1
|
Münick P, Strubel A, Balourdas DI, Funk JS, Mernberger M, Osterburg C, Dreier B, Schaefer JV, Tuppi M, Yüksel B, Schäfer B, Knapp S, Plückthun A, Stiewe T, Joerger AC, Dötsch V. DARPin-induced reactivation of p53 in HPV-positive cells. Nat Struct Mol Biol 2025:10.1038/s41594-024-01456-7. [PMID: 39789211 DOI: 10.1038/s41594-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Infection of cells with high-risk strains of the human papillomavirus (HPV) causes cancer in various types of epithelial tissue. HPV infections are responsible for ~4.5% of all cancers worldwide. Tumorigenesis is based on the inactivation of key cellular control mechanisms by the viral proteins E6 and E7. The HPV E6 protein interacts with the cellular E3 ligase E6AP, and this complex binds to the p53 DNA-binding domain, which results in degradation of p53. Inhibition of this interaction has the potential to reactivate p53, thus preventing oncogenic transformation. Here we describe the characterization of a designed ankyrin repeat protein that binds to the same site as the HPV E6 protein, thereby displacing the E3 ligase and stabilizing p53. Interaction with the designed ankyrin repeat protein does not affect p53 DNA binding or the crucial MDM2 negative feedback loop but reactivates a p53-dependent transcriptional program in HeLa (HPV18-positive) and SiHa (HPV16-positive) cells, suggesting a potential therapeutic use.
Collapse
Affiliation(s)
- Philipp Münick
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Alexander Strubel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Julianne S Funk
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Büşra Yüksel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps-University, Marburg, Germany
- Genomics Core Facility, Philipps-University, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Zhou H, Yan S. Deciphering Internal Regulatory Patterns within the p53 Core Tetramer: Insights from Community Network Analysis. J Phys Chem Lett 2024; 15:9652-9658. [PMID: 39283177 DOI: 10.1021/acs.jpclett.4c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Gene therapy is one of the most effective strategies for cancer treatment. The p53 protein, commonly known as the "guardian of the genome", plays a critical role in gene activation and tumor suppression. Tetramerization of the p53 core domain is an essential allosteric process that supports its suppression functions. This letter presents a framework to analyze the structure, function, and dynamic connectivity of the p53 tetramer, using community network analysis based on all-atom molecular dynamics simulations. The communities within the p53 monomer exhibit distinct functional roles, while interactions between molecules establish a symmetrical network structure. We identified direct evidence of single, double, and multiple pathway regulations within the p53 tetramer and crucial residue pairs involved in these connections. Our study provides a comprehensive framework to understand the community network of the p53 tetramer, offering new insights into the stable formation of the p53 core tetramer.
Collapse
Affiliation(s)
- Han Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Shiwei Yan
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
- Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, People's Republic of China
| |
Collapse
|
3
|
Osterburg C, Ferniani M, Antonini D, Frombach AS, D'Auria L, Osterburg S, Lotz R, Löhr F, Kehrloesser S, Zhou H, Missero C, Dötsch V. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Cell Death Dis 2023; 14:274. [PMID: 37072394 PMCID: PMC10113246 DOI: 10.1038/s41419-023-05796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.
Collapse
Affiliation(s)
- Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marco Ferniani
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Dario Antonini
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ann-Sophie Frombach
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ludovica D'Auria
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Huiqing Zhou
- Departments of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Departments of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
4
|
Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, Celotto V, Gualillo O, Cossu AM, Nasti G, Caraglia M, Ottaiano A. p53: From Fundamental Biology to Clinical Applications in Cancer. BIOLOGY 2022; 11:1325. [PMID: 36138802 PMCID: PMC9495382 DOI: 10.3390/biology11091325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mitochondrial function, global regulation of gene expression, miRNAs, etc. Its crucial importance is denounced by the high percentage of amino acid sequence identity between very different species (Homo sapiens, Drosophila melanogaster, Rattus norvegicus, Danio rerio, Canis lupus familiaris, Gekko japonicus). Many of its activities allowed life on Earth (e.g., repair from radiation-induced DNA damage) and directly contribute to its tumour suppressor function. In this review, we provide paramount information on p53, from its discovery, which is an interesting paradigm of science evolution, to potential clinical applications in anti-cancer treatment. The description of the fundamental biology of p53 is enriched by specific information on the structure and function of the protein as well by tumour/host evolutionistic perspectives of its role.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
5
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
6
|
Zhang Q, Balourdas DI, Baron B, Senitzki A, Haran TE, Wiman KG, Soussi T, Joerger AC. Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Cell Death Dis 2022; 13:214. [PMID: 35256607 PMCID: PMC8901663 DOI: 10.1038/s41419-022-04653-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
Abstract
The extremophile Alvinella pompejana, an annelid worm living on the edge of hydrothermal vents in the Pacific Ocean, is an excellent model system for studying factors that govern protein stability. Low intrinsic stability is a crucial factor for the susceptibility of the transcription factor p53 to inactivating mutations in human cancer. Understanding its molecular basis may facilitate the design of novel therapeutic strategies targeting mutant p53. By analyzing expressed sequence tag (EST) data, we discovered a p53 family gene in A. pompejana. Protein crystallography and biophysical studies showed that it has a p53/p63-like DNA-binding domain (DBD) that is more thermostable than all vertebrate p53 DBDs tested so far, but not as stable as that of human p63. We also identified features associated with its increased thermostability. In addition, the A. pompejana homolog shares DNA-binding properties with human p53 family DBDs, despite its evolutionary distance, consistent with a potential role in maintaining genome integrity. Through extensive structural and phylogenetic analyses, we could further trace key evolutionary events that shaped the structure, stability, and function of the p53 family DBD over time, leading to a potent but vulnerable tumor suppressor in humans.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Bruno Baron
- Plateforme de Biophysique Moléculaire, Centre de Ressources et de Recherches Technologique (C2RT), Institut Pasteur, 75015, Paris, France
| | - Alon Senitzki
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel.
| | - Klas G Wiman
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden.
