1
|
Hejda M, Doležal L, Blahut J, Hupf E, Tydlitát J, Jambor R, Růžička A, Beckmann J, Dostál L. N-Coordinated tellurenium(II) and telluronium(IV) cations: synthesis, structure and hydrolysis. Dalton Trans 2023; 52:16235-16248. [PMID: 37853810 DOI: 10.1039/d3dt02404k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A set of N-coordinated tellurium(II) compounds containing either C,N-chelating ligands CNR (where CN = 2-(RNCH)C6H4, R = tBu or Dipp; Dipp = 2,6-iPr2C6H3) or N,C,N pincer ligands NCNR (where NCN = 2,6-(RNCH)2C6H4, R = tBu or Dipp) were synthesized. In the case of C,N-chelated compounds, the reaction of CNDippLi with Te(dtc)2 (where dtc = Et2NCS2) in a 1 : 1 molar ratio smoothly provided the carbamate CNDippTe(dtc) which upon treatment with 2 eq. of HCl provided the chloride CNDippTeCl. In contrast, the analogous conversion of NCNRLi with Te(dtc)2 surprisingly furnished ionic bromides [NCNRTe]Br as a result of the exchange of dtc by Br coming from nBuBr present in the reaction mixture. Furthermore, the reaction of CNDippTeCl or [NCNRTe]Br with silver salts AgX (X = OTf or SbF6) provided the expected tellurenium cations [CNDippTe]SbF6 and [NCNRTe]X. To further increase the Lewis acidity of the central atom, the oxidation of selected compounds with 1 eq. of SO2Cl2 was examined yielding stable compounds [CNtBuTeCl2]X and [NCNtBuTeCl2]X. The oxidation of the Dipp substituted compounds proved to be more challenging and an excess of SO2Cl2 was necessary to obtain the oxidized products [CNDippTeCl2]SbF6 and [NCNDippTeCl2]SbF6, which could solely be characterized in solution. Compounds [CNtBuTeCl2]OTf and [NCNtBuTeCl2]OTf were shown to undergo a controlled hydrolysis to the corresponding telluroxanes. All compounds were studied by multinuclear NMR spectroscopy in solution and for selected compounds solid state 125Te NMR spectroscopy and single-crystal X-ray diffraction analysis were performed. The Lewis acidity of the studied cations was examined by the Gutmann-Beckett method using Et3PO as the probing agent. The Te-N chalcogen bonding situation of selected compounds has also been examined computationally by a set of real-space bonding indicators.
Collapse
Affiliation(s)
- Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Lukáš Doležal
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| |
Collapse
|
2
|
Yadav M, Kumar M, Chahal A, Sodhi N, Chhillar B, Alajangi HK, Barnwal RP, Singh VP. Synthesis, Reactions, and Antioxidant Properties of Bis(3-amino-1-hydroxybenzyl)diselenide. J Org Chem 2023; 88:3509-3522. [PMID: 36847416 DOI: 10.1021/acs.joc.2c02739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Bis(3-amino-1-hydroxybenzyl)diselenide containing two ortho groups was synthesized from 7-nitro-3H-2,1-benzoxaselenole and in situ generated sodium benzene tellurolate (PhTeNa). One-pot synthesis of 1,3-benzoselenazoles was achieved from bis(3-amino-1-hydroxybenzyl)diselenide and aryl aldehydes using acetic acid as a catalyst. The X-ray crystal structure of chloro-substituted benzoselenazole revealed a planar structure with T-shaped geometry around the Se atom. Both natural bond orbital and atoms in molecules calculations confirmed the presence of secondary Se···H interactions in bis(3-amino-1-hydroxybenzyl)diselenide and Se···O interactions in benzoselenazoles, respectively. The glutathione peroxidase (GPx)-like antioxidant activities of all compounds were evaluated using a thiophenol assay. Bis(3-amino-1-hydroxybenzyl)diselenide and benzoselenazoles showed better GPx-like activity compared to that of the diphenyl diselenide and ebselen, used as references, respectively. Based on 77Se{1H} NMR spectroscopy, a catalytic cycle for bis(3-amino-1-hydroxybenzyl)diselenide using thiophenol and hydrogen peroxide was proposed involving selenol, selenosulfide, and selenenic acid as intermediates. The potency of all GPx mimics was confirmed by their in vitro antibacterial properties against the biofilm formation of Bacillus subtilis and Pseudomonas aeruginosa. Additionally, molecular docking studies were used to evaluate the in silico interactions between the active sites of the TsaA and LasR-based proteins found in Bacillus subtilis and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Alka Chahal
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Nikhil Sodhi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Sector-25, Chandigarh 160 014, India
| | - Ravi Pratap Barnwal
- Department of Biophysics, Panjab University, Sector-25, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
3
|
Deng Y, Zeng X, Xu H, Liu J, Zhang J, Hu D, Xie J. Highly efficient synthesis of diselenides and ditellurides catalyzed by polyoxomolybdate-based copper. NEW J CHEM 2022. [DOI: 10.1039/d2nj04560e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A polyoxomolybdate-based copper-catalyzed synthesis of diselenides and ditellurides from organic iodides and elemental selenium or tellurium in moderate to excellent yields is developed.
