• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643716)   Today's Articles (399)   Subscriber (50633)
For: Evans PA, Lawler MJ. Rhodium-Catalyzed Propargylic Substitution: A Divergent Approach to Propargylic and Allenyl Sulfonamides. Angew Chem Int Ed Engl 2006;45:4970-2. [PMID: 16819738 DOI: 10.1002/anie.200600615] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Number Cited by Other Article(s)
1
Talasila DS, Queensen MJ, Barnes-Flaspoler M, Jurkowski K, Stephenson E, Rabus JM, Bauer EB. Ferrocenium Cations as Catalysts for the Etherification of Cyclopropyl-Substituted Propargylic Alcohols: Ene-yne Formation and Mechanistic Insights. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
2
Samanta S, Hajra A. Divergent Synthesis of Allenylsulfonamide and Enaminonesulfonamide via In(III)-Catalyzed Couplings of Propargylamine and N-Fluorobenzenesulfonimide. J Org Chem 2018;83:13157-13165. [PMID: 30346168 DOI: 10.1021/acs.joc.8b01882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
3
Sakata K, Nishibayashi Y. Mechanism and reactivity of catalytic propargylic substitution reactions via metal–allenylidene intermediates: a theoretical perspective. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01382e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Roy R, Saha S. Scope and advances in the catalytic propargylic substitution reaction. RSC Adv 2018;8:31129-31193. [PMID: 35548716 PMCID: PMC9085608 DOI: 10.1039/c8ra04481c] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022]  Open
5
Ruchti J, Carreira EM. Rh-Catalyzed Stereospecific Synthesis of Allenes from Propargylic Benzoates and Arylboronic Acids. Org Lett 2016;18:2174-6. [PMID: 27088306 DOI: 10.1021/acs.orglett.6b00793] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Sirotkina J, Grigorjeva L, Jirgensons A. Synthesis of Alkynyl-Glycinols by Lewis Acid Catalyzed Propargylic Substitution of Bis-Imidates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
7
Shainyan BA, Danilevich YS. Highly unsaturated trifluoromethanesulfonamide derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015050012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
8
On the mechanism of Pd(0)-catalyzed coupling of propargylic carbonates with N-tosylhydrazones: density functional theory survey. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Shainyan BA, Danilevich YS. N-Propargyltrifluoromethanesulfonamide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014050212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
10
Shu XZ, Schienebeck CM, Song W, Guzei IA, Tang W. Transfer of chirality in the rhodium-catalyzed intramolecular [5+2] cycloaddition of 3-acyloxy-1,4-enynes (ACEs) and alkynes: synthesis of enantioenriched bicyclo[5.3.0]decatrienes. Angew Chem Int Ed Engl 2013;52:13601-5. [PMID: 24150975 PMCID: PMC3867534 DOI: 10.1002/anie.201306919] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 12/12/2022]
11
Shu XZ, Schienebeck CM, Song W, Guzei IA, Tang W. Transfer of Chirality in the Rhodium-Catalyzed Intramolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
12
Shainyan BA, Danilevich YS. N-allenyl-N-benzyltrifl uoromethanesulfonamide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013080034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
13
Shainyan BA, Chipanina NN, Oznobikhina LP, Danilevich YS. The structure and proton affinity of N-benzyl-N-(allenyl)trifluoromethanesulfonamide: FT-IR, DFT and ab initio study, NBO analysis. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
14
Ma HW, Lin YC, Huang SL. Sequential Allenylidene/Vinylidene Cyclization for Stereoselective Construction of Bicyclic Carbocycles from Propargyl Alcohol. Org Lett 2012;14:3846-9. [DOI: 10.1021/ol301493n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
15
Chen ZS, Duan XH, Wu LY, Ali S, Ji KG, Zhou PX, Liu XY, Liang YM. Palladium-Catalyzed Coupling of Propargylic Carbonates with N-Tosylhydrazones: Highly Selective Synthesis of Substituted Propargylic N-Sulfonylhydrazones and Vinylallenes. Chemistry 2011;17:6918-21. [DOI: 10.1002/chem.201100248] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/15/2011] [Indexed: 11/08/2022]
16
Ding CH, Hou XL. Catalytic Asymmetric Propargylation. Chem Rev 2011;111:1914-37. [DOI: 10.1021/cr100284m] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