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Sorbonne Université, UPMC Univ Paris 06, 75005, Paris, France.
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Klimovich B, Meyer L, Merle N, Neumann M, König AM, Ananikidis N, Keber CU, Elmshäuser S, Timofeev O, Stiewe T. Partial p53 reactivation is sufficient to induce cancer regression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:80. [PMID: 35232479 PMCID: PMC8889716 DOI: 10.1186/s13046-022-02269-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 01/21/2023]
Abstract
Background Impaired p53 function is one of the central molecular features of a tumor cell and even a partial reduction in p53 activity can increase the cancer risk in mice and men. From a therapeutic perspective it is noteworthy that tumor cells often become addicted to the absence of p53 providing a rationale for developing p53 reactivating compounds to treat cancer patients. Unfortunately, many of the compounds that are currently undergoing preclinical and clinical testing fail to fully reactivate mutant p53 proteins, raising the crucial question: how much p53 activity is needed to elicit a therapeutic effect? Methods We have genetically modelled partial p53 reactivation using knock-in mice with inducible expression of the p53 variant E177R. This variant has a reduced ability to bind and transactivate target genes and consequently causes moderate cancer susceptibility. We have generated different syngeneically transplanted and autochthonous mouse models of p53-deficient acute myeloid leukemia and B or T cell lymphoma. After cancer manifestation we have activated E177R expression and analyzed the in vivo therapy response by bioluminescence or magnetic resonance imaging. The molecular response was further characterized in vitro by assays for gene expression, proliferation, senescence, differentiation, apoptosis and clonogenic growth. Results We report the conceptually intriguing observation that the p53 variant E177R, which promotes de novo leukemia and lymphoma formation, inhibits proliferation and viability, induces immune cell infiltration and triggers cancer regression in vivo when introduced into p53-deficient leukemia and lymphomas. p53-deficient cancer cells proved to be so addicted to the absence of p53 that even the low-level activity of E177R is detrimental to cancer growth. Conclusions The observation that a partial loss-of-function p53 variant promotes tumorigenesis in one setting and induces regression in another, underlines the highly context-specific effects of individual p53 mutants. It further highlights the exquisite sensitivity of cancer cells to even small changes in p53 activity and reveals that changes in activity level are more important than the absolute level. As such, the study encourages ongoing research efforts into mutant p53 reactivating drugs by providing genetic proof-of-principle evidence that incomplete p53 reactivation may suffice to elicit a therapeutic response. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02269-6.
Collapse
Affiliation(s)
- Boris Klimovich
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Laura Meyer
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Alexander M König
- Clinic of Diagnostic and Interventional Radiology, Core Facility 7T-small animal MRI, Philipps-University, Marburg, Germany
| | - Nikolaos Ananikidis
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Corinna U Keber
- Institute for Pathology, University Hospital Marburg, Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. .,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. .,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany. .,Genomics Core Facility, Philipps-University, Marburg, Germany.
| |
Collapse
|
8
|
Koley T, Chowdhury SR, Kushwaha T, Kumar M, Inampudi KK, Kaur P, Singh TP, Viadiu H, Ethayathulla AS. Deciphering the mechanism of p73 recognition of p53 response elements using the crystal structure of p73-DNA complexes and computational studies. Int J Biol Macromol 2022; 206:40-50. [PMID: 35217090 DOI: 10.1016/j.ijbiomac.2022.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/05/2022]
Abstract
P73 belongs to p53 family transcription factor activating more than 50% of cell fate p53 target genes involved in cell cycle, apoptosis, DNA damage response alongside neuronal system development and differentiation by binding to 20-bp response elements (REs) having sequence motif (PPPCA/T-T/AGYYY) where P-purines and Y-pyrimidines with each 10-bp separated by minimum 0 to 13-bp spacer. The promiscuous nature of recognizing both cell fate and development genes and the underlying RE selectivity mechanism by p73 is not well understood. Here, we report the molecular details of p73 recognizing the REs using the crystal structure of p73 DNA binding domain (DBD) in complex with 12 base pair DNA sequence 5'-cAGGCATGCCTg-3' and molecular dynamics simulations with six different p53 natural promoter sequences. Each 20-base pair natural promoter forms a different major/minor groove due to the presence of nucleotides A/T, A/C, G/G, T/T and G/T at positions 3, 8, 13, 18 uniquely recognized by p73 key residues Lys138 and Arg268. The loops L1 and L3 bearing these residues influence inter-and intra-dimer interfaces interactions and hence p73 forms a unique tetramer with each natural promoter sequence. Structural features of the DNA and the spacing between half-sites influence p73 tetramerization and its transactivation function.
Collapse
Affiliation(s)
- Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Héctor Viadiu
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
9
|
Klimovich B, Merle N, Neumann M, Elmshäuser S, Nist A, Mernberger M, Kazdal D, Stenzinger A, Timofeev O, Stiewe T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 2022; 41:1011-1023. [PMID: 34907344 PMCID: PMC8837531 DOI: 10.1038/s41388-021-02141-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022]
Abstract
The tumor suppressive transcription factor p53 is frequently inactivated in cancer cells by missense mutations that cluster in the DNA binding domain. 30% hit mutational hotspot residues, resulting in a complete loss of transcriptional activity and mutant p53-driven chemotherapy resistance. Of the remaining 70% of non-hotspot mutants, many are partial loss-of-function (partial-LOF) mutants with residual transcriptional activity. The therapeutic consequences of a partial-LOF have remained largely elusive. Using a p53 mutation engineered to reduce DNA binding, we demonstrate that partial-LOF is sufficient to enhance oncogene-driven tumorigenesis in mouse models of lung and pancreatic ductal adenocarcinoma and acute myeloid leukemia. Interestingly, mouse and human tumors with partial-LOF mutations showed mutant p53 protein accumulation similar as known for hotspot mutants. Different from the chemotherapy resistance caused by p53-loss, the partial-LOF mutant sensitized to an apoptotic chemotherapy response and led to a survival benefit. Mechanistically, the pro-apoptotic transcriptional activity of mouse and human partial-LOF mutants was rescued at high mutant protein levels, suggesting that accumulation of partial-LOF mutants enables the observed apoptotic chemotherapy response. p53 non-hotspot mutants with partial-LOF, therefore, represent tumorigenic p53 mutations that need to be distinguished from other mutations because of their beneficial impact on survival in a therapy context.