Collapse
Affiliation(s)
- Yuanyuan Deng
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Hao Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jiawei Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Junyong Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Dongcheng Hu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
4
|
Kumar M, Singh VP. Synthesis and antioxidant activities of N-thiophenyl ebselenamines: a 77Se{ 1H} NMR mechanistic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of N-thiophenyl ebselenamines and selenenyl sulphides as efficient radical-trapping and hydroperoxide-decomposing antioxidants, respectively has been described.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
5
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Banerjee K, Bhattacherjee D, Mahato SK, Sufian A, Bhabak KP. Benzimidazole- and Imidazole-Fused Selenazolium and Selenazinium Selenocyanates: Ionic Organoselenium Compounds with Efficient Peroxide Scavenging Activities. Inorg Chem 2021; 60:12984-12999. [PMID: 34369772 DOI: 10.1021/acs.inorgchem.1c01410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new classes of ionic organoselenium compounds containing cationic benzimidazolium and imidazolium ring systems with selenocyanates as counterions are described. The cyclization of N,N'-disubstituted benzimidazolium and imidazolium bromides having N-(CH2)2-Br and N-(CH2)3-Br groups in the presence of potassium selenocyanate (KSeCN) led to formation of the corresponding selenazolium selenocyanates (21a, 21b, 22a, and 22b) and selenazinium selenocyanates (21c, 21d, 22c, and 22d). However, the open-chain selenocyanates with additional selenocyanate counterions (21e, 21f, 22e, and 22f) were formed from the N,N'-disubstituted benzimidazolium and imidazolium bromides having N-(CH2)6-Br groups. Mechanistic studies were carried out to understand the feasibility of such cyclization processes in the presence of KSeCN. The compounds were studied further for their potencies to catalytically reduce H2O2 in the presence of thiols. Interestingly, the cyclic selenazolium (21a, 21b, 22a, and 22b) and selenazinium compounds (21c, 21d, 22c, and 22d) exhibited significantly higher antioxidant activities than the corresponding acyclic selenocyanates (21f, 22e, and 22f). Selected compounds (22d and 22e) were further evaluated for their potencies in modulating the intracellular level of reactive oxygen species (ROS) in a representative macrophage cell line (RAW 264.7). Owing to the cationic nature of compounds, they may target and scavenge mitochondrial ROS in the cellular medium.
Collapse
Affiliation(s)
- Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Sulendar K Mahato
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Krishna Pada Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| |
Collapse
|
7
|
Li J, Jia W, Ma G, Zhang X, An S, Wang T, Shi S. Construction of pH sensitive smart glutathione peroxidase (GPx) mimics based on pH responsive pseudorotaxanes. Org Biomol Chem 2020; 18:3125-3134. [PMID: 32255146 DOI: 10.1039/d0ob00122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two organoselenium compounds, both of which were modified with two primary amine groups, were designed and synthesized to mimic the catalytic properties of glutathione peroxidase (GPx). It was demonstrated that the catalytic mechanism of the diselenide organoselenium compound (compound 1) was a ping-pong mechanism while that of the selenide organoselenium compound (compound 2) was a sequential mechanism. The pH-controlled switching of the catalytic activities was achieved by controlling the formation and dissociation of the pseudorotaxanes based on the organoselenium compounds and cucurbit[6]uril (CB[6]). Moreover, the switching was reversible at pH between 7 and 9 for compound 1 or between 7 and 10 for compound 2.
