1
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wang C, Chu Y, Xiong D, Wang H, Hu M, Wang Q, Xu J, Deng F. Water-Induced Micro-Hydrophobic Effect Regulates Benzene Methylation in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202313974. [PMID: 37934010 DOI: 10.1002/anie.202313974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danfeng Xiong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Yu J, Li H, Ye M, Liu Z. A modified group contribution method for estimating thermodynamic parameters of methanol-to-olefins over a SAPO-34 catalyst. Phys Chem Chem Phys 2023; 25:21631-21639. [PMID: 37551429 DOI: 10.1039/d3cp01719b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Group contribution (GC) methods, a semi-empirical approach based on the additivity of guest molecular properties, are widely applied to obtain the thermodynamic properties of complex reaction networks. In molecular sieve catalyzed processes, however, the interaction between guest molecules and host active sites also affects thermodynamic properties. In this study, therefore, we propose a modified group contribution (mGC) method by considering the interaction between the groups of guest molecules and independent active site functional groups (IASFGs) in molecular sieves. The mGC method has been used to estimate the thermodynamic properties of guest molecules as well as elementary reactions for the initial stage of methanol to olefins (MTO) reaction over SAPO-34 molecular sieves. It shows that mGC is more accurate than the conventional GC (cGC) methods when compared with the reference data calculated by density functional theory (DFT), indicating that mGC provides an effective way for batch calculation of thermodynamic properties in molecular sieve catalyzed processes.
Collapse
Affiliation(s)
- Junyi Yu
- National Engineering Laboratory for Methanol-to-Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
- University of Chinese Academy of Sciences, 10049 Beijing, China
| | - Hua Li
- National Engineering Laboratory for Methanol-to-Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
| | - Mao Ye
- National Engineering Laboratory for Methanol-to-Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol-to-Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
- University of Chinese Academy of Sciences, 10049 Beijing, China
| |
Collapse
|
4
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Rao W, Tang X, Lin K, Xu X, Xia H, Jiang Y, Liu Z, Zheng A. Loading-Driven Diffusion Pathway Selectivity in Zeolites with Continuum Intersecting Channels. J Phys Chem Lett 2023; 14:3567-3573. [PMID: 37017545 DOI: 10.1021/acs.jpclett.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The diffusion processes in zeolites are important for heterogeneous catalysis. Herein, we show that unique zeolites with "continuum intersecting channels" (e.g., BEC, POS, and SOV), in which two intersections are proximal, are greatly significant to the diffusion process with spontaneous switching of the diffusion pathway under varied loading. At low loading, the synergy of strong adsorption sites and molecular reorientation in intersections contribute to almost exclusive molecular diffusion in smaller channels. With an increase in molecular loading, the adsorbates are transported preferentially in larger channels mainly due to the lower diffusion barrier inside continuum intersection channels. This work demonstrates the ability to adjust the prior diffusion pathway by controlling the molecular loading, which may be beneficial for the separation of the product and byproduct in heterogeneous catalysis.
Collapse
Affiliation(s)
- Wei Rao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hongqiang Xia
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
6
|
Shi Z, Bhan A. Metrics of Performance Relevant in Methanol-to-Hydrocarbons Catalysis. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Li X, Fan T, Wang Q, Shi T. A Mechanistic Study of Asymmetric Transfer Hydrogenation of Imines on a Chiral Phosphoric Acid Derived Indium Metal-Organic Framework. Molecules 2022; 27:molecules27238244. [PMID: 36500337 PMCID: PMC9738091 DOI: 10.3390/molecules27238244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A density functional theory (DFT) study is reported to examine the asymmetric transfer hydrogenation (ATH) of imines catalyzed by an indium metal-organic framework (In-MOF) derived from a chiral phosphoric acid (CPA). It is revealed that the imine and reducing agent (i.e., thiazoline) are simultaneously adsorbed on the CPA through H-bonding to form an intermediate, subsequently, a proton is transferred from thiazoline to imine. The transition state TS-R and TS-S are stabilized on the CPA via H-bonding. Compared to the TS-S, the TS-R has shorter H-bonding distances and longer C-H···π distances, it is more stable and experiences less steric hindrance. Consequently, the TS-R exhibits a lower activation barrier affording to the (R)-enantiomer within 68.1% ee in toluene. Imines with substituted groups such as -NO2, -F, and -OCH3 are used to investigate the substitution effects on the ATH. In the presence of an electron-withdrawing group like -NO2, the electrophilicity of imine is enhanced and the activation barrier is decreased. The non-covalent interactions and activation-strain model (ASM) analysis reveal that the structural distortions and the differential noncovalent interactions of TSs in a rigid In-MOF provide the inherent driving force for enantioselectivity. For -OCH3 substituted imine, the TS-S has the strongest steric hindrance, leading to the highest enantioselectivity. When the solvent is changed from toluene to dichloromethane, acetonitrile, and dimethylsulfoxide with increasing polarity, the activation energies of transition state increase whereas their difference decreases. This implies the reaction is slowed down and the enantioselectivity becomes lower in a solvent of smaller polarity. Among the four solvents, toluene turns out to be the best for the ATH. The calculated results in this study are in fairly good agreement with experimental observations. This study provides a mechanistic understanding of the reaction mechanism, as well as substitution and solvent effects on the activity and enantioselectivity of the ATH. The microscopic insights are useful for the development of new chiral MOFs toward important asymmetric reactions.