Collapse
MESH Headings
- Animals
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Humans
- Mice
- Loss of Function Mutation
- Drug Resistance, Neoplasm/genetics
- Apoptosis/genetics
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Boris Klimovich
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
| |
Collapse
|
10
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
11
|
Timofeev O, Koch L, Niederau C, Tscherne A, Schneikert J, Klimovich M, Elmshäuser S, Zeitlinger M, Mernberger M, Nist A, Osterburg C, Dötsch V, Hrabé de Angelis M, Stiewe T. Phosphorylation Control of p53 DNA-Binding Cooperativity Balances Tumorigenesis and Aging. Cancer Res 2020; 80:5231-5244. [PMID: 32873634 DOI: 10.1158/0008-5472.can-20-2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Posttranslational modifications are essential for regulating the transcription factor p53, which binds DNA in a highly cooperative manner to control expression of a plethora of tumor-suppressive programs. Here we show at the biochemical, cellular, and organismal level that the cooperative nature of DNA binding is reduced by phosphorylation of highly conserved serine residues (human S183/S185, mouse S180) in the DNA-binding domain. To explore the role of this inhibitory phosphorylation in vivo, new phosphorylation-deficient p53-S180A knock-in mice were generated. Chromatin immunoprecipitation sequencing and RNA sequencing studies of S180A knock-in cells demonstrated enhanced DNA binding and increased target gene expression. In vivo, this translated into a tissue-specific vulnerability of the bone marrow that caused depletion of hematopoietic stem cells and impaired proper regeneration of hematopoiesis after DNA damage. Median lifespan was significantly reduced by 20% from 709 days in wild type to only 568 days in S180A littermates. Importantly, lifespan was reduced by a loss of general fitness and increased susceptibility to age-related diseases, not by increased cancer incidence as often seen in other p53-mutant mouse models. For example, S180A knock-in mice showed markedly reduced spontaneous tumorigenesis and increased resistance to Myc-driven lymphoma and Eml4-Alk-driven lung cancer. Preventing phosphorylation of S183/S185 in human cells boosted p53 activity and allowed tumor cells to be killed more efficiently. Together, our data identify p53 DNA-binding domain phosphorylation as a druggable mechanism that balances tumorigenesis and aging. SIGNIFICANCE: These findings demonstrate that p53 tumor suppressor activity is reduced by DNA-binding domain phosphorylation to prevent aging and identify this phosphorylation as a potential target for cancer therapy.See related commentary by Horikawa, p. 5164.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| | - Lukas Koch
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Constantin Niederau
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Alina Tscherne
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Zeitlinger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | | | | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany. .,Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
12
|
Pavlakis E, Stiewe T. p53's Extended Reach: The Mutant p53 Secretome. Biomolecules 2020; 10:biom10020307. [PMID: 32075247 PMCID: PMC7072272 DOI: 10.3390/biom10020307] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023] Open
Abstract
p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.
Collapse
|
13
|
Klimovich B, Stiewe T, Timofeev O. Inactivation of Mdm2 restores apoptosis proficiency of cooperativity mutant p53 in vivo. Cell Cycle 2019; 19:109-123. [PMID: 31749402 DOI: 10.1080/15384101.2019.1693748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
TP53 mutations are found in 50% of all cancers and mutated TP53 status is considered poor for treatment. However, some TP53 mutations exhibit only partial loss-of-function (LOF), meaning they retain residual transcriptional and non-transcriptional activities that are potentially beneficial for therapy. Earlier we have characterized a knock-in mouse model for the partial LOF mutant Trp53E177R (p53RR). Reduced DNA binding cooperativity of this mutant led to the loss of p53-dependent apoptosis, while p53 functions in cell cycle control, senescence, metabolism, and antioxidant defense remained intact. Concomitantly, tumor suppression was evident but strongly compromised compared to wild-type mice. Here we used the Trp53E177R mouse as a model to investigate whether residual functions of mutant p53 can be engaged to induce cell death, which is considered the most desirable outcome of tumor therapy. We made use of Mdm2 knock-out in developing embryos as a sensitive tool for detecting remaining p53 activities. Genetic ablation of Mdm2 led to embryonic lethality in Trp53E177R/E177R homozygotes at days 9.5-11.5. This effect was not rescued by concomitant p21-knockout, indicating its independence of p21-mediated cell cycle arrest. Instead, immunohistochemical analysis showed widespread apoptosis in tissues of defective embryos accompanied by persistent accumulation of p53RR protein. This led to partial restoration of the mutant's proficiency in transcriptional induction of the pro-apoptotic genes Bbc3 (Puma) and Bax. These data indicate that increased quantity can compensate for qualitative defects of p53 mutants and suggest that Mdm2-targeting (potentially in combination with other drugs) might be effective against cells bearing p53 partial LOF mutants.
