1
|
Mansour H, Elsigeny SM, Elshami FI, Auf M, Shaban SY, van Eldik R. Microstructure, Physical and Biological Properties, and BSA Binding Investigation of Electrospun Nanofibers Made of Poly(AA-co-ACMO) Copolymer and Polyurethane. Molecules 2023; 28:molecules28093951. [PMID: 37175361 PMCID: PMC10180346 DOI: 10.3390/molecules28093951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, poly(AA-co-ACMO) and polyurethane-based nanofibers were prepared in a ratio of 1:1 (NF11) and 2:1 (NF21) as antimicrobial carriers for chronic wound management. Different techniques were used to characterize the nanofibers, and poly(AA-co-ACMO) was mostly found on the surface of PU. With an increase in poly(AA-co-ACMO) dose from 0 (PU) and 1:1 (NF11) to 2:1 (NF21) in the casting solution, the contact angle (CA) was reduced from 137 and 95 to 24, respectively, and hydrophilicity was significantly increased. As most medications inhibit biological processes by binding to a specific protein, in vitro protein binding was investigated mechanistically using a stopped-flow technique. Both NF11 and NF21 bind to BSA via two reversible steps: a fast second-order binding followed by a slow first-order one. The overall parameters for NF11 (Ka = 1.1 × 104 M-1, Kd = 89.0 × 10-6, ΔG0 = -23.1 kJ mol-1) and NF21 (Ka = 189.0 × 104 M-1, Kd = 5.3 × 10-6 M, ΔG0 = -27.5 kJ mol-1) were determined and showed that the affinity for BSA is approximately (NF11)/(NF21) = 1/180. This indicates that NF21 has much higher BSA affinity than NF11, although BSA interacts with NF11 much faster. NF21 with higher hydrophilicity showed effective antibacterial properties compared to NF11, in agreement with kinetic data. The study provided an approach to manage chronic wounds and treating protein-containing wastewater.
Collapse
Affiliation(s)
- Hanaa Mansour
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samia M Elsigeny
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fawzia I Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Auf
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
2
|
Queyriaux N. Redox-Active Ligands in Electroassisted Catalytic H + and CO 2 Reductions: Benefits and Risks. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Queyriaux
- CNRS, LCC (Laboratoire de Chimie de Coordination), 31077 Toulouse, France
| |
Collapse
|
3
|
Ghosh D, Kumar GR, Subramanian S, Tanaka K. More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. CHEMSUSCHEM 2021; 14:824-841. [PMID: 33369102 DOI: 10.1002/cssc.202002660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Stoichiometric carbon dioxide reduction to highly reduced C1 molecules, such as formic acid (2e- ), formaldehyde (4e- ), methanol (6e- ) or even most-reduced methane (8e- ), has been successfully achieved by using organosilanes, organoboranes, and frustrated Lewis Pairs (FLPs) in the presence of suitable catalyst. The development of renewable organohydride compounds could be the best alternative in this regard as they have shown promise for the transfer of hydride directly to CO2 . Reduction of CO2 by two electrons and two protons to afford formic acid by using renewable organohydride molecules has recently been investigated by various groups. However, catalytic CO2 reduction to ≥2e- -reduced products by using renewable organohydride-based molecules has rarely been explored. This Minireview summarizes important findings in this regard, encompassing both stoichiometric and catalytic CO2 reduction.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore, 560027, Karnataka, India
| | - George Rajendra Kumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Saravanan Subramanian
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koji Tanaka
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Applied Chemistry, College of Life Science, Ritsumeikan University, 525-8577 Noji-higashi, 1-1-1, Kusatsu, Shiga, Japan
| |
Collapse
|
4
|
Huang XC, Xu R, Chen YZ, Zhang YQ, Shao D. Two Four-Coordinate and Seven-Coordinate Co II Complexes Based on the Bidentate Ligand 1, 8-Naphthyridine Showing Slow Magnetic Relaxation Behavior. Chem Asian J 2019; 15:279-286. [PMID: 31793204 DOI: 10.1002/asia.201901395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Indexed: 12/11/2022]
Abstract
For a long time, the cobalt(II) complex ([Co(napy)4 ](ClO4 )2 ) (napy=1, 8-naphthyridine) has been considered as an eight-coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2 Cl2 ] (1) and [Co(napy)4 ](ClO4 )2 (2) based on the bidentate ligand napy were synthesized and structurally characterized. X-ray single-crystal structural determination showed that the cobalt(II) center in [Co(napy)2 Cl2 ] (1) is four-coordinate with a tetrahedral geometry (Td ), while [Co(napy)4 ](ClO4 )2 (2) is seven-coordinate rather than eight-coordinate with a capped trigonal prism geometry (C2v ). Direct-current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero-field splitting (ZFS) parameters of 11.08 and 25.30 cm-1 , respectively, with easy-plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy-plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four-coordinate and seven-coordinate cobalt(II) single-ion magnets (SIMs) by using a bidentate ligand.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Dong Shao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Coordination chemistry of mononuclear ruthenium complexes bearing versatile 1,8-naphthyridine units: Utilization of specific reaction sites constructed by the secondary coordination sphere. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Barik CK, Ganguly R, Li Y, Leong WK. Structural Mimics of the [Fe]-Hydrogenase: A Complete Set for Group VIII Metals. Inorg Chem 2018; 57:7113-7120. [PMID: 29799728 DOI: 10.1021/acs.inorgchem.8b00838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of structural mimics of the [Fe]-hydrogenase active site comprising all the group VIII metals, viz., [M(2-NHC(O)C5H4N)(CO)2(2-S-C5H4N)], has been synthesized. They exist as a mixture of isomers in solution, and the relative stability of the isomers depends on the nature of the metal and the substituent at the 6-position of the pyridine ligand.
Collapse
Affiliation(s)
- Chandan Kr Barik
- Division of Chemistry & Biological Chemistry , Nanyang Technological University , 21 Nanyang Link , Singapore , 637371
| | - Rakesh Ganguly
- Division of Chemistry & Biological Chemistry , Nanyang Technological University , 21 Nanyang Link , Singapore , 637371
| | - Yongxin Li
- Division of Chemistry & Biological Chemistry , Nanyang Technological University , 21 Nanyang Link , Singapore , 637371
| | - Weng Kee Leong
- Division of Chemistry & Biological Chemistry , Nanyang Technological University , 21 Nanyang Link , Singapore , 637371
| |
Collapse
|
7
|
Zamorano A, Rendón N, López-Serrano J, Álvarez E, Carmona E. Activation of Small Molecules by the Metal–Amido Bond of Rhodium(III) and Iridium(III) (η5-C5Me5)M-Aminopyridinate Complexes. Inorg Chem 2017; 57:150-162. [DOI: 10.1021/acs.inorgchem.7b02283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Zamorano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ernesto Carmona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Oyama D, Yamanaka T, Abe R, Takase T. Ruthenium complexes bearing a tridentate polypyridyl ligand with non-coordinating donor atoms: Construction of a specific coordination environment involving noncovalent interactions. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ghosh D, Fukushima T, Kobayashi K, Sen S, Kitagawa S, kato T, Tanaka K. Base assisted C–C coupling between carbonyl and polypyridyl ligands in a Ru-NADH-type carbonyl complex. Dalton Trans 2017; 46:4373-4381. [DOI: 10.1039/c7dt00312a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong organic base assists quantitative conversion of ruthenium(ii)-NADH-type complex to new metallacycle which was further oxidized to Ru-OCO-bridge complex upon reaction with aq. NH4PF6 under air.