17
Widaman AK, Rath NP, Bauer EB. New five-coordinate Ru(ii) phosphoramidite complexes and their catalytic activity in propargylic amination reactions. NEW J CHEM 2011. [DOI: 10.1039/c1nj20520j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
18
Yu S, Ma S. How easy are the syntheses of allenes? Chem Commun (Camb) 2011;47:5384-418. [DOI: 10.1039/c0cc05640e] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
19
Chatterjee PN, Roy S. Propargylic Activation Across a Heterobimetallic Ir−Sn Catalyst: Nucleophilic Substitution and Indene Formation with Propargylic Alcohols. J Org Chem 2010;75:4413-23. [DOI: 10.1021/jo100189z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
20
Detz RJ, Hiemstra H, van Maarseveen JH. Catalyzed Propargylic Substitution. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900877] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
21
Miyake Y, Uemura S, Nishibayashi Y. Catalytic Propargylic Substitution Reactions. ChemCatChem 2009. [DOI: 10.1002/cctc.200900214] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
22
Ljungdahl N, Kann N. Übergangsmetallkatalysierte propargylische Substitutionen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804114] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
23
Ljungdahl N, Kann N. Transition-Metal-Catalyzed Propargylic Substitution. Angew Chem Int Ed Engl 2009;48:642-4. [DOI: 10.1002/anie.200804114] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
24
Nishibayashi Y, Miyake Y, Uemura S. Development of Novel Catalytic Reactions via Ruthenium-Allenylidene Complexes as Key Intermediates. J SYN ORG CHEM JPN 2009. [DOI: 10.5059/yukigoseikyokaishi.67.437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
25
Yoshimatsu M, Otani T, Matsuda S, Yamamoto T, Sawa A. Scandium-Catalyzed Carbon−Carbon Bond-Forming Reactions of 3-Sulfanyl- and 3-Selanylpropargyl Alcohols. Org Lett 2008;10:4251-4. [DOI: 10.1021/ol801533p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
26
Brabander JKD, Liu B, Qian M. Au(I)- and Pt(II)-Catalyzed Cycloetherification of ω-Hydroxy Propargylic Esters. Org Lett 2008;10:2533-6. [DOI: 10.1021/ol8008107] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
27
Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Copper-Catalyzed Asymmetric Propargylic Substitution Reactions of Propargylic Acetates with Amines. Angew Chem Int Ed Engl 2008;47:3781-3. [DOI: 10.1002/anie.200800276] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
28
Detz R, Delville M, Hiemstra H, van Maarseveen J. Enantioselective Copper-Catalyzed Propargylic Amination. Angew Chem Int Ed Engl 2008;47:3777-80. [DOI: 10.1002/anie.200705264] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
29
Detz R, Delville M, Hiemstra H, van Maarseveen J. Enantioselective Copper-Catalyzed Propargylic Amination. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705264] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
30
Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Copper-Catalyzed Asymmetric Propargylic Substitution Reactions of Propargylic Acetates with Amines. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800276] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
31
Maurer J, Sarkar B, Kaim W, Winter R, Záliš S. Towards New Organometallic Wires: Tetraruthenium Complexes Bridged by Phenylenevinylene and Vinylpyridine Ligands. Chemistry 2007;13:10257-72. [DOI: 10.1002/chem.200700459] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
32
Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. Bismuth-Catalyzed Direct Substitution of the Hydroxy Group in Alcohols with Sulfonamides, Carbamates, and Carboxamides. Angew Chem Int Ed Engl 2007;46:409-13. [PMID: 17146812 DOI: 10.1002/anie.200602909] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
33
Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. Bismuth-Catalyzed Direct Substitution of the Hydroxy Group in Alcohols with Sulfonamides, Carbamates, and Carboxamides. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602909] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
34
Evans DA, Nagorny P, Xu R. Ceric Ammonium Nitrate Promoted Oxidation of Oxazoles. Org Lett 2006;8:5669-71. [PMID: 17107099 DOI: 10.1021/ol0624530] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA