1
|
Leung MY, Tang MC, Cheng SC, Chen Z, Lai SL, Tang WK, Chan MY, Ko CC, Yam VWW. Molecular Design and Synthetic Approaches for the Realization of Multichannel Radiative Decay Pathways in Gold(III) Complexes and Their Applications in Organic Light-Emitting Devices. J Am Chem Soc 2024; 146:30901-30912. [PMID: 39475630 DOI: 10.1021/jacs.4c09207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
A unique class of tridentate diaryltriazine ligand-containing gold(III) complexes with thermally activated delayed fluorescence (TADF) and/or thermally stimulated delayed phosphorescence (TSDP) properties has been designed and synthesized. With a simple structural modification on the coordination of carbazole moiety in the monodentate ligand, a large spectral shift of ∼160 nm (ca. 4900 cm-1) spanning from sky blue to red emissions has been demonstrated in solid-state thin films. Three-state or four-state models have been employed in fitting the emission lifetimes of the gold(III) complexes at various temperatures. The findings clearly indicate the presence of three emitting states, S1, T1, and T1', suggesting the coexistence of TADF, phosphorescence, and TSDP. Notably, a minor structural change in the donor moiety between phenylcarbazolyl and diphenylaminoaryl has been demonstrated to turn on/off the TSDP, resulting in TADF-TSDP-phosphorescence or TADF-phosphorescence emitters. The TADF and/or TSDP properties have also been supported by temperature-dependent ultrafast transient absorption studies, with the direct observation of reverse intersystem crossing (RISC) and reverse internal conversion (RIC) and the determination of the activation parameters and excited state dynamics. Solution-processed and vacuum-deposited organic light-emitting devices (OLEDs) have been prepared, in which sky blue emitting devices based on 5 exhibit an operational lifetime LT70 ∼ 5 times longer than the previously reported sky blue emitting analogue that shows only TSDP property. These results have provided valuable insights into the manipulation of the excited states via rational molecular design toward the realization of gold(III)-based TSDP and/or TADF materials with multiple radiative decay pathways that show enhanced radiative decay rate constants (kr) for practical OLED applications.
Collapse
Affiliation(s)
- Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok 999077, Hong Kong
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
| | - Wai Kit Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok 999077, Hong Kong
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok 999077, Hong Kong
| |
Collapse
|
2
|
Zeng C, Li Y, Chen T, Wu W, Chen Z. Unraveling the Mechanisms of the Formations and Transformations of Metal-Ligand Charge Transfer States in [Ru(tpy) 2] 2+*: Consequences of Jahn-Teller Conical Intersections and the Pseudo-Jahn-Teller Effect. J Phys Chem A 2024. [PMID: 39513928 DOI: 10.1021/acs.jpca.4c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work investigates Jahn-Teller conical intersections (CoIns) and the pseudo-Jahn-Teller effect on the formations and transformations of the low-lying singlet metal-ligand charge transfer (1MLCT) excited states during the ultrafast evolution process of photoexcited [Ru(tpy)2]2+* (tpy = 2,2':6',2″-terpyridine). Longuet-Higgins' geometric phase analyses indicate that the potential energy surface (PES) crossing between charge transfer states 1MLCT1 and 1MLCT2 is a CoIn, originating from the change in diabatic Hamiltonian matrix elements around the CoIn. Moreover, an E⊗(b1 + b2) Jahn-Teller distortion can occur around the Franck-Condon and minimal energy CoIn (MECI) configurations, causing the molecule to distort spontaneously from the high-symmetry D2d configuration to C2v symmetry configurations that are close to it. Furthermore, the pseudo-Jahn-Teller effect can cause the molecule to distort further from C2v to C1 geometries since the former is a second-order saddle point on the whole dimensional PES but the latter is a true minimum. Eight minima in total are symmetrically distributed around the MECI. These minima are connected by the interligand electron transfer, the charge transfer, and the butterfly-like conformational inversion reactions, all of which have extremely small energy barriers.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tengwei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Talbot JJ, Cheshire TP, Cotton SJ, Houle FA, Head-Gordon M. The Role of Spin-Orbit Coupling in the Linear Absorption Spectrum and Intersystem Crossing Rate Coefficients of Ruthenium Polypyridyl Dyes. J Phys Chem A 2024; 128:7830-7842. [PMID: 39231027 DOI: 10.1021/acs.jpca.4c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The successful use of molecular dyes for solar energy conversion requires efficient charge injection, which in turn requires the formation of states with sufficiently long lifetimes (e.g., triplets). The molecular structure elements that confer this property can be found empirically, however computational predictions using ab initio electronic structure methods are invaluable to identify structure-property relations for dye sensitizers. The primary challenge for simulations to elucidate the electronic and nuclear origins of these properties is a spin-orbit interaction which drives transitions between electronic states. In this work, we present a computational analysis of the spin-orbit corrected linear absorption cross sections and intersystem crossing rate coefficients for a derivative set of phosphonated tris(2,2'-bipyridine)ruthenium(2+) dye molecules. After sampling the ground state vibrational distributions, the predicted linear absorption cross sections indicate that the mixture between singlet and triplet states plays a crucial role in defining the line shape of the metal-to-ligand charge transfer bands in these derivatives. Additionally, an analysis of the intersystem crossing rate coefficients suggests that transitions from the singlet into the triplet manifolds are ultrafast with rate coefficients on the order of 1013 s-1 for each dye molecule.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas P Cheshire
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen J Cotton
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Frances A Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Chatterjee P, Mishra R, Chawla S, Sonkar AK, De AK, Patra AK. Dual Photoreactive Ternary Ruthenium(II) Terpyridyl Complexes: A Comparative Study on Visible-Light-Induced Single-Step Dissociation of Bidentate Ligands and Generation of Singlet Oxygen. Inorg Chem 2024; 63:14998-15015. [PMID: 39092885 DOI: 10.1021/acs.inorgchem.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Avinash Kumar Sonkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Xu X, Marlton SJP, Flint KL, Hudson RJ, Keene FR, Hall CR, Smith TA. Photophysical Studies of Helicate and Mesocate Double-Stranded Dinuclear Ru(II) Complexes. J Phys Chem A 2024. [PMID: 38640443 DOI: 10.1021/acs.jpca.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.
Collapse
Affiliation(s)
- Xinyue Xu
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kate L Flint
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Rohan J Hudson
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - F Richard Keene
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Christopher R Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - Trevor A Smith
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Yu Q, Li X, Shen C, Yu Z, Guan J, Zheng J. Blue-Shifted and Broadened Fluorescence Enhancement by Visible and Mode-Selective Infrared Double Excitations. J Phys Chem A 2024; 128:2912-2922. [PMID: 38572812 DOI: 10.1021/acs.jpca.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.