Collapse
Affiliation(s)
- Debashis Ghosh
- Institute for Cell-Material Sciences
- Kyoto University
- Kyoto 612-8374
- Japan
| | - Takashi Fukushima
- Institute for Cell-Material Sciences
- Kyoto University
- Kyoto 612-8374
- Japan
| | | | - Susan Sen
- Institute for Cell-Material Sciences
- Kyoto University
- Kyoto 615-8530
- Japan
| | - Susumu Kitagawa
- Institute for Cell-Material Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Tatsuhisa kato
- Institute for Liberal Arts and Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Koji Tanaka
- Institute for Cell-Material Sciences
- Kyoto University
- Kyoto 612-8374
- Japan
| |
Collapse
|
10
|
Schröder-Holzhacker C, Stöger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. High-spin iron(II) complexes with mono-phosphorylated 2,6-diaminopyridine ligands. MONATSHEFTE FUR CHEMIE 2016; 147:1539-1545. [PMID: 27546911 PMCID: PMC4977337 DOI: 10.1007/s00706-016-1731-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022]
Abstract
Abstract Several new monophosphorylated 2,6-diaminopyridine ligands bearing PiPr2 and PtBu2 units (PNNH2-iPr, PNNH2-tBu, PNNHMe-iPr, and PNNHEt-iPr) are prepared by treatment of the respective 2,6-diaminopyridines with the chlorophosphines PiPr2Cl and PtBu2Cl in the presence of a base. Treatment of anhydrous FeCl2 with 1 equiv of these afforded the tetracoordinated coordinatively unsaturated 14e− complexes [Fe(κ2P,N-PNNH2-iPr)Cl2] and [Fe(κ2P,N-PNNH2-tBu)Cl2], while with PNNHMe-iPr and PNNHEt-iPr a phosphine transfer reaction of a second PN ligand took place to yield the known PNP pincer complexes [Fe(κ3P,N,P-PNPMe-iPr)Cl2] and [Fe(κ3P,N,P-PNPEt-iPr)Cl2]. The four-coordinate complexes [Fe(κ2P,N-PNNH2-iPr)Cl2] and [Fe(κ2P,N-PNNH2-tBu)Cl2] did not react with CO and the formation of iron PNC pincer complexes was not observed. The reason for the reluctance to add CO was investigated in detail by DFT calculations. Graphical abstract ![]()
Collapse
Affiliation(s)
- Christan Schröder-Holzhacker
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Berthold Stöger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Günther Allmaier
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisbon, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| |
Collapse
|
11
|
Redox-induced reversible intramolecular carbon–nitrogen bond formation of an azopyridylruthenium complex: Control of carbonyl ligand photoreactivity caused by structural change of the complex. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zamorano A, Rendón N, Valpuesta JEV, Álvarez E, Carmona E. Synthesis and Reactivity toward H2 of (η(5)-C5Me5)Rh(III) Complexes with Bulky Aminopyridinate Ligands. Inorg Chem 2015; 54:6573-81. [PMID: 26067207 DOI: 10.1021/acs.inorgchem.5b00905] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrophilic, cationic Rh(III) complexes of composition [(η(5)-C5Me5)Rh(Ap)](+), (1(+)), were prepared by reaction of [(η(5)-C5Me5)RhCl2]2 and LiAp (Ap = aminopyridinate ligand) followed by chloride abstraction with NaBArF (BArF = B[3,5-(CF3)2C6H3]4). Reactions of cations 1(+) with different Lewis bases (e.g., NH3, 4-dimethylaminopyridine, or CNXyl) led in general to monoadducts 1·L(+) (L = Lewis base; Xyl = 2,6-Me2C6H3), but carbon monoxide provided carbonyl-carbamoyl complexes 1·(CO)2(+) as a result of metal coordination and formal insertion of CO into the Rh-Namido bond of complexes 1(+). Arguably, the most relevant observation reported in this study stemmed from the reactions of complexes 1(+) with H2. (1)H NMR analyses of the reactions demonstrated a H2-catalyzed isomerization of the aminopyridinate ligand in cations 1(+) from the ordinary κ(2)-N,N' coordination to a very uncommon, formally tridentate κ-N,η(3) pseudoallyl bonding mode (complexes 3(+)) following benzylic C-H activation within the xylyl substituent of the pyridinic ring of the aminopyridinate ligand. The isomerization entailed in addition H-H and N-H bond activation and mimicked previous findings with the analogous iridium complexes. However, in dissimilarity with iridium, rhodium complexes 1(+) reacted stoichiometrically at 20 °C with excess H2. The transformations resulted in the hydrogenation of the C5Me5 and Ap ligands with concurrent reduction to Rh(I) and yielded complexes [(η(4)-C5Me5H)Rh(η(6)-ApH)](+), (2(+)), in which the pyridinic xylyl substituent is η(6)-bonded to the rhodium(I) center. New compounds reported were characterized by microanalysis and NMR spectroscopy. Representative complexes were additionally investigated by X-ray crystallography.
