hollmann F, Sanchis J, Sun Z. A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Deft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville 3052, Victoria, Australia
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin, 300308 China
| |
Collapse
|
21
|
Murugan K, Vijayapritha S, Kavitha V, Viswanathamurthi P. Versatile formation of Ru(II) hydrazone complexes: Structure, theoretical studies and catalytic activity in α-alkylation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Thiyagarajan S, Vijaya Sankar R, Gunanathan C. Ruthenium-Catalyzed α-Alkylation of Ketones Using Secondary Alcohols to β-Disubstituted Ketones. Org Lett 2020; 22:7879-7884. [PMID: 33001653 DOI: 10.1021/acs.orglett.0c02787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An assortment of aromatic ketones was successfully functionalized with a variety of unactivated secondary alcohols that serve as alkylating agents, providing β-disubstituted ketone products in good to excellent yields. Remarkably, challenging substrates such as simple acetophenone derivatives are effectively alkylated under this ruthenium catalysis. The substituted cyclohexanol compounds displayed product-induced diastereoselectivity. Mechanistic studies indicate the involvement of the hydrogen-borrowing pathway in these alkylation reactions. Notably, this selective and catalytic C-C bond-forming reaction requires only a minimal load of catalyst and base and produces H2O as the only byproduct, making this protocol attractive and environmentally benign.
Collapse
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| |
Collapse
|
23
|
Regueira JLLF, Silva LF, Pilli RA. Total Synthesis of (+)-Raputindole A: An Iridium-Catalyzed Cyclization Approach. Org Lett 2020; 22:6262-6266. [PMID: 32806179 PMCID: PMC7450706 DOI: 10.1021/acs.orglett.0c01943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This
work describes the total synthesis of raputindole A (1) through a convergent approach that features (1) an iridium-catalyzed
cyclization to assemble the tricyclic core of the northern part, (2)
enzymatic resolution to secure the preparation of an enantiomerically
pure benzylic alcohol intermediate, and (3) the installation of the
isobutenyl side chain via methallylation of the corresponding benzylic
carbocation and coupling of the northern and southern parts via the
Heck reaction. (+)-Raputindole A (1) was prepared in
10 steps (longest linear sequence) in 3.3% overall yield.
Collapse
Affiliation(s)
- Juliana L L F Regueira
- Institute of Chemistry, University of São Paulo (USP), 05508-000 São Paulo, São Paulo, Brazil.,Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Luiz F Silva
- Institute of Chemistry, University of São Paulo (USP), 05508-000 São Paulo, São Paulo, Brazil
| | - Ronaldo A Pilli
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. A Photochemical Organocatalytic Strategy for the α-Alkylation of Ketones by using Radicals. Angew Chem Int Ed Engl 2020; 59:9485-9490. [PMID: 32053279 PMCID: PMC7317845 DOI: 10.1002/anie.201915814] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Reported herein is a visible‐light‐mediated radical approach to the α‐alkylation of ketones. This method exploits the ability of a nucleophilic organocatalyst to generate radicals upon SN2‐based activation of alkyl halides and blue light irradiation. The resulting open‐shell intermediates are then intercepted by weakly nucleophilic silyl enol ethers, which would be unable to directly attack the alkyl halides through a traditional two‐electron path. The mild reaction conditions allowed functionalization of the α position of ketones with functional groups that are not compatible with classical anionic strategies. In addition, the redox‐neutral nature of this process makes it compatible with a cinchona‐based primary amine catalyst, which was used to develop a rare example of enantioselective organocatalytic radical α‐alkylation of ketones.
Collapse
Affiliation(s)
- Davide Spinnato
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Bertrand Schweitzer-Chaput
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Giulio Goti
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Maksim Ošeka
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ-Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
25
|
Spinnato D, Schweitzer‐Chaput B, Goti G, Ošeka M, Melchiorre P. A Photochemical Organocatalytic Strategy for the α‐Alkylation of Ketones by using Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Davide Spinnato
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Bertrand Schweitzer‐Chaput
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Giulio Goti
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Maksim Ošeka
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
26
|
Waiba S, Jana SK, Jati A, Jana A, Maji B. Manganese complex-catalysed α-alkylation of ketones with secondary alcohols enables the synthesis of β-branched carbonyl compounds. Chem Commun (Camb) 2020; 56:8376-8379. [DOI: 10.1039/d0cc01460e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diverse β-functionalised carbonyl compounds were synthesized via a manganese(i) complex-catalysed α-alkylation of ketones with secondary alcohols.