Collapse
Affiliation(s)
- Qirui Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chengzhen Shen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zeng C, Li Y, Zheng H, Ren M, Wu W, Chen Z. Nature of ultrafast dynamics in the lowest-lying singlet excited state of [Ru(bpy) 3] 2. Phys Chem Chem Phys 2024; 26:6524-6531. [PMID: 38329237 DOI: 10.1039/d3cp03806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work presents mechanisms to rationalize the nature of ultrafast photochemical and photophysical processes on the first singlet metal-ligand charge transfer state (1MLCT1) of the [Ru(bpy)3]2+ complex. The 1MLCT1 state is the lowest-lying singlet excited state and the most important intermediate in the early evolution of photoexcited [Ru(bpy)3]2+*. The results obtained from simple but interpretable theoretical models show that the 1MLCT1 state can be very quickly formed via both direct photo-excitation and internal conversions and then can efficiently relax to its equilibrium geometry in ca. 5 fs. The interligand electron transfer (ILET) on the potential energy surface of the 1MLCT1 state is also extremely fast, with a rate constant of ca. 1.38 × 1013 s-1. The ultrafast ILET implies that the excited electron can dynamically delocalize over the three bpy ligands, despite the fact that the excited electron may be localized on either one of the three ligands at the equilibrium geometries of the three symmetric equivalent minima. Since rapid ILET essentially suggests delocalization, the long-standing controversy in inorganic photophysics-whether the excited electron is localized or delocalized-may therefore be calmed down to some extent.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Hangjing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Mingxing Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
8
|
Dunbar MN, Steinke SJ, Piechota EJ, Turro C. Differences in Photophysical Properties and Photochemistry of Ru(II)-Terpyridine Complexes of CH 3CN and Pyridine. J Phys Chem A 2024; 128:599-610. [PMID: 38227956 DOI: 10.1021/acs.jpca.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A series of 22 Ru(II) complexes of the type [Ru(tpy)(L)(L')]n+, where tpy is the tridentate ligand 2,2';6,2″-terpyridine, L represents bidentate ligands with varying electron-donating ability, and L' is acetonitrile (1a-11a) or pyridine (1b-11b), were investigated. The dissociation of acetonitrile occurs from the 3MLCT state in 1a-11a, such that it does not require the population of a 3LF state. Electrochemistry and spectroscopic data demonstrate that the ground states of these series do not differ significantly. Franck-Condon line-shape analysis of the 77 K emission data shows no significant differences between the emitting 3MLCT states in both series. Arrhenius analysis of the temperature dependence of 3MLCT lifetimes shows that the energy barrier (Ea) to thermally populating a 3LF state from a lower energy 3MLCT state is significantly higher in the pyridine than in the CH3CN series, consistent with the photostability of complexes 1b-11b, which do not undergo pyridine photodissociation under our experimental conditions. Importantly, these results demonstrate that ligand photodissociation of pyridine in 1b-11b does not take place directly from the 3MLCT state, as is the case for 1a-11a. These findings have potential impact on the rational design of complexes for a number of applications, including photochemotherapy, dye-sensitized solar cells, and photocatalysis.
Collapse
Affiliation(s)
- Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Zhang S, Schnable D, Elgin J, Ung G, Wu Y. Enhanced circularly polarized luminescence dissymmetry of [Ru(bpy) 3] 2+ complexes in a 3D chiral framework: a study of transparent thin films. Chem Commun (Camb) 2023; 59:12867-12870. [PMID: 37817643 DOI: 10.1039/d3cc04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Circularly polarized luminescence (CPL) plays an important role in the development of advanced optical devices. However, the design of CPL-active materials with a decent dissymmetry factor is still challenging. Here, we report CPL-active transparent thin films made from optically active ruthenium complexes [Ru(bpy)3]2+ embedded in chiral inorganic frameworks. Due to the unique chiral-in-chiral combination, the obtained [Ru(bpy)3][Zn2(C2O4)3] displays CPL activity with a dissymmetry factor of 5 × 10-3. The CPL measurements show that the luminescence dissymmetry factor can be effectively enhanced by one order of magnitude when an optically active [Ru(bpy)3]2+ complex is incorporated into a chiral inorganic framework compared to its solution form. This study not only emphasizes the potential of constructing CPL-active thin films with coordination polymers but also points out the importance of introducing extra chiral environment to improve the CPL effect.
Collapse
Affiliation(s)
- Songwei Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - David Schnable
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs Mansfield, Connecticut 06269-3060, USA.
| | - Jocelyn Elgin
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs Mansfield, Connecticut 06269-3060, USA.
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Ng BY, Zhou ZJ, Liu TT, Yoskamtorn T, Li G, Wu TS, Soo YL, Wu XP, Tsang SCE. Photo-Induced Active Lewis Acid-Base Pairs in a Metal-Organic Framework for H 2 Activation. J Am Chem Soc 2023; 145:19312-19320. [PMID: 37611205 PMCID: PMC10485891 DOI: 10.1021/jacs.3c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 08/25/2023]
Abstract
The establishment of active sites as the frustrated Lewis pair (FLP) has recently attracted much attention ranging from homogeneous to heterogeneous systems in the field of catalysis. Their unquenched reactivity of Lewis acid and base pairs in close proximity that are unable to form stable adducts has been shown to activate small molecules such as dihydrogen heterolytically. Herein, we show that grafted Ru metal-organic framework-based catalysts prepared via N-containing linkers are rather catalytically inactive for H2 activation despite the application of elevated temperatures. However, upon light illumination, charge polarization of the anchored Ru bipyridine complex can form a transient Lewis acid-base pair, Ru+-N- via metal-to-ligand charge transfer, as confirmed by time-dependent density functional theory (TDDFT) calculations to carry out effective H2-D2 exchange. FTIR and 2-D NMR endorse the formation of such reactive intermediate(s) upon light irradiation.