Collapse
Affiliation(s)
- Xu Li
- School of Light Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Correspondence: (X.L.); (Q.W.); (T.S.)
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qingji Wang
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Correspondence: (X.L.); (Q.W.); (T.S.)
| | - Tongfei Shi
- School of Light Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Correspondence: (X.L.); (Q.W.); (T.S.)
| |
Collapse
|
8
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
9
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Plessow PN, Enss AE, Huber P, Studt F. A new mechanistic proposal for the aromatic cycle of the MTO process based on a computational investigation for H-SSZ-13. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00021k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The paring mechanism of the aromatic cycle of the hydrocarbon pool is reinvestigated based on the heptamethylbenzenium cation adsorbed within H-SSZ-13 using quantum chemical calculations.
Collapse
Affiliation(s)
- Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Annika E. Enss
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp Huber
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Mortén M, Cordero-Lanzac T, Cnudde P, Redekop EA, Svelle S, van Speybroeck V, Olsbye U. Acidity effect on benzene methylation kinetics over substituted H-MeAlPO-5 catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
13
|
Magomedova MV, Afokin MI, Starozhitskaya AV, Galanova EG. Pilot Test of Olefin Synthesis from Dimethyl Ether in a Synthesis Gas Atmosphere. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria V. Magomedova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29, Leninsky prospekt, Moscow 119991, Russian Federation
| | - Mikhail I. Afokin
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29, Leninsky prospekt, Moscow 119991, Russian Federation
| | - Anastasiya V. Starozhitskaya
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29, Leninsky prospekt, Moscow 119991, Russian Federation
| | - Ekaterina G. Galanova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29, Leninsky prospekt, Moscow 119991, Russian Federation
| |
Collapse
|
14
|
Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: A review of recent advances. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124082. [PMID: 33069994 PMCID: PMC7530584 DOI: 10.1016/j.jhazmat.2020.124082] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 05/17/2023]
Abstract
Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland.
| |
Collapse
|
15
|
Stepwise or Concerted Mechanisms of Benzene Ethylation Catalyzed by Zeolites? Theoretical Analysis of Reaction Pathways. Catal Letters 2021. [DOI: 10.1007/s10562-021-03549-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Fečík M, Plessow PN, Studt F. Theoretical investigation of the side-chain mechanism of the MTO process over H-SSZ-13 using DFT and ab initio calculations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The side-chain mechanism of the methanol-to-olefins process over the H-SSZ-13 acidic zeolite was investigated using periodic density functional theory with corrections from highly accurate ab intio calculations on large cluster models.
Collapse
Affiliation(s)
- Michal Fečík
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
17
|
Noreen A, Li M, Fu Y, Amoo CC, Wang J, Maturura E, Du C, Yang R, Xing C, Sun J. One-Pass Hydrogenation of CO 2 to Multibranched Isoparaffins over Bifunctional Zeolite-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aqsa Noreen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Mingquan Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Yajie Fu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Cederick Cyril Amoo
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiayuan Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Elton Maturura
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Ce Du
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Ruiqin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Chuang Xing
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
18
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020. [DOI: 10.1002/cctc.202001188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hermenegildo Garcia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV) Universitat Politecnica de Valencia 46022 Valencia Spain
| |
Collapse
|
19
|
Bailleul S, Dedecker K, Cnudde P, Vanduyfhuys L, Waroquier M, Van Speybroeck V. Ab initio enhanced sampling kinetic study on MTO ethene methylation reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Wang C, Xu J, Deng F. Mechanism of Methanol‐to‐hydrocarbon Reaction over Zeolites: A solid‐state NMR Perspective. ChemCatChem 2020. [DOI: 10.1002/cctc.201901937] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
21
|
Xi Z, Zhou B, Yu Y, Jiang B, Liao Z, Wang J, Huang Z, Yang Y, Sun J, Yang Y. Enhancing low-temperature methane conversion on Zn/ZSM-5 in the presence of methanol by regulating the methanol-to-aromatics reaction pathway. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The co-reaction method provides an efficient strategy for methane conversion under mild conditions, which is of urgent importance for direct valorization of natural gas to liquid hydrocarbons.