Collapse
Affiliation(s)
- Jiaxi Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Wenlong Jia
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Ganghui Ma
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Xiaoyin Zhang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Shaojie An
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Tao Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Shan Shi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| |
Collapse
|
8
|
Daolio A, Scilabra P, Di Pietro ME, Resnati C, Rissanen K, Resnati G. Binding motif of ebselen in solution: chalcogen and hydrogen bonds team up. NEW J CHEM 2020. [DOI: 10.1039/d0nj04647g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ebselen, a compound active against SARS-CoV-2, forms a bifurcated supramolecular synthon thanks to chalcogen bond and hydrogen bond cooperation.
Collapse
Affiliation(s)
- Andrea Daolio
- Department of Chemistry
- Materials
- Chemical Engineering “Giulio Natta”
- Milano I-20131
- Italy
| | - Patrick Scilabra
- Department of Chemistry
- Materials
- Chemical Engineering “Giulio Natta”
- Milano I-20131
- Italy
| | | | - Chiara Resnati
- Recidency Program Clinical Pharmacology & Toxicology
- Università degli Studi della Campania “Luigi Vanvitelli”
- Napoli I-80138
- Italy
| | - Kari Rissanen
- Department Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Giuseppe Resnati
- Department of Chemistry
- Materials
- Chemical Engineering “Giulio Natta”
- Milano I-20131
- Italy
| |
Collapse
|
9
|
Kadu R, Batabyal M, Kadyan H, Koner AL, Kumar S. An efficient copper-catalyzed synthesis of symmetrical bis(N-arylbenzamide) selenides and their conversion to hypervalent spirodiazaselenuranes and hydroxy congeners. Dalton Trans 2019; 48:7249-7260. [PMID: 30747185 DOI: 10.1039/c8dt04832k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A copper catalyzed efficient synthetic method has been developed to access bis(N-arylbenzamide) selenides from 2-halo-N-arylbenzamide substrates and disodium selenide in HMPA at 110 °C. The developed protocol tolerates substituents in both N-aryl and benzamide rings of the 2-halobenzamide substrates and provides an array of bis(N-arylbenzamide) selenides in practical yields. The resulting selenides were transformed into hypervalent spirodiazaselenuranes by oxidation using aqueous hydrogen peroxide. (N-(1-Naphthyl)) spirodiazaselenurane is also structurally characterized by a single crystal X-ray study. Hydroxy-substituted spiroselenuranes have been prepared by careful demethylation of methoxy-substituted selenides followed by oxidation by hydrogen peroxide. Antioxidant properties for the decomposition of hydrogen peroxide and for the deactivation of radicals of hydroxy-substituted spiroselenuranes have been studied by the thiol assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Both hydroxy-substituted spiroselenuranes exhibit dual mimic functions of glutathione peroxidase (GPx) selenoenzyme and α-tocopherol for decomposition of hydrogen peroxide and deactivation of radicals, respectively.
Collapse
Affiliation(s)
- Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| | | | | | | | | |
Collapse
|
10
|
Rathore V, Jose C, Kumar S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj00964g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This perspective highlights the critical analysis of the challenges, in the past decade, which led to the development of organoselenium compounds and their use as versatile catalysts in organic synthesis towards the oxidation of olefins and C–H bonds. Furthermore, the emphasis here differs from previous reviews of the field by classifying the various types of catalyses and the diverse strategies.
Collapse
Affiliation(s)
- Vandana Rathore
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Cavya Jose
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| |
Collapse
|
11
|
Abstract
In this Review, we focus on catalytic antioxidant study based on transition metal complexes, organoselenium compounds, supramolecules and protein scaffolds.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
12
|
Venkateshwaran K, Deka R, Raju S, Singh HB, Butcher RJ. Hypervalent organoselenium compounds stabilized by intramolecular coordination: synthesis and crystal structures. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:70-76. [PMID: 30601134 DOI: 10.1107/s2053229618014833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 11/10/2022]
Abstract
Two novel hypervalent selenium(IV) compounds stabilized by intramolecular interactions, namely 6-phenyl-6,7-dihydro-5H-2,3-dioxa-2aλ4-selenacyclopenta[hi]indene, C14H12O2Se, 14, and 5-phenyl-5,6-dihydro-4H-benzo[c][1,2]oxaselenole-7-carbaldehyde, C14H12OSe2, 15, have been synthesized by the reaction of 2-chloro-1-formyl-3-(hydroxymethylene)cyclohexene with in-situ-generated disodium diselenide (Na2Se2). The title compounds were characterized by FT-IR spectroscopy, ESI-MS, and single-crystal X-ray diffraction studies. For 14, there is whole-molecule disorder, with occupancies of 0.605 (10) and 0.395 (10), a double bond between C and Se, and the five-membered selenopentalene rings are coplanar. The packing is stabilized by π-π stacking interactions involving one of the five-membered Se/C/C/C/O rings [centroid-centroid (Cg...Cg) distance = 3.6472 (18) Å and slippage = 1.361 Å], as well as C-H...π interactions involving a C-H group and the phenyl ring. In addition, there are bifurcated C-H...Se,O interactions which link the molecules into ribbons in the c direction. For 15, the C-Se bond lengths are longer than those of 14. The two five-membered rings are coplanar. There are no π-π or C-H...π interactions; however, molecules are linked by C-H...O interactions into centrosymmetric dimers, with graph-set notation R22(16).