Collapse
Affiliation(s)
- Bryan
Kit Yue Ng
- Department
of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
| | - Zi-Jian Zhou
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Ting-Ting Liu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | | | - Guangchao Li
- Department
of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
| | - Tai-Sing Wu
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Yun-Liang Soo
- Department
of Physics, National Tsing Hua University, Hsin-chu 30013, Taiwan
| | - Xin-Ping Wu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | | |
Collapse
|
11
|
Kitzmann WR, Bertrams MS, Boden P, Fischer AC, Klauer R, Sutter J, Naumann R, Förster C, Niedner-Schatteburg G, Bings NH, Hunger J, Kerzig C, Heinze K. Stable Molybdenum(0) Carbonyl Complex for Upconversion and Photoredox Catalysis. J Am Chem Soc 2023. [PMID: 37478053 DOI: 10.1021/jacs.3c03832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Alexander C Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Klauer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Sutter
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Nicolas H Bings
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
12
|
Jones RW, Auty AJ, Wu G, Persson P, Appleby MV, Chekulaev D, Rice CR, Weinstein JA, Elliott PIP, Scattergood PA. Direct Determination of the Rate of Intersystem Crossing in a Near-IR Luminescent Cr(III) Triazolyl Complex. J Am Chem Soc 2023. [PMID: 37224437 DOI: 10.1021/jacs.3c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 μs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.
Collapse
Affiliation(s)
- Robert W Jones
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Alexander J Auty
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Guanzhi Wu
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Martin V Appleby
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
13
|
Schüssler L, Israil RGE, Hütchen P, Thiel WR, Diller R, Riehn C. Ultrafast spectroscopy of Ru II polypyridine complexes in the gas phase and the liquid phase: [Ru(2,2'-bipyridine) 2(nicotinamide) 2] 2. Phys Chem Chem Phys 2023; 25:4899-4914. [PMID: 36722394 DOI: 10.1039/d2cp03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
[Ru(bipyridine)2(nicotinamide)2]2+ (1) and its monoaqua-complex [Ru(bipyridine)2(nicotinamide)(H2O)]2+ (2) were spectroscopically studied for the first time in the gas phase by static and time resolved UV photodissociation spectroscopy, observing nicotinamide and H2O ligand dissociation for 1 and 2, respectively. Both processes and their ultrafast dynamics were investigated in parallel by transient absorption spectroscopy in aqueous solution. The latter data were newly acquired for the long-wavelength MLCT band excitation of 1 and provide novel ultrafast ligand dissociation results for 2, confirming the gas phase results, i.e., exclusive H2O cleavage over nicotinamide loss. Similar apparent time constants in the sub-ps and few ps ranges were obtained for 1 in both phases, whereas a larger time constant of ca. two hundreds of ps for the ground state recovery was observed exclusively in the solution phase. Our reaction scheme accounts for faster dissociation dynamics in the gas phase by energetical lowering of the 3MC vs. the 3MLCT states by lack of solvent stabilization of the latter. Based on the apparent time constants, we favour, for the solution dynamics, a fast bimodal vibrational deactivation in the 3MLCT/3MC manifolds and a slow dissociation obfuscated by the ground state recovery. This is substantiated by a similar reaction scheme proposed for the ultrafast dynamics of 2, resulting in a new assignment for transient absorption features with λ > 550 nm to the 3MC manifold, and a common kinetic description for 1 and 2. Computations at the TD-DFT/cc-PVTZ/MDF28 level support our spectroscopic findings and the suggested deactivation pathways.
Collapse
Affiliation(s)
- L Schüssler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany.
| | - R G E Israil
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.
| | - P Hütchen
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - W R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - R Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany.
| | - C Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany. .,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, D-67663 Kaiserslautern, Germany
| |
Collapse
|
14
|
Branching mechanism of photoswitching in an Fe(II) polypyridyl complex explained by full singlet-triplet-quintet dynamics. Commun Chem 2023; 6:7. [PMID: 36697805 PMCID: PMC9829715 DOI: 10.1038/s42004-022-00796-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)2]2+ (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant 3MLCT→3MC(3T2g)→3MC(3T1g)→5MC, and a minor 3MLCT→3MC(3T2g)→5MC component. (MLCT = metal-to-ligand charge transfer, MC = metal-centered). While the direct 3MLCT→5MC mechanism is considered as a relevant alternative, we show that it could only be operative, and thus lead to competing pathways, in the absence of 3MC states. The quintet state is populated on the sub-picosecond timescale involving non-exponential dynamics and coherent Fe-N breathing oscillations. The results are in agreement with the available time-resolved experimental data on Fe(II) polypyridines, and fully describe the photorelaxation dynamics.
Collapse
|
15
|
Eastham K, Scattergood PA, Chu D, Boota RZ, Soupart A, Alary F, Dixon IM, Rice CR, Hardman SJO, Elliott PIP. Not All 3MC States Are the Same: The Role of 3MC cis States in the Photochemical N ∧N Ligand Release from [Ru(bpy) 2(N ∧N)] 2+ Complexes. Inorg Chem 2022; 61:19907-19924. [PMID: 36450138 DOI: 10.1021/acs.inorgchem.2c03146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ruthenium(II) complexes feature prominently in the development of agents for photoactivated chemotherapy; however, the excited-state mechanisms by which photochemical ligand release operates remain unclear. We report here a systematic experimental and computational study of a series of complexes [Ru(bpy)2(N∧N)]2+ (bpy = 2,2'-bipyridyl; N∧N = bpy (1), 6-methyl-2,2'-bipyridyl (2), 6,6'-dimethyl-2,2'-bipyridyl (3), 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (4), 1-benzyl-4-(6-methylpyrid-2-yl)-1,2,3-triazole (5), 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl (6)), in which we probe the contribution to the promotion of photochemical N∧N ligand release of the introduction of sterically encumbering methyl substituents and the electronic effect of replacement of pyridine by 1,2,3-triazole donors in the N∧N ligand. Complexes 2 to 6 all release the ligand N∧N on irradiation in acetonitrile solution to yield cis-[Ru(bpy)2(NCMe)2]2+, with resultant photorelease quantum yields that at first seem counter-intuitive and span a broad range. The data show that incorporation of a single sterically encumbering methyl substituent on the N∧N ligand (2 and 5) leads to a significantly enhanced rate of triplet metal-to-ligand charge-transfer (3MLCT) state deactivation but with little promotion of photoreactivity, whereas replacement of pyridine by triazole donors (4 and 6) leads to a similar rate of 3MLCT deactivation but with much greater photochemical reactivity. The data reported here, discussed in conjunction with previously reported data on related complexes, suggest that monomethylation in 2 and 5 sterically inhibits the formation of a 3MCcis state but promotes the population of 3MCtrans states which rapidly deactivate 3MLCT states and are prone to mediating ground-state recovery. On the other hand, increased photochemical reactivity in 4 and 6 seems to stem from the accessibility of 3MCcis states. The data provide important insights into the excited-state mechanism of photochemical ligand release by Ru(II) tris-bidentate complexes.