Collapse
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Sayan K. Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Ayan Jati
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Akash Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
27
|
Zhao B, Shang R, Wang GZ, Wang S, Chen H, Fu Y. Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04699] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guang-Zu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaohong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Jena TK, Khan FA. Direct α-Benzylation of Methyl Enol Ethers with Activated Benzyl Alcohols: Its Rearrangement and Access to (±)-Tetrahydronyasol, Propterol A, and 1,3-Diarylpropane. J Org Chem 2019; 84:14270-14280. [PMID: 31545892 DOI: 10.1021/acs.joc.9b02064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a one-pot Lewis acid mediated synthesis of bi- and triarylpropanal derivatives and their corresponding isomeric ketones from aromatic enol ethers. This transformation takes place via nucleophilic attack of enol ethers to electron-rich benzyl alcohols. The substrate scope of this indicates that it might proceed via quinomethoxy methide as a key intermediate leading to propanal derivatives, and their Wagner-Meerwein rearrangement afforded isomeric ketones. Further, this methodology was applied for the synthesis of (±)-tetrahydronyasol, propterol A, and 1,3-diarylpropane.
Collapse
Affiliation(s)
- Tapan Kumar Jena
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , Telangana 502 285 , India
| | - Faiz Ahmed Khan
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , Telangana 502 285 , India
| |
Collapse
|
29
|
Chakraborty P, Gangwar MK, Emayavaramban B, Manoury E, Poli R, Sundararaju B. α-Alkylation of Ketones with Secondary Alcohols Catalyzed by Well-Defined Cp*Co III -Complexes. CHEMSUSCHEM 2019; 12:3463-3467. [PMID: 31240858 DOI: 10.1002/cssc.201900990] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Indexed: 05/20/2023]
Abstract
Although α-alkylation of ketones with primary alcohols by transition-metal catalysis is well-known, the same process with secondary alcohols is arduous and complicated by self-condensation. Herein a well-defined, high-valence cobalt(III)-catalyst was applied for successful α-alkylation of ketones with secondary alcohols. A wide-variety of secondary alcohols, which include cyclic, acyclic, symmetrical, and unsymmetrical compounds, was employed as alkylating agents to produce β-alkyl aryl ketones.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Manoj Kumar Gangwar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Balakumar Emayavaramban
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Eric Manoury
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Rinaldo Poli
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
30
|
Gawali S, Pandia BK, Pal S, Gunanathan C. Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols. ACS OMEGA 2019; 4:10741-10754. [PMID: 31460172 PMCID: PMC6648503 DOI: 10.1021/acsomega.9b01246] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 05/09/2023]
Abstract
Catalytic cross-coupling of ketones and secondary alcohols with primary alcohols is reported. An abundant manganese-based pincer catalyst catalyzes the reactions. Low loading of catalyst (2 mol %) and catalytic use of a mild base (5-10 mol %) are sufficient for efficient cross-coupling. Various aryl and heteroaryl ketones are catalytically cross-coupled with primary alcohols to provide the selective α-alkylated products. Challenging α-ethylation of ketones is also attained using ethanol as an alkylating reagent. Further, direct use of secondary alcohols in the reaction results in in situ oxidation to provide the ketone intermediates, which undergo selective α-alkylation. The reaction proceeds via the borrowing hydrogen pathway. The catalyst oxidizes the primary alcohols to aldehydes, which undergo subsequent aldol condensation with ketones, promoted by catalytic amount of Cs2CO3, to provide the α,β-unsaturated ketone intermediates. The hydrogen liberated from oxidation of alcohols is used for hydrogenation of α,β-unsaturated ketone intermediates. Notably either water or water and dihydrogen are the only byproducts in these environmentally benign catalytic processes. Mechanistic studies allowed inferring all of the intermediates involved. Dearomatization-aromatization metal-ligand cooperation in the catalyst facilitates the facile O-H bond activation of both primary and secondary alcohols, and the resultant manganese alkoxide complexes produce corresponding carbonyl compounds, perhaps via β-hydride elimination. The manganese(I) hydride intermediate plays dual role as it hydrogenates α,β-unsaturated ketones and liberates molecular hydrogen to regenerate the catalytically active dearomatized intermediate. Metal-ligand cooperation allows all of the manganese intermediates to exist in same oxidation state (+1) and plays an important role in these catalytic cross-coupling reactions.