Collapse
Affiliation(s)
- Ana Zamorano
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - José E V Valpuesta
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Ernesto Carmona
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla Av. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| |
Collapse
|
13
|
Oyama D, Ukawa N, Hamada T, Takase T. Reversible Intramolecular Cyclization in Ruthenium Complexes Induced by Ligand-centered One-electron Transfer on Bidentate Naphthyridine: An Important Intermediate for Both Metal– and Organo–Hydride Species. CHEM LETT 2015. [DOI: 10.1246/cl.150023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dai Oyama
- Cluster of Science and Engineering, Fukushima University
| | - Narumi Ukawa
- Cluster of Science and Engineering, Fukushima University
| | - Takashi Hamada
- Cluster of Science and Engineering, Fukushima University
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University
| |
Collapse
|
14
|
Oyama D, Yuzuriya K, Naoi R, Hamada T, Takase T. Syntheses of Geometrical Isomers for Comparison of Properties Caused by Steric and Electronic Effects in Carbonylruthenium(II) Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dai Oyama
- Department of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University
| | - Kazumi Yuzuriya
- Department of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University
| | - Ryutaro Naoi
- Department of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University
| | - Takashi Hamada
- Department of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University
| | - Tsugiko Takase
- Center for Practical and Project-Based Learning, Cluster of Science and Engineering, Fukushima University
| |
Collapse
|
15
|
McSkimming A, Colbran SB. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chem Soc Rev 2013; 42:5439-88. [PMID: 23507957 DOI: 10.1039/c3cs35466k] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid.
Collapse
Affiliation(s)
- Alex McSkimming
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
16
|
Turrell PJ, Hill AD, Ibrahim SK, Wright JA, Pickett CJ. Ferracyclic carbamoyl complexes related to the active site of [Fe]-hydrogenase. Dalton Trans 2013; 42:8140-6. [DOI: 10.1039/c3dt50642h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Padhi SK, Fukuda R, Ehara M, Tanaka K. Comparative study of C^N and N^C type cyclometalated ruthenium complexes with a NAD+/NADH function. Inorg Chem 2012; 51:8091-102. [PMID: 22827695 DOI: 10.1021/ic300449q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclometalated ruthenium complexes having C(^)N and N(^)C type coordinating ligands with NAD(+)/NADH function have been synthesized and characterized by spectroscopic methods. The variation of the coordinating position of σ-donating carbon atom leads to a drastic change in their properties. Both the complex Ru(phbn)(phen)(2)]PF(6) ([1]PF(6)) and [Ru(pad)(phen)(2)]PF(6) ([2]PF(6)) reduced to Ru(phbnHH)(phen)(2)]PF(6) ([1HH]PF(6)) and [Ru(padHH)(phen)(2)]PF(6) ([2HH]PF(6)) by chemical and electrochemical methods. Complex [1]PF(6) photochemically reduced to [1HH]PF(6) in the presence of the sacrificial agent triethylamine (TEA) upon irradiation of visible light (λ ≥ 420 nm), whereas photochemical reduction of [2]PF(6) was not successful. Both experimental results and theoretical calculations reveal that upon protonation the energy level of the π* orbital of either of the ligands phbn or pad is drastically stabilized compared to the nonprotonated forms. In the protonated complex [Ru(padH)(phen)(2)](PF(6))(2) {[2H](PF(6))(2)}, the Ru-C bond exists in a tautomeric equilibrium with Ru═C coordination and behaves as a remote N-heterocyclic carbene (rNHC) compex; on the contrary, this behavior could not be observed in protonated complex [Ru(phbnH)(phen)(2)](PF(6))(2) {[1H](PF(6))(2)}.