Collapse
Affiliation(s)
- Boris Klimovich
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
14
|
Timofeev O, Klimovich B, Schneikert J, Wanzel M, Pavlakis E, Noll J, Mutlu S, Elmshäuser S, Nist A, Mernberger M, Lamp B, Wenig U, Brobeil A, Gattenlöhner S, Köhler K, Stiewe T. Residual apoptotic activity of a tumorigenic p53 mutant improves cancer therapy responses. EMBO J 2019; 38:e102096. [PMID: 31483066 PMCID: PMC6792016 DOI: 10.15252/embj.2019102096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53R178E mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53−/− mice. Surprisingly, stabilization of p53R178E in Mdm2−/− mice nevertheless triggers extensive apoptosis, indicative of residual wild‐type activities. Although this apoptotic activity suffices to trigger lethality of Trp53R178E;Mdm2−/− embryos, it proves insufficient for suppression of spontaneous and oncogene‐driven tumorigenesis. Trp53R178E mice develop tumors indistinguishably from Trp53−/− mice and tumors retain and even stabilize the p53R178E protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53R178E tumors exhibit remarkably better chemotherapy responses than Trp53−/− ones, resulting in enhanced eradication of p53‐mutated tumor cells. Together, this provides genetic proof‐of‐principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | | | - Julia Noll
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Samet Mutlu
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Lamp
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Ulrich Wenig
- Institute of Pathology, Justus Liebig University, Giessen, Germany
| | | | | | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Genomics Core Facility, Philipps University, Marburg, Germany
| |
Collapse
|
15
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
16
|
Dahiya V, Agam G, Lawatscheck J, Rutz DA, Lamb DC, Buchner J. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries. Mol Cell 2019; 74:816-830.e7. [PMID: 31027879 DOI: 10.1016/j.molcel.2019.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
p53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction. This unfolded state of p53 is susceptible to aggregation after release induced by the nucleotide exchange factor Bag-1. However, when Hsp90 and the adaptor protein Hop are present, p53 is transferred from Hsp70 to Hsp90, allowing restoration of the native state upon ATP hydrolysis. Our results suggest that the p53 conformation is constantly remodeled by the two major chaperone machineries. This connects p53 activity to stress, and the levels of free molecular chaperones are important factors regulating p53 activity. Together, our findings reveal an intricate interplay and cooperation of Hsp70 and Hsp90 in regulating the conformation of a client.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ganesh Agam
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Daniel Andreas Rutz
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
17
|
Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018; 38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The tumor suppressive transcription factor p53 regulates a wide array of cellular processes that confer upon cells an essential protection against cancer development. Wild-type p53 regulates gene expression by directly binding to DNA in a sequence-specific manner. p53 missense mutations are the most common mutations in malignant cells and can be regarded as synonymous with anticancer drug resistance and poor prognosis. The current review provides an overview of how the extraordinary variety of more than 2000 different mutant p53 proteins, known as the p53 mutome, affect the interaction of p53 with DNA. We discuss how the classification of p53 mutations to loss of function (LOF), gain of function (GOF), and dominant-negative (DN) inhibition of a remaining wild-type allele, hides a complex p53 mutation spectrum that depends on the distinctive nature of each mutant protein, requiring different therapeutic strategies for each mutant p53 protein. We propose to regard the different mutant p53 categories as continuous variables, that may not be independent of each other. In particular, we suggest here to consider GOF mutations as a special subset of LOF mutations, especially when mutant p53 binds to DNA through cooperation with other transcription factors, and we present a model for GOF mechanism that consolidates many observations on the GOF phenomenon. We review how novel mutant p53 targeting approaches aim to restore a wild-type-like DNA interaction and to overcome resistance to cancer therapy.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35037 Marburg, Germany.
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
18
|
Solution structure and binding specificity of the p63 DNA binding domain. Sci Rep 2016; 6:26707. [PMID: 27225672 PMCID: PMC4880913 DOI: 10.1038/srep26707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023] Open
Abstract
p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.
Collapse
|
19
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
20
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015. [PMID: 26014357 DOI: 10.1186/s13062-015-0059- 4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. RESULTS We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. CONCLUSIONS The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
21
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015; 10:29. [PMID: 26014357 PMCID: PMC4445527 DOI: 10.1186/s13062-015-0059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Background Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. Results We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. Conclusions The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis. Reviewers This article was reviewed by Andrei L. Osterman, Narayanaswamy Srinivasan, Igor N. Berezovsky, and Gerrit Vriend (nominated by Martijn Huynen). Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0059-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
22
|
Schlereth K, Heyl C, Krampitz AM, Mernberger M, Finkernagel F, Scharfe M, Jarek M, Leich E, Rosenwald A, Stiewe T. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions. PLoS Genet 2013; 9:e1003726. [PMID: 23966881 PMCID: PMC3744428 DOI: 10.1371/journal.pgen.1003726] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context- and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell killing. The tumor suppressor gene p53 counteracts tumor growth by activating genes that prevent cell proliferation or induce cell death. How p53 selects genes in the genome to direct cell fate specifically into one or the other direction remains unclear. We show that the ability of p53 molecules to interact and thereby cooperate, influences which genes in the genome p53 is regulating. In the absence of cooperation, p53 only binds and regulates a limited ‘default’ set of genes that is proficient to stop cell proliferation but insufficient to induce cell death. Cooperation increases p53's DNA binding and enables context-dependent activation of apoptosis genes and repression of pro-survival genes which together triggers cell death. As the concerted effort of p53 molecules is needed, the threshold for cell killing is raised possibly to protect us from accidental cell loss. Thus, by shaping the genomic binding pattern, p53 cooperation fine-tunes the gene activity pattern to steer cell fate into the most appropriate, context-dependent direction. The genome-wide binding patterns of cooperating and non-cooperating p53 proteins generated in this study provide a comprehensive list of p53 binding sites as a resource for the scientific community to further explore mechanisms of tumor suppression by p53.
Collapse
Affiliation(s)
| | - Charlotte Heyl
- Molecular Oncology, Philipps-University, Marburg, Germany
| | | | | | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research, Philipps-University, Marburg, Germany
| | - Maren Scharfe
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Thorsten Stiewe
- Molecular Oncology, Philipps-University, Marburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A, Rosenwald A, Elsässer HP, Stiewe T. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 2013; 3:1512-25. [PMID: 23665223 DOI: 10.1016/j.celrep.2013.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022] Open
Abstract
Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53E177R mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer.