Collapse
|
22
|
Deoxygenation mechanism of methyl butyrate on HZSM-5: A density functional theory study. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ferri P, Li C, Paris C, Vidal-Moya A, Moliner M, Boronat M, Corma A. Chemical and Structural Parameter Connecting Cavity Architecture, Confined Hydrocarbon Pool Species, and MTO Product Selectivity in Small-Pore Cage-Based Zeolites. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04588] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pau Ferri
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Chengeng Li
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Cecilia Paris
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
24
|
Bailleul S, Yarulina I, Hoffman AEJ, Dokania A, Abou-Hamad E, Chowdhury AD, Pieters G, Hajek J, De Wispelaere K, Waroquier M, Gascon J, Van Speybroeck V. A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion. J Am Chem Soc 2019; 141:14823-14842. [PMID: 31464134 PMCID: PMC6753656 DOI: 10.1021/jacs.9b07484] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(μ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites.
Collapse
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Alexander E J Hoffman
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Abhay Dokania
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , Core Laboratories , Thuwal , Saudi Arabia
| | - Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Giovanni Pieters
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Julianna Hajek
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Kristof De Wispelaere
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| |
Collapse
|
25
|
Bailleul S, Rogge SMJ, Vanduyfhuys L, Van Speybroeck V. Insight into the Role of Water on the Methylation of Hexamethylbenzene in H‐SAPO‐34 from First Principle Molecular Dynamics Simulations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM)Ghent University Technologiepark 46 Zwijnaarde B-9052 Belgium
| |
Collapse
|
26
|
Dimethyl Ether to Olefins over Modified ZSM-5 Based Catalysts Stabilized by Hydrothermal Treatment. Catalysts 2019. [DOI: 10.3390/catal9050485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reaction of dimethyl ether to olefin over HZSM-5/Al2O3 catalysts modified by Zr and Mg and stabilized by hydrothermal treatment has been studied. Regardless of the introduction method and the nature of the metal, the dependence of the key products selectivity on X(DME) over hydrothermally treated steady-state catalysts does not change, and the experimental points are described by the same curves. Metal introduction and the corresponding changes in the acid sites distribution do not change the ratio of main reaction rates, only the absolute values of the formation rate of the products are changed. Zr doping leads to the greatest activity in the DME conversion due to an equable decrease in the total acidity of the sample. On the other hand, the Mg-modified sample has a higher amount of weak acid sites, which reduces activity. At low DME conversion, methanol is one of the primary reaction products which formed from DME simultaneously with propylene in alkene cycle. At high DME conversion, the methanol acts as a main reagent which leads to ethylene formation in the arene cycle. Based on the results, the role of the metal in the reaction chemistry is considered and the mechanism of product formation from DME over steady-state catalyst is proposed, which describes both the participation of DME and the methanol produced.