Collapse
Affiliation(s)
- Sumanta Kumar Padhi
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | | | |
Collapse
|
18
|
Oyama D, Hamada T, Takase T. Stereospecific synthesis and redox properties of ruthenium(II) carbonyl complexes bearing a redox-active 1,8-naphthyridine unit. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Tanaka K. Metal Catalyzed Redox Reactions of Small Inorganic and Organic Molecules Aimed at Energy Conversion. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Bera JK, Sadhukhan N, Majumdar M. 1,8‐Naphthyridine Revisited: Applications in Dimetal Chemistry. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900312] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jitendra K. Bera
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India, Fax: +91‐512‐259‐7436
| | - Nabanita Sadhukhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India, Fax: +91‐512‐259‐7436
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India, Fax: +91‐512‐259‐7436
| |
Collapse
|
21
|
Tanaka K. Metal-catalyzed reversible conversion between chemical and electrical energy designed towards a sustainable society. CHEM REC 2009; 9:169-86. [DOI: 10.1002/tcr.200800039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Oyama D, Fujita R, Yui S. Mono- and bidentate azopyridyl ruthenium(II) complexes: Their crystal structures and different redox behavior. INORG CHEM COMMUN 2008. [DOI: 10.1016/j.inoche.2007.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Oyama D, Hamada T. cis,trans-Dicarbonyl-dichlorido[2-(2-pyrid-yl)-1,8-naphthyridine-κN,N]ruthenium(II). Acta Crystallogr Sect E Struct Rep Online 2008; 64:m442-3. [PMID: 21201842 PMCID: PMC2960803 DOI: 10.1107/s1600536808003188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 11/10/2022]
Abstract
The asymmetric unit of the title compound, [RuCl(2)(C(13)H(9)N(3))(CO)(2)], consists of four crystallographically independent Ru(II) complexes. Each Ru(II) atom is in a distorted octa-hedral environment coordinated by two carbonyl ligands, two Cl atoms and a chelating 2-(2-pyrid-yl)-1,8-naphthyridine (pynp) ligand. The carbonyl ligands are cis to each other, while the Cl atoms are trans. Relatively short inter-atomic distances (2.60-2.67 Å) between the uncoordinated N atom of pynp and the C atom of the carbonyl imply a donor-acceptor inter-action between the pynp and carbonyl ligands.
Collapse
|
24
|
Monkowius U, Svartsov Y, Fischer T, Zabel M, Yersin H. Synthesis, crystal structures, and electronic spectra of (1,8-naphthyridine)ReI(CO)3Cl and [(1,8-naphthyridine)CuI(DPEPhos)]PF6. INORG CHEM COMMUN 2007. [DOI: 10.1016/j.inoche.2007.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Organometallic Chemistry of Polypyridine Ligands III. ADVANCES IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1016/s0065-2725(07)95004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
Suzuki T. Monodentate, didentate chelating, and bridging 1,8-naphthyridine complexes of pentamethylcyclopentadienyliridium(III): Syntheses and structures in the solid states and in solution. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2006.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Gibson DH, Andino JG, Mashuta MS. Acid-Promoted Metallacyclization and Partial Hydrogenation of the Pendant Pyridine Ring in a Terpyridine Ligand by a Ruthenium Formyl Complex. Organometallics 2005. [DOI: 10.1021/om058052q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dorothy H. Gibson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - Jose G. Andino
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - Mark S. Mashuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
28
|
Koizumi TA, Tanaka K. Reversible Hydride Generation and Release from the Ligand of [Ru(pbn)(bpy)2](PF6)2 Driven by a pbn-Localized Redox Reaction. Angew Chem Int Ed Engl 2005; 44:5891-4. [PMID: 16088973 DOI: 10.1002/anie.200500760] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Take-Aki Koizumi
- Institute for Molecular Science and CREST, Japan Science and Technology Agency, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
29
|
Koizumi TA, Tanaka K. Reversible Hydride Generation and Release from the Ligand of [Ru(pbn)(bpy)2](PF6)2 Driven by a pbn-Localized Redox Reaction. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|