Collapse
Affiliation(s)
- Oleg Timofeev
- Department of Molecular Oncology, University of Marburg, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yun HY, Huh SH. Fluorescence Study Gives a Hint to Understand How the p53 DNA Binding Domain Recognizes Its Specific Binding Site on DNA Fragments. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Severin PMD, Gaub HE. DNA-protein binding force chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3269-3273. [PMID: 22887737 DOI: 10.1002/smll.201201088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Philip M D Severin
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Germany
| | | |
Collapse
|
26
|
Retzlaff M, Rohrberg J, Küpper NJ, Lagleder S, Bepperling A, Manzenrieder F, Peschek J, Kessler H, Buchner J. The regulatory domain stabilizes the p53 tetramer by intersubunit contacts with the DNA binding domain. J Mol Biol 2012; 425:144-55. [PMID: 23103206 DOI: 10.1016/j.jmb.2012.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Abstract
The tumor suppressor protein p53 is often referred to as the guardian of the genome. In the past, controversial findings have been presented for the role of the C-terminal regulatory domain (RD) of p53 as both a negative regulator and a positive regulator of p53 activity. However, the underlying mechanism remained enigmatic. To understand the function of the RD and of a dominant phosphorylation site within the RD, we analyzed p53 variants in vivo and in vitro. Our experiments revealed, surprisingly, that the p53 RD of one subunit interacts with the DNA binding domain of an adjacent subunit in the tetramer. This leads to the formation of intersubunit contacts that stabilize the tetrameric state of p53 and enhance its transcriptional activity in a cooperative manner. These effects are further modulated by phosphorylation of a conserved serine within the RD.
Collapse
Affiliation(s)
- Marco Retzlaff
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gabizon R, Brandt T, Sukenik S, Lahav N, Lebendiker M, Shalev DE, Veprintsev D, Friedler A. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins. PLoS One 2012; 7:e38060. [PMID: 22693587 PMCID: PMC3365014 DOI: 10.1371/journal.pone.0038060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81-92), which bound directly to the p53 tetramerization domain, and PKCα(281-295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53.
Collapse
Affiliation(s)
- Ronen Gabizon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Brandt
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Shahar Sukenik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dmitry Veprintsev
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Jain A, Sankararamakrishnan R. Dynamics of Noncovalent Interactions in All-α and All-β Class Proteins: Implications for the Stability of Amyloid Aggregates. J Chem Inf Model 2011; 51:3208-16. [DOI: 10.1021/ci200302q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alok Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur −208016, India
| | | |
Collapse
|
29
|
Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol 2011; 18:1086-93. [PMID: 21892170 DOI: 10.1038/nsmb.2114] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 07/01/2011] [Indexed: 01/18/2023]
Abstract
In eukaryotes, the essential dimeric molecular chaperone Hsp90 is required for the activation and maturation of specific substrates such as steroid hormone receptors, tyrosine kinases and transcription factors. Hsp90 is involved in the establishment of cancer and has become an attractive target for drug design. Here we present a structural characterization of the complex between Hsp90 and the tumor suppressor p53, a key mediator of apoptosis whose structural integrity is crucial for cell-cycle control. Using biophysical methods, we show that the human p53 DNA-binding domain interacts with multiple domains of yeast Hsp90. p53 binds to the Hsp90 C-terminal domain in its native-like state in a charge-dependent manner, but it also associates weakly with binding sites in the middle and the N-terminal domains. The fine-tuned interplay between several Hsp90 domains provides the interactions required for efficient chaperoning of p53.
Collapse
|
30
|
Beno I, Rosenthal K, Levitine M, Shaulov L, Haran TE. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res 2010; 39:1919-32. [PMID: 21071400 PMCID: PMC3061056 DOI: 10.1093/nar/gkq1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The prime mechanism by which p53 acts as a tumor suppressor is as a transcription factor regulating the expression of diverse downstream genes. The DNA-binding domain of p53 (p53DBD) interacts with defined DNA sites and is the main target for mutations in human primary tumors. Here, we show that the CWWG motif, found in the center of each consensus p53 half-site, is a key player in p53/DNA interactions. Gel-mobility-shift assays provide a unique opportunity to directly observe the various oligomeric complexes formed between p53DBD and its target sites. We demonstrate that p53DBD binds to p53 consensus sites containing CATG with relatively low cooperativity, as both dimers and tetramers, and with even lower cooperativity to such sites containing spacer sequences. p53DBD binds to sites containing CAAG and CTAG with measurable affinity only when imbedded in two contiguous p53 half-sites and only as tetramers (with very high cooperativity). There are three orders-of-magnitude difference in the cooperativity of interaction between sites differing in their non-contacted step, and further two orders-of-magnitude difference as a function of spacer sequences. By experimentally measuring the global structural properties of these sites, by cyclization kinetics of DNA minicircles, we correlate these differences with the torsional flexibility of the binding sites.
Collapse
Affiliation(s)
- Itai Beno
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
31
|
Schlereth K, Charles JP, Bretz AC, Stiewe T. Life or death: p53-induced apoptosis requires DNA binding cooperativity. Cell Cycle 2010; 9:4068-76. [PMID: 20948308 DOI: 10.4161/cc.9.20.13595] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 provides exquisite protection from cancer by balancing cell survival and death in response to stress. Sustained stress or irreparable damage trigger p53's killer functions to permanently eliminate genetically-altered cells as a potential source of cancer. To prevent the unnecessary loss of cells that could cause premature aging as a result of stem cell attrition, the killer functions of p53 are tightly regulated and balanced against protector functions that promote damage repair and support survival in response to low stress or mild damage. In molecular terms these p53-based cell fate decisions involve protein interactions with cofactors and modifying enzymes, which modulate the activation of distinct sets of p53 target genes. In addition, we demonstrate that part of this regulation occurs at the level of DNA binding. We show that the killer function of p53 requires the four DNA binding domains within the p53 tetramer to interact with one another. These intermolecular interactions enable cooperative binding of p53 to less perfect response elements in the genome, which are present in many target genes essential for apoptosis. Modulating p53 interactions within the tetramer could therefore present a novel promising strategy to fine-tune p53-based cell fate decisions.