Collapse
Affiliation(s)
- Katie Eastham
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Danny Chu
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Rayhaan Z Boota
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
16
|
Šrut A, Mai S, Sazanovich IV, Heyda J, Vlček A, González L, Záliš S. Nonadiabatic excited-state dynamics of ReCl(CO) 3(bpy) in two different solvents. Phys Chem Chem Phys 2022; 24:25864-25877. [PMID: 36279148 DOI: 10.1039/d2cp02981b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a study of excited-states relaxation of the complex ReCl(CO)3(bpy) (bpy = 2,2-bipyridine) using a nonadiabatic TD-DFT dynamics on spin-mixed potential energy surfaces in explicit acetonitrile (ACN) and dimethylsulfoxide (DMSO) solutions up to 800 fs. ReCl(CO)3(bpy) belongs to a group of important photosensitizers which show ultrafast biexponential subpicosecond fluorescence decay kinetics. The choice of solvents was motivated by the different excited-state relaxation dynamics observed in subpicosecond time-resolved IR (TRIR) experiments. Simulations of intersystem crossing (ISC) showed the development of spin-mixed states in both solvents. Transformation of time-dependent populations of spin-mixed states enabled to monitor the temporal evolution of individual singlet and triplet states, fitting of bi-exponential decay kinetics, and simulating the time-resolved fluorescence spectra that show only minor differences between the two solvents. Analysis of structural relaxation and solvent reorganization employing time-resolved proximal distribution functions pointed to the factors influencing the fluorescence decay time constants. Nonadiabatic dynamics simulations of time-evolution of electronic, molecular, and solvent structures emerge as a powerful technique to interpret time-resolved spectroscopic data and ultrafast photochemical reactivity.
Collapse
Affiliation(s)
- Adam Šrut
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Jan Heyda
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
| |
Collapse
|
17
|
Ito A, Iwamura M, Sakuda E. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
19
|
Chettri A, Cole HD, Roque JA, Schneider KRA, Yang T, Cameron CG, McFarland SA, Dietzek-Ivanšić B. Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. J Phys Chem A 2022; 126:1336-1344. [PMID: 35179905 PMCID: PMC8903189 DOI: 10.1021/acs.jpca.1c09968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TLD1433 is the first ruthenium (Ru)-based photodynamic therapy (PDT) agent to advance to clinical trials and is currently in a phase II study for treating nonmuscle bladder cancer with PDT. Herein, we present a photophysical study of TLD1433 and its derivative TLD1633 using complex, biologically relevant solvents to elucidate the excited-state properties that are key for biological activity. The complexes incorporate an imidazo [4,5-f][1,10]phenanthroline (IP) ligand appended to α-ter- or quaterthiophene, respectively, where TLD1433 = [Ru(4,4'-dmb)2(IP-3T)]Cl2 and TLD1633 = [Ru(4,4'-dmb)2(IP-4T)]Cl2 (4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine; 3T = α-terthiophene; 4T = α-quaterthiophene). Time-resolved transient absorption experiments demonstrate that the excited-state dynamics of the complexes change upon interaction with biological macromolecules (e.g., DNA). In this case, the accessibility of the lowest-energy triplet intraligand charge-transfer (3ILCT) state (T1) is increased at the expense of a higher-lying 3ILCT state. We attribute this behavior to the increased rigidity of the ligand framework upon binding to DNA, which prolongs the lifetime of the T1 state. This lowest-lying state is primarily responsible for O2 sensitization and hence photoinduced cytotoxicity. Therefore, to gain a realistic picture of the excited-state kinetics that underlie the photoinduced function of the complexes, it is necessary to interrogate their photophysical dynamics in the presence of biological targets once they are known.
Collapse
Affiliation(s)
- Avinash Chettri
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany,Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Houston D. Cole
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019, USA
| | - John A. Roque
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019, USA,The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, NC 27402, USA
| | - Kilian R. A. Schneider
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany,Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Tingxiang Yang
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany,Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Colin G. Cameron
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019, USA
| | - Sherri A. McFarland
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019, USA
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany,Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
20
|
Kupfer S, Wächtler M, Guthmuller J. Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Kupfer
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat Institute of Physical Chemistry Helmholtzweg 1 07743 Jena GERMANY
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology: Leibniz-Institut fur Photonische Technologien Functional Interfaces GERMANY
| | - Julien Guthmuller
- Gdansk University of Technology: Politechnika Gdanska Institute of Physics and Computer Science POLAND
| |
Collapse
|
21
|
Pižl M, Hunter BM, Sazanovich IV, Towrie M, Gray HB, Záliš S, Vlček A. Excitation-Wavelength-Dependent Photophysics of d 8d 8 Di-isocyanide Complexes. Inorg Chem 2021; 61:2745-2759. [PMID: 34905688 DOI: 10.1021/acs.inorgchem.1c02645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades. Visible light irradiation prepares the 1dσ*pσ state that, after one or two (sub)picosecond relaxation steps, undergoes 70-1300 ps intersystem crossing to 3dσ*pσ, which is faster for the more flexible dimen complexes. UV-excited 1,3dπpσ states decay with (sub)picosecond kinetics through a manifold of high-lying triplet and mixed-spin states to 3dσ*pσ with lifetimes in the range of 6-19 ps (316 nm) and 19-43 ps (375 nm, Ir only), bypassing 1dσ*pσ. Most excited-state conversion and some relaxation steps are accompanied by direct decay to the ground state that is especially pronounced for the most flexible long/eclipsed Rh(dimen) conformer.
Collapse
Affiliation(s)
- Martin Pižl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Bryan M Hunter
- Rowland Institute at Harvard, Cambridge, Massachusetts 02142, United States
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Chemistry, Queen Mary University of London, E1 4NS London, U.K
| |
Collapse
|
22
|
Ahoulou S, Vilà N, Pillet S, Carteret C, Schaniel D, Walcarius A. Multi-stimuli Photo and Redox-active Nanostructured Mesoporous Silica Films on Transparent Electrodes. Chemphyschem 2021; 22:2464-2477. [PMID: 34708493 DOI: 10.1002/cphc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels. Further derivatization of the bpy'-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2 (bpy')]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) F e L S b p y 2 b p y ' 2 + species to paramagnetic (S=1/2) oxidized F e L S b p y 2 b p y ' 3 + species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) F e H S b p y 2 b p y ' 2 + excited state. [Fe(bpy)2 (bpy')]2+ -functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.