Collapse
Affiliation(s)
- Krishnan Venkateshwaran
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Saravanan Raju
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| |
Collapse
|
13
|
Venkateshwaran K, Rajesh Prasad P, Deka R, Raju S, Singh HB, Butcher RJ. Contrasting Reactivity of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene and its Schiff Bases towards Disodium Diselenide: Isolation of Selenospirocycles versus Azapentalenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Poonam Rajesh Prasad
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
- Department of Chemistry Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Rajesh Deka
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Saravanan Raju
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Harkesh B. Singh
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Ray J. Butcher
- Department of Chemistry; Howard University; Washington, DC 20059 USA
| |
Collapse
|
14
|
Selvakumar K, Singh HB. Adaptive responses of sterically confined intramolecular chalcogen bonds. Chem Sci 2018; 9:7027-7042. [PMID: 30310623 PMCID: PMC6137456 DOI: 10.1039/c8sc01943f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The existence of intramolecular chalcogen bonds (IChBs) in 2,6-disubstituted arylchalcogen derivatives is determined by the substituents and the sigma hole donor behavior of the chalcogen atom in the molecule.
The responsive behavior of an entity towards its immediate surrounding is referred to as an adaptive response. The adaptive responses of a noncovalent interaction at the molecular scale are reflected from its structural and functional roles. Intramolecular chalcogen bonding (IChB), an attractive interaction between a heavy chalcogen E (E = Se or Te) centered sigma hole and an ortho-heteroatom Lewis base donor D (D = O or N), plays an adaptive role in defining the structure and reactivity of arylchalcogen compounds. In this perspective, we describe the adaptive roles of a chalcogen centered Lewis acid sigma hole and a proximal Lewis base (O or N) in accommodating built-in steric stress in 2,6-disubstituted arylchalcogen compounds. From our perspective, the IChB components (a sigma hole and the proximal Lewis base) act in synergism to accommodate the overwhelming steric force. The adaptive responses of the IChB components are inferred from the observed molecular structures and reactivity. These include (a) adaptation of a conformation without IChBs, (b) adaptation of a conformation with weak IChBs, (c) twisting the skeletal aryl ring while maintaining IChBs, (d) ionization of the E–X bond (e.g., X = Br) to relieve stress and (e) intramolecular cyclization to relieve steric stress. A comprehensive approach, involving X-ray data analysis, density functional theory (DFT) calculations, reaction pattern analysis and principal component analysis (PCA), has been employed to rationalize the adaptive behaviors of IChBs in arylchalcogen compounds. We believe that the perception of ChB as an adaptive/stimulus responsive interaction would profit the futuristic approaches that would utilise ChB as self-assembly and molecular recognition tools.
Collapse
Affiliation(s)
| | - Harkesh B Singh
- Department of Chemistry , Indian Institute of Technology Bombay , Powai-400076 , Mumbai , Maharashtra , India .
| |
Collapse
|
15
|
Marino T, Galano A, Mazzone G, Russo N, Alvarez-Idaboy JR. Chemical Insights into the Antioxidant Mechanisms of Alkylseleno and Alkyltelluro Phenols: Periodic Relatives Behaving Differently. Chemistry 2018; 24:8686-8691. [PMID: 29566293 DOI: 10.1002/chem.201800913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/20/2022]
Abstract
The possible antioxidant reaction mechanisms of recently synthesized and tested alkylseleno (telluro) phenols have been explored using density functional theory by considering two solvents physiologically relevant, water and pentylethanoate (PE). In addition, the possible pathway for the antioxidant regeneration with ascorbic acid has been investigated. Results show that selenium and tellurium systems follow different chemical behaviors. In particular, the alkylseleno phenol (ebselenol) antioxidant activity is justified through a sequential proton loss-electron-transfer mechanism in water media, whereas in PE the hydrogen-atom transfer process is favored. In the case of the tellurium derivative, the oxygen-transfer mechanism represents the preferential one. Furthermore, electronic properties have been analyzed to rationalize the different reactivity of the selenium- and tellurium-containing systems. To confirm the results, smaller but similar systems were also investigated. The calculated data support the different mechanism (Se vs. Te) proposals.