Collapse
|
32
|
Kleinmaier R, Keller M, Igel P, Buschauer A, Gschwind RM. Conformations, Conformational Preferences, and Conformational Exchange of N′-Substituted N-Acylguanidines: Intermolecular Interactions Hold the Key. J Am Chem Soc 2010; 132:11223-33. [DOI: 10.1021/ja103756y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Roland Kleinmaier
- Institut für Organische Chemie and Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institut für Organische Chemie and Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Patrick Igel
- Institut für Organische Chemie and Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institut für Organische Chemie and Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institut für Organische Chemie and Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
33
|
Schlereth K, Beinoraviciute-Kellner R, Zeitlinger MK, Bretz AC, Sauer M, Charles JP, Vogiatzi F, Leich E, Samans B, Eilers M, Kisker C, Rosenwald A, Stiewe T. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2010; 38:356-68. [PMID: 20471942 DOI: 10.1016/j.molcel.2010.02.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 08/17/2009] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
Abstract
p53 limits the proliferation of precancerous cells by inducing cell-cycle arrest or apoptosis. How the decision between survival and death is made at the level of p53 binding to target promoters remains unclear. Using cancer cell lines, we show that the cooperative nature of DNA binding extends the binding spectrum of p53 to degenerate response elements in proapoptotic genes. Mutational inactivation of cooperativity therefore does not compromise the cell-cycle arrest response but strongly reduces binding of p53 to multiple proapoptotic gene promoters (BAX, PUMA, NOXA, CASP1). Vice versa, engineered mutants with increased cooperativity show enhanced binding to proapoptotic genes, which shifts the cellular response to cell death. Furthermore, the cooperativity of DNA binding determines the extent of apoptosis in response to DNA damage. Because mutations, which impair cooperativity, are genetically linked to cancer susceptibility in patients, DNA binding cooperativity contributes to p53's tumor suppressor activity.
Collapse
Affiliation(s)
- Katharina Schlereth
- Department of Hematology, Oncology, and Immunology, Molecular Oncology, Philipps-University, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pan Y, Nussinov R. Preferred drifting along the DNA major groove and cooperative anchoring of the p53 core domain: mechanisms and scenarios. J Mol Recognit 2010; 23:232-40. [PMID: 19856322 DOI: 10.1002/jmr.990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the importance of specific p53-DNA binding is broadly accepted, the recognition process is still not fully understood. Figuring out the initial tetrameric p53-DNA association and the swift and cooperative search for specific binding sites is crucial for understanding the transactivation mechanism and selectivity. To gain insight into the p53-DNA binding process, here we have carried out explicit solvent molecular dynamic (MD) simulations of several p53 core domain-DNA conformations with the p53 and the DNA separated by varying distances. p53 approached the DNA, bound non-specifically, and quickly drifted along the DNA surface to find the major groove, cooperatively anchoring in a way similar to the specific binding observed in the crystal structure. Electrostatics was the major driving force behind the p53 movement. Mechanistically, this is a cooperative process: key residues, particularly Lys120 and Arg280 acted as sensors; upon finding their hydrogen-bonding partners, they lock in, anchoring p53 into the major groove. Concomitantly, the DNA adopted a conformation that facilitated p53 easy access. The initial non-specific core domain-DNA contacts assist in shifting the DNA and the p53 substrates toward conformations "ready" for specific major groove binding, with subsequent optimization of the interactions. This work is an invited contribution for the special issue of the Journal of Molecular Recognition dedicated to Professor Martin Karplus.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
35
|
Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, Honig B, Shakked Z. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat Struct Mol Biol 2010; 17:423-9. [PMID: 20364130 DOI: 10.1038/nsmb.1800] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 03/05/2010] [Indexed: 02/06/2023]
Abstract
p53 binds as a tetramer to DNA targets consisting of two decameric half-sites separated by a variable spacer. Here we present high-resolution crystal structures of complexes between p53 core-domain tetramers and DNA targets consisting of contiguous half-sites. In contrast to previously reported p53-DNA complexes that show standard Watson-Crick base pairs, the newly reported structures show noncanonical Hoogsteen base-pairing geometry at the central A-T doublet of each half-site. Structural and computational analyses show that the Hoogsteen geometry distinctly modulates the B-DNA helix in terms of local shape and electrostatic potential, which, together with the contiguous DNA configuration, results in enhanced protein-DNA and protein-protein interactions compared to noncontiguous half-sites. Our results suggest a mechanism relating spacer length to protein-DNA binding affinity. Our findings also expand the current understanding of protein-DNA recognition and establish the structural and chemical properties of Hoogsteen base pairs as the basis for a novel mode of sequence readout.
Collapse
Affiliation(s)
- Malka Kitayner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Hagn F, Klein C, Demmer O, Marchenko N, Vaseva A, Moll UM, Kessler H. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J Biol Chem 2009; 285:3439-50. [PMID: 19955567 DOI: 10.1074/jbc.m109.065391] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-mu, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-mu binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.