Collapse
Affiliation(s)
- Samuel Ahoulou
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France.,Université de Lorraine, CRM2 UMR 7036, 54000, Nancy, France
| | - Neus Vilà
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Cédric Carteret
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Alain Walcarius
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| |
Collapse
|
23
|
Chettri A, Kruse JH, Kumar Jha K, Dröge L, Romanenko I, Neumann C, Kupfer S, Turchanin A, Rau S, Schacher FH, Dietzek B. A Molecular Photosensitizer in a Porous Block Copolymer Matrix-Implications for the Design of Photocatalytically Active Membranes. Chemistry 2021; 27:17049-17058. [PMID: 34636457 PMCID: PMC9291506 DOI: 10.1002/chem.202102377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 11/12/2022]
Abstract
Recently, porous photocatalytically active block copolymer membranes were introduced, based on heterogenized molecular catalysts. Here, we report the integration of the photosensitizer, i. e., the light absorbing unit in an intermolecular photocatalytic system into block copolymer membranes in a covalent manner. We study the resulting structure and evaluate the orientational mobility of the photosensitizer as integral part of the photocatalytic system in such membranes. To this end we utilize transient absorption anisotropy, highlighting the temporal reorientation of the transition dipole moment probed in a femtosecond pump‐probe experiment. Our findings indicate that the photosensitizer is rigidly bound to the polymer membrane and shows a large heterogeneity of absolute anisotropy values as a function of location probed within the matrix. This reflects the sample inhomogeneity arising from different protonation states of the photosensitizer and different intermolecular interactions of the photosensitizers within the block copolymer membrane scaffold.
Collapse
Affiliation(s)
- Avinash Chettri
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e.V., Albert Einstein Straße 9, 07747, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jan-Hendrik Kruse
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Keshav Kumar Jha
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e.V., Albert Einstein Straße 9, 07747, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Lara Dröge
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e.V., Albert Einstein Straße 9, 07747, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iuliia Romanenko
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert Einstein Allee 11, 89081, Ulm, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e.V., Albert Einstein Straße 9, 07747, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
24
|
Farrow GA, Quick M, Kovalenko SA, Wu G, Sadler A, Chekulaev D, Chauvet AAP, Weinstein JA, Ernsting NP. On the intersystem crossing rate in a Platinum(II) donor-bridge-acceptor triad. Phys Chem Chem Phys 2021; 23:21652-21663. [PMID: 34580688 DOI: 10.1039/d1cp03471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rates of ultrafast intersystem crossing in acceptor-bridge-donor molecules centered on Pt(II) acetylides are investigated. Specifically, a Pt(II) trans-acetylide triad NAP--Pt--Ph-CH2-PTZ [1], with acceptor 4-ethynyl-N-octyl-1,8-naphthalimide (NAP) and donor phenothiazine (PTZ), is examined in detail. We have previously shown that optical excitation in [1] leads to a manifold of singlet charge-transfer states, S*, which evolve via a triplet charge-transfer manifold into a triplet state 3NAP centered on the acceptor ligand and partly to a charge-separated state 3CSS (NAP--Pt-PTZ+). A complex cascade of electron transfer processes was observed, but intersystem crossing (ISC) rates were not explicitly resolved due to lack of spin selectivity of most ultrafast spectroscopies. Here we revisit the question of ISC with a combination and complementary analysis of (i) transient absorption, (ii) ultrafast broadband fluorescence upconversion, FLUP, which is only sensitive to emissive states, and (iii) femtosecond stimulated Raman spectroscopy, FSR. Raman resonance conditions allow us to observe S* and 3NAP exclusively by FSR, through vibrations which are pertinent only to these two states. This combination of methods enabled us to extract the intersystem crossing rates that were not previously accessible. Multiple timescales (1.6 ps to ∼20 ps) are associated with the rise of triplet species, which can now be assigned conclusively to multiple ISC pathways from a manifold of hot charge-transfer singlet states. The analysis is consistent with previous transient infrared spectroscopy data. A similar rate of ISC, up to 20 ps, is observed in the trans-acetylide NAP--Pt--Ph [2] which maintains two acetylide groups across the platinum center but lacks a donor unit, whilst removal of one acetylide group in mono-acetylide NAP--Pt-Cl [3] leads to >10-fold deceleration of the intersystem crossing process. Our work provides insight on the intersystem crossing dynamics of the organo-metallic complexes, and identifies a general method based on complementary ultrafast spectroscopies to disentangle complex spin, electronic and vibrational processes following photoexcitation.
Collapse
Affiliation(s)
- G A Farrow
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - M Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - S A Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - G Wu
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A Sadler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - D Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A A P Chauvet
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - J A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
25
|
Chettri A, Schneider KRA, Cole HD, Roque JA, Cameron CG, McFarland SA, Dietzek B. String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. J Phys Chem A 2021; 125:6985-6994. [PMID: 34370485 DOI: 10.1021/acs.jpca.1c04900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We explore the photophysical properties of a family of Ru(II) complexes, Ru-ip-nT, designed as photosensitizers (PSs) for photodynamic therapy (PDT). The complexes incorporate a 1H-imidazo[4,5-f][1,10]-phenanthroline (ip) ligand appended to one or more thiophene rings. One of the complexes studied herein, Ru-ip-3T (known as TLD1433), is currently in phase II human clinical trials for treating bladder cancer by PDT. The potent photocytotoxicity of Ru-ip-3T is attributed to a long-lived intraligand charge-transfer triplet state. The accessibility of this state changes upon varying the length (n) of the oligothiophene substituent. In this paper, we highlight the impact of n on the ultrafast photoinduced dynamics in Ru-ip-nT, leading to the formation of the function-determining long-lived state. Femtosecond time-resolved transient absorption combined with resonance Raman data was used to map the excited-state relaxation processes from the Franck-Condon point of absorption to the formation of the lowest-energy triplet excited state, which is a triplet metal-to-ligand charge-transfer excited state for Ru-ip-0T-1T and an oligothienyl-localized triplet intraligand charge-transfer excited state for Ru-ip-2T-4T. We establish the structure-activity relationships with regard to changes in the excited-state dynamics as a function of thiophene chain length, which alters the photophysics of the complexes and presumably impacts the photocytotoxicity of these PSs.