Collapse
Affiliation(s)
- Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, México DF, Mexico
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórifca, Universidad Nacional, Autónoma de México, México, DF, 04510, Mexico
| |
Collapse
|
16
|
Rani V, Singh HB, Butcher RJ. Synthesis and structure of an aryl-selenenium(II) cation, [C 34H 41N 4Se +] 2[Hg(SeCN) 4] 2-, based on a 5- tert-butyl-1,3-bis-(1-pentyl-1 H-benzimidazol-2-yl)benzene scaffold. Acta Crystallogr E Crystallogr Commun 2018; 74:786-790. [PMID: 29951230 PMCID: PMC6002820 DOI: 10.1107/s2056989018006394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/25/2018] [Indexed: 11/23/2022]
Abstract
In the title salt, bis-{[5-tert-butyl-1,3-bis-(1-pentyl-1H-benzimidazol-2-yl)benzene]selenium} tetra-kis-(seleno-cyanato)-mercury, (C34H41N4Se)2[Hg(SeCN)4], the aryl-selenenium cations, [C34H41N4Se]+, are linked through [Hg(SeCN)4]2- anions by C-H⋯N hydrogen bonds. In the cation, the geometry around the Se atom in the 5-tert-butyl-1,3-bis-(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold is T-shaped, resulting from the coordination of Se by the C atom of the central aromatic ring and the N atoms of both of the benzimidazole moieties. The trans Se-N bond lengths are almost equal [2.087 (3) and 2.099 (3) Å] and the Se-C bond length is 1.886 (3) Å. The N-Se-N angle is 159.29 (11)°. The geometry around the HgII atom in the [Hg(SeCN)4]2- anion is distorted tetra-hedral, with Se-Hg-Se angles ranging from 88.78 (3) to 126.64 (2)°. In [Hg(SeCN)4]2-, the Hg-Se bonds are unsymmetrical [2.5972 (4) and 2.7242 (5) Å]. One of the pentyl substituents is disordered over two equivalent conformations, with occupancies of 0.852 (8) and 0.148 (8).
Collapse
Affiliation(s)
- Varsha Rani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| |
Collapse
|
17
|
Yu SC, Ri DM, Kühn H. Hydrophobicity and glutathione peroxidase-like activity of substituted salicyloyl-5-seleninic acids: Re-investigations on aromatic selenium compounds based on their hydrophobicity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Sands KN, Tuck TA, Back TG. Cyclic Seleninate Esters, Spirodioxyselenuranes and Related Compounds: New Classes of Biological Antioxidants That Emulate Glutathione Peroxidase. Chemistry 2018. [DOI: 10.1002/chem.201800182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kai N. Sands
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Tyler A. Tuck
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Thomas G. Back
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
19
|
Rani V, Boda M, Raju S, Naresh Patwari G, Singh HB, Butcher RJ. Synthesis and structure of arylselenium(ii) and aryltellurium(ii) cations based on rigid 5-tert-butyl-1,3-bis-(N-pentylbenzimidazol-2′-yl)benzenes. Dalton Trans 2018; 47:9114-9127. [DOI: 10.1039/c8dt01148f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmetalation reactions of mercury precursor, [Pentyl(N^C^N)HgCl] (19) with selenium and tellurium halides led to isolation of air stable NCN pincer based arylselenium(ii) and aryltellurium(ii) cations due to facile ionization of Se/Te halogen bond.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Manjusha Boda
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Saravanan Raju
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - G. Naresh Patwari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Harkesh B. Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | |
Collapse
|
20
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Computational kinetic modeling of the selenol catalytic activity as the glutathione peroxidase nanomimic. J Theor Biol 2016; 409:108-114. [PMID: 27596529 DOI: 10.1016/j.jtbi.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
Abstract
Density functional theory and solvent-assisted proton exchange methods have been applied for computational modeling of the catalytic cycle of selenol zwitterion anion from the kinetic and thermodynamic viewpoints. Selenol zwitterion anion has been represented as an effective glutathione peroxidase nanomimic. It reduces peroxides through a three-step pathway. In the first step, seleninic acid is produced through deprotonating of the selenol zwitterion anion in the presence of the hydrogen peroxide. Seleninic acid reacts with a thiol to form selenylsulfide in the second step. In the last step, selenylsulfide is reduced by the second thiol and regenerates selenolate anion through disulfide formation. Selenol zwitterion anion in comparison to more widely studied compounds such as ebselen has a good activity to react with hydrogen peroxide and producing seleninic acid. The energy barrier of this reaction is 11.7kcalmol-1 which is smaller than the reported enzyme mimics. Moreover, the reactions of seleninic acid and selenylsulfide with methanethiol, which is used as a nucleophile, are exothermic by -18.4 or -57.0kcalmol-1, respectively. Based on the global electron density transfer value of -0.507 e from the natural atomic charge analysis, an electronic charge depletion at the transition state (TS), electron-donor substitutions on the selenolate facilitates the reduction reaction, effectively. Finally, the nature of the bond formation/cleavage at the TS has been quantitatively described by using the topological analyses.