Collapse
|
31
|
Palladium on carbon-catalyzed α-alkylation of ketones with alcohols as electrophiles: Scope and mechanism. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Thiyagarajan S, Gunanathan C. Catalytic Cross-Coupling of Secondary Alcohols. J Am Chem Soc 2019; 141:3822-3827. [DOI: 10.1021/jacs.9b00025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| |
Collapse
|
33
|
|
34
|
Balamurugan G, Balaji S, Ramesh R, Bhuvanesh NS. Synthesis and Structures of Arene Ruthenium (II)-NHC Complexes: Efficient Catalytic α-alkylation of ketones via Hydrogen Auto Transfer Reaction. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gunasekaran Balamurugan
- Centre for organometallic Chemistry, School of Chemistry; Bharathidasan University; Tiruchirapalli 620024 Tamilnadu India
| | - Sundarraman Balaji
- Centre for organometallic Chemistry, School of Chemistry; Bharathidasan University; Tiruchirapalli 620024 Tamilnadu India
| | - Rengan Ramesh
- Centre for organometallic Chemistry, School of Chemistry; Bharathidasan University; Tiruchirapalli 620024 Tamilnadu India
| | | |
Collapse
|
35
|
Barman MK, Jana A, Maji B. Phosphine-Free NNN-Manganese Complex Catalyzed α-Alkylation of Ketones with Primary Alcohols and Friedländer Quinoline Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800380] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milan K. Barman
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| | - Akash Jana
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| | - Biplab Maji
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia India
| |
Collapse
|
36
|
Pramanik S, Rej S, Kando S, Tsurugi H, Mashima K. Organosilicon Reducing Reagents for Stereoselective Formations of Silyl Enol Ethers from α-Halo Carbonyl Compounds. J Org Chem 2018; 83:2409-2417. [DOI: 10.1021/acs.joc.7b03005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suman Pramanik
- Department of Chemistry,
Graduate School
of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Supriya Rej
- Department of Chemistry,
Graduate School
of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Shun Kando
- Department of Chemistry,
Graduate School
of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry,
Graduate School
of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry,
Graduate School
of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
37
|
Shee S, Paul B, Panja D, Roy BC, Chakrabarti K, Ganguli K, Das A, Das GK, Kundu S. Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of β-Alkylated Secondary Alcohols and Flavan Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700722] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sujan Shee
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bhaskar Paul
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Dibyajyoti Panja
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bivas Chandra Roy
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kaushik Chakrabarti
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kasturi Ganguli
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Ayan Das
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Gourab Kanti Das
- Department of Chemistry; Visva Bharati University; Santiniketan, West Bengal 731235 India
| | - Sabuj Kundu
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| |
Collapse
|
38
|
Tandiary MA, Asano M, Hattori T, Takehira S, Masui Y, Onaka M. Unprecedented alkylation of silicon enolates with alcohols via carbenium ion formations catalyzed by tin hydroxide-embedded montmorillonite. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Qiao YX, Theyssen N, Eifert T, Liauw MA, Franciò G, Schenk K, Leitner W, Reetz MT. Concerning the Role of Supercritical Carbon Dioxide in S N 1 Reactions. Chemistry 2017; 23:3898-3902. [PMID: 28217900 DOI: 10.1002/chem.201604151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/23/2017] [Indexed: 11/09/2022]
Abstract
A series of SN 1-type reactions has been studied under various conditions to clarify the role of supercritical carbon dioxide (scCO2 ) as reaction medium for this kind of transformations. The application of scCO2 did not result in higher yields in any of the experiments in comparison to those under neat conditions or in the presence of other inert compressed gases. High-pressure UV/Vis spectroscopic measurements were carried out to quantify the degree of carbocation formation of a highly SN 1-active alkyl halide as a function of the applied solvent. No measureable concentration of carbocations could be detected in scCO2 , just like in other low polarity solvents. Taken together, these results do not support the previously claimed activating effect via enhanced SN 1 ionization due to the quadrupolar moment of the supercritical fluid.