Collapse
|
27
|
DeLuca M, Kravchenko P, Hoffman A, Hibbitts D. Mechanism and Kinetics of Methylating C6–C12 Methylbenzenes with Methanol and Dimethyl Ether in H-MFI Zeolites. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mykela DeLuca
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Pavlo Kravchenko
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander Hoffman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
28
|
Hwang A, Johnson BA, Bhan A. Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34. J Catal 2019. [DOI: 10.1016/j.jcat.2018.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Li X, Jiang J. Molecular design of chiral zirconium metal–organic frameworks for asymmetric transfer hydrogenation of imines. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00770a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two chiral zirconium metal–organic frameworks are designed with high enantioselectivity for asymmetric transfer hydrogenation of imines.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemical and Bimolecular Engineering
- National University of Singapore
- Singapore
| | - Jianwen Jiang
- Department of Chemical and Bimolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
30
|
Zhang W, Chen J, Xu S, Chu Y, Wei Y, Zhi Y, Huang J, Zheng A, Wu X, Meng X, Xiao F, Deng F, Liu Z. Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02164] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingrun Chen
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuchun Zhi
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jindou Huang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xinqiang Wu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangju Meng
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Fengshou Xiao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
31
|
Gao P, Xu J, Qi G, Wang C, Wang Q, Zhao Y, Zhang Y, Feng N, Zhao X, Li J, Deng F. A Mechanistic Study of Methanol-to-Aromatics Reaction over Ga-Modified ZSM-5 Zeolites: Understanding the Dehydrogenation Process. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03076] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pan Gao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Guodong Qi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Chao Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanxi Zhao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xingling Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
32
|
Li X, Jiang J. Methanol-to-olefin conversion in ABC-6 zeolite cavities: unravelling the role of cavity shape and size from density functional theory calculations. Phys Chem Chem Phys 2018. [PMID: 29528062 DOI: 10.1039/c8cp00572a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a density functional theory (DFT) study to investigate methanol-to-olefin (MTO) conversion in four types of ABC-6 zeolite cavities (cha, avl, aft and h1) by varying their shape and size. Based on a side-chain alkylation mechanism, the reaction energies and barriers of methylations, deprotonations and eliminations for hydrocarbon pool (HP) intermediates are calculated. In the cha cavity, methylations and eliminations are found to possess low barriers as attributed to the strong confinement effect of the elliptical and small cha cavity. The avl and aft cavities also exhibit low barriers of the first and second methylations, and similar barriers of eliminations for producing olefins as in cha. Due to the narrow shape and large size of the h1 cavity, most of the reaction barriers in h1 are the highest. The stabilities of HP species and transition states in the four cavities are quantified by the Gibbs energy profiles. It is found that aft with a wide dimension is favorable for the stability, especially for the charged HP species. The DFT calculation results reveal that the activity and selectivity of MTO conversion in zeolite cavities are strongly governed by the confinement effect, which depends on cavity shape and size. We also predict that zeolites with aft cavities might have good performance for MTO conversion.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemical and Bimolecular Engineering, National University of Singapore, 117576, Singapore.
| | | |
Collapse
|
33
|
Wang C, Wang Y, Xie Z. Understanding Zeolites Catalyzed Methanol-to-Olefins Conversion from Theoretical Calculations. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis; SINOPEC Shanghai Research Institute of Petrochemical Technology; Shanghai 201208 China
| | - Yangdong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis; SINOPEC Shanghai Research Institute of Petrochemical Technology; Shanghai 201208 China
| | - Zaiku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis; SINOPEC Shanghai Research Institute of Petrochemical Technology; Shanghai 201208 China
| |
Collapse
|
34
|
Ma H, Chen Y, Wei Z, Wang S, Qin Z, Dong M, Li J, Wang J, Fan W. Reaction Mechanism for Direct Cyclization of Linear C 5 , C 6 , and C 7 Alkenes over H-ITQ-13 Zeolite Investigated Using Density Functional Theory. Chemphyschem 2018; 19:496-503. [PMID: 29334171 DOI: 10.1002/cphc.201701020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Indexed: 11/09/2022]
Abstract
Although dienes or trienes have been shown to be possible precursors for cyclization, direct cyclization of alkenes or alkoxides has not been systematically studied yet. Thus, the reaction mechanism of cyclization of linear alkenes over H-ITQ-13 was investigated here by density functional theory considering dispersive interactions (DFT-D). The similar free energy of different linear alkoxides of the same carbon number suggests that they can co-exist in the H-ITQ-13 intersection at 673.15 K during the methanol to olefins (MTO) process. The formation of linear alkenes by olefins methylation with methoxyl groups (ZOCH3 ), trimethyloxonium ions (TMO+ ), and methanol are kinetically more favorable than by dimerization of olefins. Linear alkoxides or alkenes prefer direct cyclization to cycloalkanes rather than hydride transfer to diene. This study provides new insight into the alkene cyclization and aromatization mechanisms in MTO process.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanyan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Zhihong Wei
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Junfen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi, 030001, PR China), Fax: (+86) 351-4041153
| |
Collapse
|
35
|