Collapse
|
22
|
Bhowmick D, Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org Biomol Chem 2016; 13:10262-72. [PMID: 26372527 DOI: 10.1039/c5ob01665g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | |
Collapse
|
23
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016; 55:3729-33. [DOI: 10.1002/anie.201510947] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
24
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
25
|
Singh VP, Poon JF, Butcher RJ, Lu X, Mestres G, Ott MK, Engman L. Effect of a Bromo Substituent on the Glutathione Peroxidase Activity of a Pyridoxine-like Diselenide. J Org Chem 2015; 80:7385-95. [DOI: 10.1021/acs.joc.5b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vijay P. Singh
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jia-fei Poon
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Ray J. Butcher
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Xi Lu
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Gemma Mestres
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Marjam Karlsson Ott
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lars Engman
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
26
|
Wang Z, Wang Y, Li W, Liu Z, Luo Z, Sun Y, Wu R, Huang L, Li X. Computer-assisted designed “selenoxy–chinolin”: a new catalytic mechanism of the GPx-like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalton Trans 2015; 44:20913-25. [DOI: 10.1039/c5dt02130h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using support from rational computer-assisted design, a novel series of hybrids designed by fusing the metal-chelating agent CQ and the antioxidant ebselen were synthesized and evaluated as multitarget-directed ligands.
Collapse
Affiliation(s)
- Zhiren Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yali Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenrui Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zhihong Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zonghua Luo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yang Sun
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ling Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xingshu Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
27
|
Singh VP, Poon JF, Butcher RJ, Engman L. Pyridoxine-Derived Organoselenium Compounds with Glutathione Peroxidase-Like and Chain-Breaking Antioxidant Activity. Chemistry 2014; 20:12563-71. [DOI: 10.1002/chem.201403229] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/07/2022]
|
28
|
Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 2014; 12:2404-12. [DOI: 10.1039/c3ob42336k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable selone formation in 2,2′-diselenobis[3-amidopyridine], reduces unwanted sulfur exchange reaction in glutathione peroxidase like catalytic cycle and enhances its enzyme activity.
Collapse
Affiliation(s)
- Parashiva Prabhu
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Beena G. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400 085, India
| | - Masato Noguchi
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Vimal K. Jain
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | | |
Collapse
|
29
|
Rakesh P, Singh HB, Jasinski JP, Golen JA. Synthesis, structure and reactivity of [o-(2,6-diisopropylphenyliminomethinyl)phenyl]selenenyl selenocyanate (RSeSeCN) and related derivatives. Dalton Trans 2014; 43:9431-7. [DOI: 10.1039/c4dt00157e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and reactivity of stable selenenyl selenocyanates having a strong Se–Se bond are reported.