Collapse
Affiliation(s)
- Yun X Qiao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Tobias Eifert
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Marcel A Liauw
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Giancarlo Franciò
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Karolin Schenk
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Walter Leitner
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany.,Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| |
Collapse
|
40
|
Iron(III)-catalysed carbonyl–olefin metathesis. Nature 2016; 533:374-9. [DOI: 10.1038/nature17432] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
|
41
|
Watson RB, Golonka AN, Schindler CS. Iron(III) Chloride Catalyzed Formation of 3,4-Dihydro-2H-pyrans from α-Alkylated 1,3-Dicarbonyls. Selective Synthesis of α- and β-Lapachone. Org Lett 2016; 18:1310-3. [DOI: 10.1021/acs.orglett.6b00254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca B. Watson
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alexander N. Golonka
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Obora Y. C-Alkylation by Hydrogen Autotransfer Reactions. Top Curr Chem (Cham) 2016; 374:11. [PMID: 27573136 DOI: 10.1007/s41061-016-0012-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/11/2016] [Indexed: 01/04/2023]
Abstract
The development of practical, efficient, and atom-economical methods for the formation of carbon-carbon bonds remains a topic of considerable interest in current synthetic organic chemistry. In this review, we have summarized selected topics from the recent literature with particular emphasis on C-alkylation processes involving hydrogen transfer using alcohols as alkylation reagents. This review includes selected highlights concerning recent progress towards the modification of catalytic systems for the α-alkylation of ketones, nitriles, and esters. Furthermore, we have devoted a significant portion of this review to the methylation of ketones, alcohols, and indoles using methanol. Lastly, we have also documented recent advances in β-alkylation methods involving the dimerization of alcohols (Guerbet reaction), as well as new developments in C-alkylation methods based on sp (3) C-H activation.
Collapse
Affiliation(s)
- Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
43
|
Nakamura T, Kubota K, Ieki T, Hosokawa S. Stereoselective Alkylation of the Vinylketene Silyl N,O-Acetal and Its Application to the Synthesis of Mycocerosic Acid. Org Lett 2015; 18:132-5. [PMID: 26673532 DOI: 10.1021/acs.orglett.5b03422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselective alkylation of the vinylketene silyl N,O-acetal possessing a chiral auxiliary has been achieved by using activated alkyl halides including allyl iodides, benzyl iodides, and propargyl iodide with Ag(I) ion in the presence of BF3·OEt2. The reaction proceeded to give reduced polyketides in high stereoselectivity. The synthesis of mycocerosic acid, a component of the cell envelope of Mycobacterium tuberculosis, has been accomplished by this methodology. During the synthetic studies, 2-methylbenzimidazole was found to be a bulky proton source which worked in the presence of liquid ammonia.
Collapse
Affiliation(s)
- Tatsuya Nakamura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kei Kubota
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takanori Ieki
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
44
|
Elangovan S, Sortais J, Beller M, Darcel C. Iron‐Catalyzed α‐Alkylation of Ketones with Alcohols. Angew Chem Int Ed Engl 2015; 54:14483-6. [DOI: 10.1002/anie.201506698] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/21/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Saravanakumar Elangovan
- UMR 6226 CNRS, Université de Rennes 1, Institut des Sciences Chimiques de Rennes, Team “Organometallics: Materials and Catalysis, Centre for Catalysis and Green Chemistry, campus de Beaulieu, 35042 Rennes, Cedex (France)
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock, Albert‐Einstein‐Strasse 29a, Rostock, 18059 (Germany)
| | - Jean‐Baptiste Sortais
- UMR 6226 CNRS, Université de Rennes 1, Institut des Sciences Chimiques de Rennes, Team “Organometallics: Materials and Catalysis, Centre for Catalysis and Green Chemistry, campus de Beaulieu, 35042 Rennes, Cedex (France)
| | - Matthias Beller
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock, Albert‐Einstein‐Strasse 29a, Rostock, 18059 (Germany)
| | - Christophe Darcel
- UMR 6226 CNRS, Université de Rennes 1, Institut des Sciences Chimiques de Rennes, Team “Organometallics: Materials and Catalysis, Centre for Catalysis and Green Chemistry, campus de Beaulieu, 35042 Rennes, Cedex (France)
| |
Collapse
|
45
|
Elangovan S, Sortais JB, Beller M, Darcel C. Iron-Catalyzed α-Alkylation of Ketones with Alcohols. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506698] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Umeda R, Takahashi Y, Nishiyama Y. Rhenium complex-catalyzed coupling reaction of enol acetates with alcohols. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
|
48
|
Palanichamy K, Kaliappan KP. Synthesis of Saturated Six-Membered Ring Lactones. SYNTHESIS OF SATURATED OXYGENATED HETEROCYCLES I 2014. [DOI: 10.1007/978-3-642-41473-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
49
|
Reetz MT. Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Patil NT, Kavthe RD, Shinde VS. Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.125] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|