Ma H, Chen Y, Wang S, Wei Z, Qin Z, Dong M, Li J, Fan W, Wang J. Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02047c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For MTO over H-ITQ-13, the alkene cycle takes priority over the aromatic one, giving a high selectivity to propene.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Yanyan Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Sen Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Zhihong Wei
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Mei Dong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Junfen Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- PR China
| |
Collapse
|
36
|
Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. J Catal 2017. [DOI: 10.1016/j.jcat.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Wang C, Xu J, Wang Q, Zhou X, Qi G, Feng N, Liu X, Meng X, Xiao F, Deng F. Host–Guest Interactions and Their Catalytic Consequences in Methanol to Olefins Conversion on Zeolites Studied by 13C–27Al Double-Resonance Solid-State NMR Spectroscopy. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Xu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Qiang Wang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xue Zhou
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Guodong Qi
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ningdong Feng
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaolong Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiangju Meng
- Department
of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Fengshou Xiao
- Department
of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Feng Deng
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
38
|
Catalytic cracking of acetic acid and its ketene intermediate over HZSM-5 catalyst: A density functional theory study. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Song B, Lo AY, Wang J. Theoretical study of olefin protonation reactions confined inside mordenite zeolite by energy decomposition analysis. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Song C, Chu Y, Wang M, Shi H, Zhao L, Guo X, Yang W, Shen J, Xue N, Peng L, Ding W. Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Martinez-Espin JS, De Wispelaere K, Westgård Erichsen M, Svelle S, Janssens TV, Van Speybroeck V, Beato P, Olsbye U. Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: Evidence of parallel reaction paths to toluene and diphenylmethane. J Catal 2017. [DOI: 10.1016/j.jcat.2017.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Govindasamy A, Markova VK, Genest A, Rösch N. Ethene hydrogenation vs. dimerization over a faujasite-supported [Rh(C2H4)2] complex. A computational study of mechanism. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02147f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DFT study allows one to understand the selectivity for ethene hydrogenation over dimerization by the well-characterized faujasite-supported [Rh(C2H4)2]+ complex.
Collapse
Affiliation(s)
- Agalya Govindasamy
- Institute of High Performance Computing
- Agency for Science
- Technology and Research
- Singapore 138632
- Singapore
| | - Velina K. Markova
- Institute of High Performance Computing
- Agency for Science
- Technology and Research
- Singapore 138632
- Singapore
| | - Alexander Genest
- Institute of High Performance Computing
- Agency for Science
- Technology and Research
- Singapore 138632
- Singapore
| | - Notker Rösch
- Institute of High Performance Computing
- Agency for Science
- Technology and Research
- Singapore 138632
- Singapore
| |
Collapse
|
43
|
Xu S, Zhi Y, Han J, Zhang W, Wu X, Sun T, Wei Y, Liu Z. Advances in Catalysis for Methanol-to-Olefins Conversion. ADVANCES IN CATALYSIS 2017. [DOI: 10.1016/bs.acat.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Wen Z, Yang D, Yang F, Wei Z, Zhu X. Methylation of toluene with methanol over HZSM-5: A periodic density functional theory investigation. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62523-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Liang T, Chen J, Qin Z, Li J, Wang P, Wang S, Wang G, Dong M, Fan W, Wang J. Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01771] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tingyu Liang
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jialing Chen
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangfeng Qin
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Junfen Li
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Pengfei Wang
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Sen Wang
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guofu Wang
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Mei Dong
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Weibin Fan
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Wang
- State Key Laboratory
of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
46
|
Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB. Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on H-ZSM-5. Angew Chem Int Ed Engl 2016; 55:12817-21. [DOI: 10.1002/anie.201607230] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Kristof Van der Borght
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Rakesh Batchu
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | | | | | - Joris W. Thybaut
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| |
Collapse
|
47
|
Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB. Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on H-ZSM-5. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kristof Van der Borght
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Rakesh Batchu
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | | | | | - Joris W. Thybaut
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| |
Collapse
|
48
|
Zhang M, Xu S, Wei Y, Li J, Wang J, Zhang W, Gao S, Liu Z. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62466-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Confinement effects in methanol to olefins catalysed by zeolites: A computational review. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1557-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Wang J, Wei Y, Li J, Xu S, Zhang W, He Y, Chen J, Zhang M, Zheng A, Deng F, Guo X, Liu Z. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01420d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An induction period and MCP+ formed in the methanol conversion have been observed successfully for the first time, indicating that the hydrocarbon pool (HCP) mechanism cannot be ruled out over H-ZSM-22.
Collapse
|