Collapse
Affiliation(s)
- Prakul Rakesh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai, India
| | - Harkesh B. Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai, India
| | | | | |
Collapse
|
30
|
Rakesh P, Singh HB, Butcher RJ. Synthesis of Selenenium Ions: Isolation of Highly Conjugated, pH-Sensitive 4,4′-Bis(methylimino)-1,1′-binaphthylene-5-diselenenium(II) Triflate. Organometallics 2013. [DOI: 10.1021/om400460z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prakul Rakesh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington D.C., 20059, United States
| |
Collapse
|
31
|
Vernekar AA, Mugesh G. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Chemistry 2013; 19:16699-706. [PMID: 24281813 DOI: 10.1002/chem.201303339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/06/2022]
Abstract
A catalytic reduction of graphene oxide (GO) by glutathione peroxidase (GPx) mimics is reported. This study reveals that GO contains peroxide functionalities, in addition to the epoxy, hydroxyl and carboxylic acid groups that have been identified earlier. It also is shown that GO acts as a peroxide substrate in the GPx-like catalytic activity of organoselenium/tellurium compounds. The reaction of tellurol, generated from the corresponding ditelluride, reduces GO through the glutathione (GSH)-mediated cleavage of the peroxide linkage. The mechanism of GO reduction by the tellurol in the presence of GSH involves the formation of a tellurenic acid and tellurenyl sulfide intermediates. Interestingly, the GPx mimics also catalyze the decarboxylation of the carboxylic acid functionality in GO at ambient conditions. Whereas the selenium/tellurium-mediated catalytic reduction/decarboxylation of GO may find applications in bioremediation processes, this study suggests that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO.
Collapse
Affiliation(s)
- Amit A Vernekar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India), Fax: (+91) 80 2360 1552
| | | |
Collapse
|
32
|
McNeil NMR, Matz MC, Back TG. Fluxional Cyclic Seleninate Ester: NMR and Computational Studies, Glutathione Peroxidase-like Behavior, and Unexpected Rearrangement. J Org Chem 2013; 78:10369-82. [DOI: 10.1021/jo401757m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nicole M. R. McNeil
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Marie C. Matz
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Thomas G. Back
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
33
|
Yin L, Song J, Board PG, Yu Y, Han X, Wei J. Characterization of selenium-containing glutathione transferase zeta1-1 with high GPX activity prepared in eukaryotic cells. J Mol Recognit 2012; 26:38-45. [DOI: 10.1002/jmr.2241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Li Yin
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | - Jian Song
- College of Electronic Science and Engineering; Jilin University; 2699 Qianjin Street; Changchun; 130000; China
| | - Philip G. Board
- Molecular Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research; Australian National University; GPO Box 334; Canberra; 2601; Australia
| | - Yang Yu
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | - Xiao Han
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | | |
Collapse
|
34
|
Bhowmick D, Mugesh G. Tertiary amine-based glutathione peroxidase mimics: some insights into the role of steric and electronic effects on antioxidant activity. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Synthesis and Glutathione Peroxidase-like activity of N-heterocyclic carbene derived cationic diselenides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Manjare ST, Sharma S, Singh HB, Butcher RJ. Facile synthesis of benzimidazolin-2-chalcogenones: Nature of the carbon–chalcogen bond. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Wang R, Chen L, Liu P, Zhang Q, Wang Y. Sensitive Near-Infrared Fluorescent Probes for Thiols Based on SeN Bond Cleavage: Imaging in Living Cells and Tissues. Chemistry 2012; 18:11343-9. [DOI: 10.1002/chem.201200671] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/15/2012] [Indexed: 11/06/2022]
|
38
|
Selvakumar K, Singh HB, Goel N, Singh UP, Butcher RJ. Synthesis of Anionic Hypervalent Cyclic Selenenate Esters: Relevance to the Hypervalent Intermediates in Nucleophilic Substitution Reactions at the Selenium(II) Center. Chemistry 2011; 18:1444-57. [DOI: 10.1002/chem.201003725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 09/22/2011] [Indexed: 11/05/2022]
|
39
|
Mild generation of selenolate nucleophiles by thiol reduction of diselenides: convenient syntheses of selenyl-substituted aryl aldehydes. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.10.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Selvakumar K, Shah P, Singh HB, Butcher RJ. Synthesis, Structure, and Glutathione Peroxidase-Like Activity of Amino Acid Containing Ebselen Analogues and Diaryl Diselenides. Chemistry 2011; 17:12741-55. [DOI: 10.1002/chem.201100930] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 08/04/2011] [Indexed: 02/03/2023]