Collapse
Affiliation(s)
- Franz Hagn
- Department Chemistry, Center for Integrated Protein Science Munich, Technische UniversitätMünchen, 85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Pan Y, Nussinov R. Cooperativity dominates the genomic organization of p53-response elements: a mechanistic view. PLoS Comput Biol 2009; 5:e1000448. [PMID: 19629163 PMCID: PMC2705680 DOI: 10.1371/journal.pcbi.1000448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/24/2009] [Indexed: 11/18/2022] Open
Abstract
p53-response elements (p53-REs) are organized as two repeats of a palindromic DNA segment spaced by 0 to 20 base pairs (bp). Several experiments indicate that in the vast majority of the human p53-REs there are no spacers between the two repeats; those with spacers, particularly with sizes beyond two nucleotides, are rare. This raises the question of what it indicates about the factors determining the p53-RE genomic organization. Clearly, given the double helical DNA conformation, the orientation of two p53 core domain dimers with respect to each other will vary depending on the spacer size: a small spacer of 0 to 2 bps will lead to the closest p53 dimer-dimer orientation; a 10-bp spacer will locate the p53 dimers on the same DNA face but necessitate DNA looping; while a 5-bp spacer will position the p53 dimers on opposite DNA faces. Here, via conformational analysis we show that when there are 0-2 bp spacers, p53-DNA binding is cooperative; however, cooperativity is greatly diminished when there are spacers with sizes beyond 2 bp. Cooperative binding is broadly recognized to be crucial for biological processes, including transcriptional regulation. Our results clearly indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs, raising questions of the structural organization and functional roles of p53-REs with larger spacers. We further propose that a dynamic landscape scenario of p53 and p53-REs can better explain the selectivity of the degenerate p53-REs. Our conclusions bear on the evolutionary preference of the p53-RE organization and as such, are expected to have broad implications to other multimeric transcription factor response element organization.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Pan Y, Nussinov R. p53-Induced DNA bending: the interplay between p53-DNA and p53-p53 interactions. J Phys Chem B 2008; 112:6716-24. [PMID: 18461991 DOI: 10.1021/jp800680w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Specific p53 binding-induced DNA bending and its underlying responsible forces are crucial for the understanding of selective transcription activation. Diverse p53-response elements exist in the genome; however, it is not known what determines the DNA bending and to what extent. In order to gain knowledge of the forces that govern the DNA bending, molecular dynamics simulations were performed on a series of p53 core domain tetramer-DNA complexes in which each p53 core domain was bound to a DNA quarter site specifically. By varying the sequence of the central 4-base pairs of each half-site, different DNA bending extents were observed. The analysis showed that the dimer-dimer interactions in p53 were similar for the complexes; on the other hand, the specific interactions between the p53 and DNA, including the interactions of Arg280, Lys120, and Arg248 with the DNA, varied more significantly. In particular, the Arg280 interactions were better maintained in the complex with the CATG-containing DNA sequence and were mostly lost in the complex with the CTAG-containing DNA sequence. Structural analysis shows that the base pairings for the CATG sequence were stable throughout the simulation trajectory, whereas those for the CTAG sequence were partially dissociated in part of the trajectory, which affected the stability of the nearby Arg280-Gua base interactions. Thus, DNA bending depends on the balance between the p53 dimer-dimer interactions and p53-DNA interactions, which is in turn related to the DNA sequence and DNA flexibility.
Collapse
Affiliation(s)
- Yongping Pan
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
39
|
Ma B, Levine AJ. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Res 2007; 35:7733-47. [PMID: 17986463 PMCID: PMC2190717 DOI: 10.1093/nar/gkm890] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symmetries in the p53 response-element (p53RE) encode binding modes for p53 tetramer to recognize DNA. We investigated the molecular mechanisms and biological implications of the possible binding modes. The probabilities evaluated with molecular dynamics simulations and DNA sequence analyses were found to be correlated, indicating that p53 tetramer models studied here are able to read DNA sequence information. The traditionally believed mode with four p53 monomers binding at all four DNA quarter-sites does not cause linear DNA to bend. Alternatively, p53 tetramer can use only two monomers to recognize DNA sequence and induce DNA bending. With an arrangement of dimer of AB dimer observed in p53 trimer-DNA complex crystal, p53 can recognize supercoiled DNA sequence-specifically by binding to quarter-sites one and four (H14 mode) and recognize Holliday junction geometry-specifically. Examining R273H mutation and p53-DNA interactions, we found that at least three R273H monomers are needed to disable the p53 tetramer, consistent with experiments. But just one R273H monomer may greatly shift the binding mode probabilities. Our work suggests that p53 needs balanced binding modes to maintain genome stability. Inverse repeat p53REs favor the H14 mode and direct repeat p53REs may have high possibilities of other modes.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
40
|
Abstract
The tumor suppressor protein p53 is inactivated by mutation in about half of all human cancers. Most mutations are located in the DNA-binding domain of the protein. It is, therefore, important to understand the structure of p53 and how it responds to mutation, so as to predict the phenotypic response and cancer prognosis. In this review, we present recent structural and systematic functional data that elucidate the molecular basis of how p53 is inactivated by different types of cancer mutation. Intriguingly, common cancer mutants exhibit a variety of distinct local structural changes, while the overall structural scaffold is largely preserved. The diverse structural and energetic response to mutation determines: (i) the folding state of a particular mutant under physiological conditions; (ii) its affinity for the various p53 target DNA sequences; and (iii) its protein-protein interactions both within the p53 tetramer and with a multitude of regulatory proteins. Further, the structural details of individual mutants provide the basis for the design of specific and generic drugs for cancer therapy purposes. In combination with studies on second-site suppressor mutations, it appears that some mutants are ideal rescue candidates, whereas for others simple pharmacological rescue by small molecule drugs may not be successful.