Collapse
Affiliation(s)
- Avinash Chettri
- Department Functional Interfaces, Leibniz-Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Kilian R A Schneider
- Department Functional Interfaces, Leibniz-Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - John A Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States.,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz-Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
26
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
27
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
28
|
Cheshire TP, Houle FA. Ruthenium Dye Excitations and Relaxations in Natural Sunlight. J Phys Chem A 2021; 125:4365-4372. [PMID: 34003654 DOI: 10.1021/acs.jpca.1c02386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solar harvesting devices using dyes convert the sun's energy to usable forms. The photophysics involved are generally investigated using time-resolved spectroscopic experiments with femtosecond to nanosecond resolution. We show that a kinetic framework constructed from transient and linear absorption measurements of metal-ligand charge transfer states for a set of ruthenium complexes in solution can be used to simulate the steady-state dynamics of dyes adsorbed on a substrate under diffuse solar radiation. Even though the intensity of sunlight is relatively low, double excitations to higher excited states can occur. The steady-state populations show that the dyes' triplet state is the main species present besides the ground state. While small, these persistent excited populations can influence reactivity over the extended periods of time that the systems operate. The results show that non-radiative and optical events (dye-1 s-1) within the singlet manifold and from the triplet state exhibit a dependence on ligand substituents.
Collapse
Affiliation(s)
- Thomas P Cheshire
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Frances A Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| |
Collapse
|
29
|
Ultrafast excited state dynamics and light-switching of [Ru(phen) 2(dppz)] 2+ in G-quadruplex DNA. Commun Chem 2021; 4:68. [PMID: 36697709 PMCID: PMC9814642 DOI: 10.1038/s42004-021-00507-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
The triplet metal to ligand charge transfer (3MLCT) luminescence of ruthenium (II) polypyridyl complexes offers attractive imaging properties, specifically towards the development of sensitive and structure-specific DNA probes. However, rapidly-deactivating dark state formation may compete with 3MLCT luminescence depending on different DNA structures. In this work, by combining femtosecond and nanosecond pump-probe spectroscopy, the 3MLCT relaxation dynamics of [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline, dppz = dipyridophenazine) in two iconic G-quadruplexes has been scrutinized. The binding modes of stacking of dppz ligand on the terminal G-quartet fully and partially are clearly identified based on the biexponential decay dynamics of the 3MLCT luminescence at 620 nm. Interestingly, the inhibited dark state channel in ds-DNA is open in G-quadruplex, featuring an ultrafast picosecond depopulation process from 3MLCT to a dark state. The dark state formation rates are found to be sensitive to the content of water molecules in local G-quadruplex structures, indicating different patterns of bound water. The unique excited state dynamics of [Ru(phen)2(dppz)]2+ in G-quadruplex is deciphered, providing mechanistic basis for the rational design of photoactive ruthenium metal complexes in biological applications.
Collapse
|
30
|
Nazari Haghighi Pashaki M, Choi TK, Rohwer EJ, Feurer T, Duhme-Klair AK, Gawelda W, Cannizzo A. Unveiling the origin of photo-induced enhancement of oxidation catalysis at Mo(VI) centres of Ru(II)-Mo(VI) dyads. Chem Commun (Camb) 2021; 57:4142-4145. [PMID: 33908495 DOI: 10.1039/d1cc00750e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced oxidation-enhancement in biomimetic bridged Ru(ii)-Mo(vi) photo-catalyst is unexpectedly photo-activated in ps timescales. One-photon absorption generates an excited state where both photo-oxidized and photo-reduced catalytic centres are activated simultaneously and independently.
Collapse
Affiliation(s)
| | - Tae-Kyu Choi
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Egmont J Rohwer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland.
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland.
| | | | - Wojciech Gawelda
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain. and Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus Cantoblanco, 28049 Madrid, Spain and Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznan, Poland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland.
| |
Collapse
|
31
|
Li K, Chen Y, Wang J, Yang C. Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
33
|
Li K, Tong GSM, Yuan J, Ma C, Du L, Yang C, Kwok WM, Phillips DL, Che CM. Excitation-Wavelength-Dependent and Auxiliary-Ligand-Tuned Intersystem-Crossing Efficiency in Cyclometalated Platinum(II) Complexes: Spectroscopic and Theoretical Studies. Inorg Chem 2020; 59:14654-14665. [PMID: 32806020 DOI: 10.1021/acs.inorgchem.0c01192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the factors affecting the intersystem-crossing (ISC) rate constant (kISC) of transition-metal complexes is crucial to material design with tailored photophysical properties. Most of the works on ISC to date focused on the influence by the chromophoric ligand and the understanding of the ISC efficiency were mainly drawn from the steady-state fluorescence to phosphorescence intensity ratio and ground-state calculations, with only a few high-level calculations on kISC that take excited-state structural change and solvent reorganization into account for quantitative comparisons with the experimental data. In this work, a series of [Pt(thpy)X)]+ complexes were prepared [Hthpy = 2-(2'-thienyl)pyridine, where X = auxiliary ligands] and characterized by both steady-state and time-resolved luminescence spectroscopies. A panel of auxiliary ligands with varying σ-donating/π-accepting character have been used. For comparison, analogues of [Pt(ppy)(P^P)]+ (Hppy = 2-phenylpyridine and P^P = diphosphino ligand) were also examined. The [Pt(thpy)(P^P)]+ complexes exhibit dual fluorescence-phosphorescence emission, with their ISC rate constants varied with the electronic characteristics of the auxiliary ligand: the more electron-donating ligand induces faster ISC from the S1 excited state to the triplet manifold. Density functional theory (DFT)/time-dependent DFT calculations of kISC(S1→T2) at the optimized excited-state geometries give excellent quantitative agreement with the femtosecond time-resolved fluorescence measurements; it was revealed that the more electron-donating auxiliary ligand increases metal contributions to both occupied and virtual orbitals and decreases the energy gap of the coupling excited states, leading to a decrease in the activation energy and an increase in spin-orbit coupling. Furthermore, the ISC rate constants of [Pt(thpy)(P^P)]+ complexes are found to depend on the excitation wavelengths. The deviation from Kasha-Vavilov's rule upon photoexcitation at λexc < 350 nm is due to the ultrafast S2 → T2 and S2 → T3 ISCs, as demonstrated by the calculated τISC < 100 fs, giving hints as to why S2 → S1 internal conversion (τIC ∼ ps) is not competitive with this hyper-ISC.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.,Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jia Yuan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chensheng Ma
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen 518055, People's Republic of China
| |
Collapse
|
34
|
Sánchez-Murcia PA, Nogueira JJ, Plasser F, González L. Orbital-free photophysical descriptors to predict directional excitations in metal-based photosensitizers. Chem Sci 2020; 11:7685-7693. [PMID: 32864087 PMCID: PMC7425079 DOI: 10.1039/d0sc01684e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/02/2022] Open
Abstract
The development of dye-sensitized solar cells, metalloenzyme photocatalysis or biological labeling heavily relies on the design of metal-based photosensitizes with directional excitations. Directionality is most often predicted by characterizing the excitations manually via canonical frontier orbitals. Although widespread, this traditional approach is, at the very least, cumbersome and subject to personal bias, as well as limited in many cases. Here, we demonstrate how two orbital-free photophysical descriptors allow an easy and straightforward quantification of the degree of directionality in electron excitations using chemical fragments. As proof of concept we scrutinize the effect of 22 chemical modifications on the archetype [Ru(bpy)3]2+ with a new descriptor coined "substituent-induced exciton localization" (SIEL), together with the concept of "excited-electron delocalization length" (EEDL n ). Applied to quantum ensembles of initially excited singlet and the relaxed triplet metal-to-ligand charge-transfer states, the SIEL descriptor allows quantifying how much and whereto the exciton is promoted, as well as anticipating the effect of single modifications, e.g. on C-4 atoms of bpy units of [Ru(bpy)3]2+. The general applicability of SIEL and EEDL n is further established by rationalizing experimental trends through quantification of the directionality of the photoexcitation. We thus demonstrate that SIEL and EEDL descriptors can be synergistically employed to design improved photosensitizers with highly directional and localized electron-transfer transitions.