|
41
|
Selvakumar K, Singh HB, Goel N, Singh UP. Methyl Ester Function: An Intramolecular Electrophilic Trap for the Isolation of Aryltellurenyl Hydroxide and Diorganotellurium Dihydroxide. Organometallics 2011. [DOI: 10.1021/om2001553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
SHARMA SAGAR, CHAKRABORTY TAPASH, SRIVASTAVA KRITI, SINGH HARKESHB. Aspects of secondary bonding intramolecular interaction in organomercury and organochalcogen derivatives. J CHEM SCI 2011. [DOI: 10.1007/s12039-011-0106-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Dhau JS, Dhir R, Singh A. Synthesis and characterization of chalcogen (S and Se) derivatives of 4-chloro- and 4-methoxy-N,N-diisopropylpyridine-2-carboxamide: X-ray structure of 4-methoxy-3-(sulfanylmethyl)- and 4-chloro-3-(selenenylbenzyl)-N,N-diisopropylpyridine-2-carboxamide. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Singh VP, Singh HB, Butcher RJ. Synthesis of Cyclic Selenenate/Seleninate Esters Stabilized by ortho-Nitro Coordination: Their Glutathione Peroxidase-Like Activities. Chem Asian J 2011; 6:1431-42. [DOI: 10.1002/asia.201000858] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 11/07/2022]
|
45
|
Satheeshkumar K, Mugesh G. Synthesis and Antioxidant Activity of Peptide-Based Ebselen Analogues. Chemistry 2011; 17:4849-57. [DOI: 10.1002/chem.201003417] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Indexed: 11/06/2022]
|
46
|
Synthesis and Characterization of a New Five and Six Membered Selenoheterocyclic Compounds Homologues of Ebselen. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/389615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of the antioxidant activity of selenoenzyme glutathione peroxidase (GPx) has attracted growing attention in the biochemistry of selenium. Among molecules which mimic the structure of the active site of the enzyme, N-phenyl-1,2-benzisoselenazolin-3-one 1, Ebselen, exhibited useful anti-inflammatory properties. It has been extensively investigated and has undergone clinical trials as an anti-inflammatory agent. Unfortunately, Ebselen exhibits relatively poor catalytic activity, prompting attempts to design more efficacious GPx mimetics that would retain his low toxicity while manifesting improved catalytic properties. In this context, novel 1,2-benzoselenazine and 1,2-benzoselenazols, which are five and six membered homologues of Ebselen were synthesized and characterized. One structure has been proven by single crystal X-ray crystallography.
Collapse
|
47
|
Prabhu P, Bag PP, Singh BG, Hodage A, Jain VK, Iwaoka M, Priyadarsini KI. Effect of functional groups on antioxidant properties of substituted selenoethers. Free Radic Res 2011; 45:461-8. [PMID: 21235282 DOI: 10.3109/10715762.2010.543678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selenoethers attached to functional groups through propyl chain viz., bis(3-carboxypropyl)selenide (SeBA), bis(3-hydroxypropyl)selenide (SePOH) and bis(3-aminopropyl)selenide dihydrochloride (SePAm), have been examined for their ability to inhibit peroxyl radical mediated DNA damage, peroxyl radical scavenging ability and glutathione peroxidase (GPx) like activity. The DNA damage was monitored by gel electrophoresis, bimolecular rate constants for scavenging of model peroxyl radical were determined by pulse radiolysis and the GPx activity was followed by their ability to reduce hydrogen peroxide in the presence of glutathione utilizing NADPH decay and HPLC analysis. Among these compounds, SeBA showed maximum DNA protecting activity and it was also the most efficient in scavenging peroxyl radicals with the highest GPx mimicking activity. Quantum chemical calculations confirmed that SeBA with the highest energy level of HOMO (highest occupied molecular orbital) is the easiest to undergo oxidation and therefore exhibits better radical scavenging, GPx mimicking and DNA protecting activity than SePOH or SePAm.
Collapse
Affiliation(s)
- P Prabhu
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
48
|
Srivastava K, Chakraborty T, Singh HB, Butcher RJ. Intramolecularly coordinated azobenzene selenium derivatives: Effect of strength of the Se⋯N intramolecular interaction on luminescence. Dalton Trans 2011; 40:4489-96. [DOI: 10.1039/c0dt01319f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Huang X, Liu X, Luo Q, Liu J, Shen J. Artificial selenoenzymes: Designed and redesigned. Chem Soc Rev 2011; 40:1171-84. [DOI: 10.1039/c0cs00046a] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Selvakumar K, Singh HB, Goel N, Singh UP, Butcher RJ. Synthesis and structural characterization of pincer type bicyclic diacyloxy- and diazaselenuranes. Dalton Trans 2011; 40:9858-67. [DOI: 10.1039/c1dt10862j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|