Collapse
Affiliation(s)
- A C Joerger
- Centre for Protein Engineering, Medical Research Council Centre, Cambridge, UK.
| | | |
Collapse
|
41
|
Abstract
Specific p53 binding-induced DNA bending has important biological implications such as transcription activation. However, the detailed structures of the bent DNA and the p53-DNA complex are still unavailable, hampering our understanding of the mechanism for p53-induced DNA bending and its consequent biological significance. To gain insight into the p53 binding-induced DNA bending, we performed molecular dynamics simulations on DNA segments with the consensus sequence for p53-specific binding, half site DNA-p53 complexes, and full site DNA-p53 complexes. We show that each DNA-bound p53 core domain caused a local DNA conformational change within the quarter site; upon the binding of the p53 dimer, there was an apparent DNA bending at the center of the half site; when bound with two p53 dimers, the full site DNAs with two different sequences bent 20 and 35 degrees, respectively. These results are in agreement with experimental observations. Our simulations demonstrate that the two p53 dimers favored a staggered conformation in which they make favorable interactions at the interface. This dimer-dimer interface organization necessitated conformational changes in the DNA, leading to the bending at the center of the full site, which in turn is dependent on the DNA sequence. Overall, our results provide the detailed atomic model for the DNA-p53 tetramer complex and delineate the roles of DNA-p53, p53 dimer-dimer interactions, and DNA sequence in specific p53 binding-induced DNA conformational changes.
Collapse
Affiliation(s)
- Yongping Pan
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | |
Collapse
|
42
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
44
|
Tidow H, Veprintsev DB, Freund SMV, Fersht AR. Effects of Oncogenic Mutations and DNA Response Elements on the Binding of p53 to p53-binding Protein 2 (53BP2). J Biol Chem 2006; 281:32526-33. [PMID: 16887812 DOI: 10.1074/jbc.m604725200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. Upon activation it can induce cell cycle arrest or apoptosis. ASPP2 can specifically stimulate the apoptotic function of p53 but not cell cycle arrest, but the mechanism of enhancing the activation of pro-apoptotic genes over cell cycle arrest genes remains unknown. In this study, we analyzed the binding of 53BP2 (p53-binding protein 2, the C-terminal domain of ASPP2) to p53 core domain and various mutants using biophysical techniques. We found that several p53 core domain mutations (R181E, G245S, R249S, R273H) have different effects on the binding of DNA response elements and 53BP2. Further, we investigated the existence of a ternary complex consisting of 53BP2, p53, and DNA response elements to gain insight into the specific pro-apoptotic activation of p53. We found that binding of 53BP2 and DNA to p53 is mutually exclusive in the case of GADD45, p21, Bax, and PIG3. Both pro-apoptotic and non-apoptotic response elements were competed off p53 by 53BP2 with no indication of a ternary complex.
Collapse
Affiliation(s)
- Henning Tidow
- Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
45
|
Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z. Structural basis of DNA recognition by p53 tetramers. Mol Cell 2006; 22:741-753. [PMID: 16793544 DOI: 10.1016/j.molcel.2006.05.015] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/18/2006] [Accepted: 05/10/2006] [Indexed: 12/28/2022]
Abstract
The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.
Collapse
Affiliation(s)
- Malka Kitayner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100
| | - Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100
| | - Dov Rabinovich
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100
| | - Lihi Shaulov
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | - Tali E Haran
- Department of Biology, Technion, Technion City, Haifa 32000, Israel.
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100.
| |
Collapse
|
46
|
Abstract
The p53 tumor suppressor protein binds to DNA as a dimer of dimers to regulate transcription of genes that mediate responses to cellular stress. We have prepared a cross-linked trapped p53 core domain dimer bound to decamer DNA and have determined its structure by x-ray crystallography to 2.3A resolution. The p53 core domain subunits bind nearly symmetrically to opposite faces of the DNA in a head-to-head fashion with a loophelix motif making sequence-specific DNA contacts and bending the DNA by about 20 degrees at the site of protein dimerization. Protein subunit interactions occur over the central DNA minor groove and involve residues from a zinc-binding region. Analysis of tumor derived p53 mutations reveals that the dimerization interface represents a third hot spot for mutation that also includes residues associated with DNA contact and protein stability. Residues associated with p53 dimer formation on DNA are poorly conserved in the p63 and p73 paralogs, possibly contributing to their functional differences. We have used the dimeric protein-DNA complex to model a dimer of p53 dimers bound to icosamer DNA that is consistent with solution bending data and suggests that p53 core domain dimer-dimer contacts are less frequently mutated in human cancer than intra-dimer contacts.
Collapse
|
47
|
Veprintsev DB, Freund SMV, Andreeva A, Rutledge SE, Tidow H, Cañadillas JMP, Blair CM, Fersht AR. Core domain interactions in full-length p53 in solution. Proc Natl Acad Sci U S A 2006; 103:2115-9. [PMID: 16461914 PMCID: PMC1413758 DOI: 10.1073/pnas.0511130103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 consists of four 393-residue chains, each of which has two natively unfolded (N- and C-terminal) and two folded (core and tetramerization) domains. Their structural organization is poorly characterized as the protein tends to aggregate, has defied crystallization, and is at the limits of NMR studies. We first stabilized the protein by mutation to make it more suitable for extended study and then acquired NMR spectra on full-length protein and various combinations of shorter domain constructs. The NMR spectrum (15N,1H transverse relaxation optimized spectroscopy) of full-length p53 was close to that expected from the sum of the spectra of isolated individual domains. However, patterns of changes in chemical shifts revealed unexpected interactions between the core domains. We used the NMR data as constraints in docking algorithms and found a previously uncharacterized self-complementary surface for the association of core domains into dimers within the tetrameric complex. Binding to DNA requires about a 70 degrees rotation to break those subunit interactions and form the known protein:protein interface in the p53-DNA complex. We verified the interactions by the effects of mutation on DNA binding. Spectroscopic, biophysical, and mutational data conspired to give a picture of the p53 tetramer as a dimer of loosely tethered core dimers of appropriate symmetry to be poised to bind target DNA.
Collapse
Affiliation(s)
- Dmitry B. Veprintsev
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Stefan M. V. Freund
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Antonina Andreeva
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Stacey E. Rutledge
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Henning Tidow
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - José Manuel Pérez Cañadillas
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Caroline M. Blair
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Alan R. Fersht
- Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|