Collapse
Affiliation(s)
- Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
| | - Juan J Nogueira
- Department of Chemistry and Institute for Advanced Research in Chemistry , Universidad Autónoma de Madrid , Madrid , 28049 , Spain
| | - Felix Plasser
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , UK
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
- Vienna Research Platform for Accelerating Photoreaction Discovery , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria
| |
Collapse
|
35
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
36
|
Melnikov AA, Pozdnyakov IP, Chekalin SV, Glebov EM. Direct measurement of ultrafast intersystem crossing time for the PtIVBr62− complex. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Cheshire TP, Brennaman MK, Giokas PG, Zigler DF, Moran AM, Papanikolas JM, Meyer GJ, Meyer TJ, Houle FA. Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations. J Phys Chem B 2020; 124:5971-5985. [DOI: 10.1021/acs.jpcb.0c03110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas P. Cheshire
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - M. Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul G. Giokas
- Coherent Inc., Santa Clara, California 95054, United States
| | - David F. Zigler
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John M. Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frances A. Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Vorobyev V, Budkina DS, Tarnovsky AN. Femtosecond Excited-State Dynamics and Nitric Oxide Photorelease in a Prototypical Ruthenium Nitrosyl Complex. J Phys Chem Lett 2020; 11:4639-4643. [PMID: 32397714 DOI: 10.1021/acs.jpclett.0c01105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excited-state relaxation of a prototypical ruthenium nitrosyl complex (pentachloronitrosylruthenate) in water is studied by means of ultrafast dispersed, broadband transient absorption spectroscopy. Excitation pulses (duration, 40-70 fs) utilized at seven different wavelengths in the range from 675 to 335 nm populated excited electronic states of different orbital nature. The second excited singlet state of πNO* nature relaxes into the lowest triplet 3πNO* state in 100 fs via the 1d-d intermediate (lowest excited singlet) state with ca. 80 fs lifetime. The 3πNO* lifetime is 3.2 ps, and all three states are inert toward NO release, which happens in less than 200 fs from higher excited states. The vibrational coherences observed are attributed to the Jahn-Teller effect in the 1πNO* state and nitric oxide loss and provide important insights into the nature of the reaction coordinate in the course of the ultrafast excited-state relaxation dynamics.
Collapse
Affiliation(s)
- Vasily Vorobyev
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Darya S Budkina
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
39
|
Moll J, Wang C, Päpcke A, Förster C, Resch‐Genger U, Lochbrunner S, Heinze K. Green-Light Activation of Push-Pull Ruthenium(II) Complexes. Chemistry 2020; 26:6820-6832. [PMID: 32162414 PMCID: PMC7318647 DOI: 10.1002/chem.202000871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Synthesis, characterization, electrochemistry, and photophysics of homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2 ]2+ (22+ ) and [Ru(cpmp)(ddpd)]2+ (32+ ) bearing the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+ ) or two (22+ ) electron-deficient dipyridyl ketone fragments as electron-accepting sites enabling intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LL'CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 22+ shows 3 MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3 MLCT lifetime of 477 ns, whereas 32+ is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited 3 MC state potential energy surface. This study highlights the importance of the excited-state energies and geometries for the actual excited-state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light-sensitized thiol-ene click reaction.
Collapse
Affiliation(s)
- Johannnes Moll
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Christoph Förster
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
40
|
Päpcke A, Friedrich A, Lochbrunner S. Revealing the initial steps in homogeneous photocatalysis by time-resolved spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:153001. [PMID: 31801126 DOI: 10.1088/1361-648x/ab5ed1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalysis attracts currently intense research since it can provide efficient routes for generating solar fuels and allows to apply sunlight for an environmentally friendly synthesis of valuable chemical compounds. Accordingly, in future photocatalysis may contribute significantly to a sustainable economy. However, up to now photocatalysis has made it only into some niche applications. The reasons are manifold including too low yields, insufficient stability, and scarce availability of the precious metals and rare earths used in most cases. The design of better systems is the goal of many research activities. They call for a detailed knowledge of the individual steps and the microscopic mechanisms. Time-resolved spectroscopy is a powerful tool to improve our understanding of the individual steps of a photocatalytic process and of the efficiencies and losses associated with them. This allows to address specific weaknesses of the components of a photocatalytic system and to pursue a rational design of the corresponding compounds. In this review an overview is given about what insights can be gained by time-resolved spectroscopy referring mostly to our own results while it has to be stressed that many other groups are also highly successfully working in this area. We restrict ourselves to homogeneous systems which are often easier to analyze and focus on the primary steps occurring after optical excitation. This includes intramolecular relaxation and intersystem crossing in the photosensitizer as well as the first electron transfer step resulting from the interaction of the sensitizer with other components of the system. Ultrafast pump-probe spectroscopy turns out to be particularly helpful in analyzing new photosensitizers based on abundant metals, i.e. copper and iron. These sensitizers can suffer from short lifetimes of the metal-to-ligand charge transfer states which are typically involved in the intermolecular charge transfer processes. The latter are investigated on the pico- to microsecond timescale by quenching experiments making use of a streak camera and by pump-probe spectroscopy applying a YAG-laser system for excitation. The experiments with the streak camera allow to discriminate between oxidative and reductive pathways and to determine the corresponding bimolecular quenching rates which are compared to their diffusion limit to obtain a measure for the quenching efficiency. By applying transient absorption spectroscopy, it is furthermore possible to observe appearing charge transfer products and to determine their concentrations. In this way the efficiency of the electron transfer itself can be deduced and the relevance of lossy quenching events can be estimated.
Collapse
Affiliation(s)
- Ayla Päpcke
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | | | | |
Collapse
|
41
|
Jacquet M, Uriarte LM, Lafolet F, Boggio-Pasqua M, Sliwa M, Loiseau F, Saint-Aman E, Cobo S, Royal G. All Visible Light Switch Based on the Dimethyldihydropyrene Photochromic Core. J Phys Chem Lett 2020; 11:2682-2688. [PMID: 32182072 DOI: 10.1021/acs.jpclett.0c00408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two photoswitchable compounds that can operate under visible light irradiation are prepared and investigated using spectroscopic and computational studies. These all-visible systems are based on the dimethyldihydropyrene (DHP)/cyclophanediene (CPD) photochromic couple connected either to a bipyridine (bpy) unit or to a (tris(bpy)ruthenium(II)) complex through a pyridinium bridge. In these compounds, the DHP to CPD isomerization and the reverse CPD to DHP conversion can be triggered by illumination with red (>630 nm) and blue (460 nm) lights, respectively. The unambiguous and reversible response of these systems triggered by visible light make them potential candidates for biological purposes and electronic devices.
Collapse
Affiliation(s)
- Margot Jacquet
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| | - Lucas M Uriarte
- Université Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - Frédéric Lafolet
- Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 Rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Martial Boggio-Pasqua
- Université Toulouse 3, CNRS, LCPQ UMR 5626, 118 Route de Narbonne, 31062 Toulouse, France
| | - Michel Sliwa
- Université Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Eric Saint-Aman
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| | - Saioa Cobo
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
| | - Guy Royal
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
42
|
Munshi MU, Martens J, Berden G, Oomens J. Vibrational Spectra of the Ruthenium-Tris-Bipyridine Dication and Its Reduced Form in Vacuo. J Phys Chem A 2020; 124:2449-2459. [PMID: 32119552 PMCID: PMC7104246 DOI: 10.1021/acs.jpca.0c00888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Experimental IR spectra
in the 500–1850 cm–1 fingerprint frequency
range are presented for the isolated, gaseous
redox pair ions [Ru(bpy)3]2+, and [Ru(bpy)3]+, where bpy = 2,2′-bipyridine. Spectra
are obtained using the FELIX free-electron laser and a quadrupole
ion trap mass spectrometer. The 2+ complex is generated by electrospray
ionization and the charge-reduced radical cation is produced by gas-phase
one-electron reduction in an ion–ion reaction with the fluoranthene
radical anion. Experimental spectra are compared against computed
spectra predicted by density functional theory (DFT) using different
levels of theory. For the closed-shell [Ru(bpy)3]2+ ion, the match between experimental and computed IR spectra is very
good; however, this is not the case for the charge-reduced [Ru(bpy)3]+ ion, which demands additional theoretical investigation.
When using the hybrid B3LYP functional, we observe that better agreement
with experiment is obtained upon reduction of the Hartree–Fock
exact-exchange contribution from 20% to about 14%. Additionally, calculations
using the M06 functional appear to be promising in terms of the prediction
of IR spectra; however, it is unclear if the correct electronic structure
is obtained. The M06 and B3LYP functionals indicate that the added
electron in [Ru(bpy)3]+ is delocalized over
the three bpy ligands, while the long-range corrected LC-BLYP and
the CAM-B3LYP functionals show it to be more localized on a single
bpy ligand. Although these latter levels of theory fail to reproduce
the experimentally observed IR frequencies, one may argue that the
unusually large bandwidths observed in the spectrum are due to the
fluxional character of a complex with the added electron not symmetrically
distributed over the ligands. The experimental IR spectra presented
here can serve as benchmark for further theoretical investigations.
Collapse
Affiliation(s)
- Musleh Uddin Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
43
|
Mai S, González L. Unconventional two-step spin relaxation dynamics of [Re(CO) 3(im)(phen)] + in aqueous solution. Chem Sci 2019; 10:10405-10411. [PMID: 32110331 PMCID: PMC6988600 DOI: 10.1039/c9sc03671g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Changes of molecular spin are ubiquitous in chemistry and biology. Among spin flip processes, one of the fastest is intersystem crossing (ISC) in transition metal complexes. Here, we investigate the spin relaxation dynamics and emission spectrum of [Re(CO)3(im)(phen)]+ (im = imidazole, phen = phenanthroline) using extensive full-dimensional excited-state dynamics simulations in explicit aqueous solution. Contrary to what has been observed in other transition metal complexes, the transition from the singlet to triplet states occurs via a two-step process, with clearly separable electronic and nuclear-driven components with two different time scales. The initially excited electronic wave function is a "molecular spin-orbit wave packet" that evolves almost instantaneously, with an 8 fs time constant, into an approximate 25 : 75 singlet-to-triplet equilibrium. Surprisingly, this ISC process is an order of magnitude faster than it was previously documented for this and other rhenium(i) carbonyl diimine complexes from emission spectra. Simulations including explicit laser field interactions evidence that few-cycle UV laser pulses are required to follow the creation and evolution of such molecular spin-orbit wave packets. The analysis of the dynamics also reveals a retarded ISC component, with a time constant of 420 fs, which can be explained invoking intramolecular vibrational energy redistribution. The emission spectrum is shown to be characterized by ISC convoluted with internal conversion and vibrational relaxation. These results provide fundamental understanding of ultrafast intersystem crossing in transition metal complexes.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| |
Collapse
|
44
|
Valentine AJS, Li X. Toward the evaluation of intersystem crossing rates with variational relativistic methods. J Chem Phys 2019; 151:084107. [PMID: 31470709 DOI: 10.1063/1.5113815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additional calculations on a more strongly spin-orbit-coupled [UO2Cl4]2- complex further illustrate the strengths of this method. This procedure will be valuable in the estimation of intersystem crossing rates within strongly spin-coupled species.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
47
|
Fang YG, Peng LY, Liu XY, Fang WH, Cui G. QM/MM nonadiabatic dynamics simulation on ultrafast excited-state relaxation in osmium(II) compounds in solution. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Liske A, Wallbaum L, Hölzel T, Föller J, Gernert M, Hupp B, Ganter C, Marian CM, Steffen A. Cu–F Interactions between Cationic Linear N-Heterocyclic Carbene Copper(I) Pyridine Complexes and Their Counterions Greatly Enhance Blue Luminescence Efficiency. Inorg Chem 2019; 58:5433-5445. [DOI: 10.1021/acs.inorgchem.9b00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - Markus Gernert
- Faculty for Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Benjamin Hupp
- Faculty for Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | | | | | - Andreas Steffen
- Faculty for Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
49
|
|
50
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|