1
|
Tong Z, Dong S. Boat-to-boat conformation inversions of cyclobis[7,8-( para-quinodimethane)-3,7-(9-( p-tolyl)-9 H-carbazole)] in the neutral and tetracationic state. Chem Commun (Camb) 2024; 60:12766-12769. [PMID: 39400245 DOI: 10.1039/d4cc04517c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report the synthesis of macrocyclic cyclobis[7,8-(para-quinodimethane)-3,7-(9-(p-tolyl)-9H-carbazole)] CBQCz. We found that CBQCz showed temperature-dependent and four-electron oxidative conformation changes. Both CBQCz and CBQCz4+ possess boat-to-boat conformation inversions. The smaller inverted energy and less curved structure of CBQCz4+ are due to the conjugated effect of tetracations.
Collapse
Affiliation(s)
- Zekun Tong
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Shaoqiang Dong
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Han P, Duan Z, Shao M, Sessler JL, Lei C. Diphenylacetylene-Incorporating Octaphyrin: A Rigid Macrocycle with Readily Separable Conformational Isomers. Angew Chem Int Ed Engl 2024:e202413962. [PMID: 39183712 DOI: 10.1002/anie.202413962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/27/2024]
Abstract
An expanded carbaporphyrinoid analogue, octaphyrin(2,1,1,1,2,1,1,1), containing two rigid diphenylacetylene moieties is reported. In contrast to traditional pyrrolic macrocycles where flexible conformers coexist in dynamic equilibrium, this macrocycle exists as two separable, conformationally stable stereoisomers, denoted as 1A and 1B. The conformational effect of both conformers, as well as their protonated forms, were thoroughly studied using NMR spectroscopy, UV/Vis, and single crystal X-ray diffraction analyses. Importantly, heating conformer 1B leads to its irreversible conversion to 1A, whereas in its protonated form, 1A ⋅ 2MSA undergoes irreversible transformation to 1B ⋅ 2MSA at lower temperatures. These temperature-dependent features establish a foundation for developing new accumulated heat sensors, as demonstrated by the use of the present octaphyrins as a customized thermochromic indicator in steam sterilization. The present study thus underscores how the conformational rigidity of these new polypyrrolic macrocycles imparts properties that are distinct from historically flexible expanded porphyrinoids.
Collapse
Affiliation(s)
- Puren Han
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai, 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Sokolova AD, Platonov DN, Belyy AY, Salikov RF, Erokhin KS, Tomilov YV. The Antiaromatic Nucleophilic Substitution Reaction (S NAAr) in Cycloheptatrienyl-Anion Containing Zwitterions with a Möbius-Aromatic Intermediate. Org Lett 2024; 26:5877-5882. [PMID: 38958743 DOI: 10.1021/acs.orglett.4c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Antiaromatic nucleophilic substitution reactions in cycloheptatrienide pyridinium and phosphonium zwitterions with initial formation of a cycloheptatetraene intermediate are explored. The mechanism was supported by quantum chemical calculations, first-order reaction kinetics, and high-resolution mass spectrometry. The pyridinium zwitterion exhibited weak antiaromaticity, whereas the intermediate displayed Möbius aromaticity, as evidenced by nuclear independent chemical shift values and the shape of its HOMO. This study represents the eighth confirmed instance of a Möbius-aromatic organic species in its ground state.
Collapse
Affiliation(s)
- Alena D Sokolova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry N Platonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander Yu Belyy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Rinat F Salikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Kirill S Erokhin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Shukla P, Ambhore MD, Anand VG. Open shell (4 n + 2)π and closed shell 4 nπ planar core-modified decaphyrins. Chem Sci 2024; 15:6022-6027. [PMID: 38665541 PMCID: PMC11041311 DOI: 10.1039/d3sc05251f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/09/2024] [Indexed: 04/28/2024] Open
Abstract
Planar 44π and 46π core-modified decaphyrins with ten thiophene units have been synthesized from short thiophene oligomers. They have been structurally characterized by single crystal X-ray diffraction with further support from spectroscopic analysis and quantum chemical calculations. Our analysis revealed diradicaloid characteristics for 46π species in contrast to the closed shell property of the 44π congener. Further, 44π and 46π undergo reversible two-electron chemical oxidation, as observed by spectro-electrochemical measurements.
Collapse
Affiliation(s)
- Pragati Shukla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune 411008 Maharashtra India
| | - Madan D Ambhore
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune 411008 Maharashtra India
| | - Venkataramanarao G Anand
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune 411008 Maharashtra India
| |
Collapse
|
5
|
Varak P, Ravikanth M. Near-infrared absorbing nonaromatic core-modified meta-benzicalixhexaphyrin(1. 1. 1.1.1.1)s. Org Biomol Chem 2024; 22:2231-2240. [PMID: 38369870 DOI: 10.1039/d4ob00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Stable nonaromatic core-modified m-benzicalixhexaphyrins containing one m-phenylene ring, four pyrrole rings and one heterocyclic ring such as furan, thiophene, selenophene and telluorophene connected via four meso-sp2 carbons and two meso-sp3 carbons in a macrocyclic framework were synthesized. The m-benzitripyrrane dicarbinol was condensed with 16-heterocycle tripyrranes under mild acid-catalyzed and inert conditions followed by open-air oxidation with DDQ to obtain macrocycles in 2-5% yields. The presence of two -OH groups in the cis-orientation at two different meso-sp3 carbons, which are adjacent to the m-phenylene ring of the macrocycle, was confirmed through detailed 1D and 2D NMR studies. NMR studies indicated that the heterocyclic ring present across the m-phenylene ring prefers to be in the inverted conformation in these macrocycles. The macrocycles exhibited two intense absorption bands in the lower wavelength region of 320-580 nm and one broad absorption band that extended from the visible to NIR region, and the protonated derivatives of such macrocycles showed significant bathochromic shifts to the NIR region. Additionally, the electrochemical studies indicated that the macrocycles underwent easier oxidation due to their electron-rich nature. DFT studies revealed that the macrocycles adopted highly distorted conformation, which was consistent with experimental results.
Collapse
Affiliation(s)
- Pooja Varak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
6
|
Miwa K, Yokota T, Wang Q, Sakurai T, Fliegl H, Sundholm D, Shinokubo H. Metallaantiaromaticity of 10-Platinacorrole Complexes. J Am Chem Soc 2024; 146:1396-1402. [PMID: 38172072 PMCID: PMC10882971 DOI: 10.1021/jacs.3c10250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The aromaticity of cyclic π-conjugated organometallic compounds is known as metallaaromaticity. π-Conjugated metallacycles, such as metallabenzenes and metallapentalenes, have been investigated in order to understand the involvement of the d electrons from the metal center in the π-conjugated systems of the organic ligands. Here, we report the synthesis of Pd(II) 10-platinacorrole complexes with cyclooctadiene (COD) and norbornadiene (NBD) ligands. While the Pd(II) 10-platinacorrole COD complex adopts a distorted structure without showing appreciable antiaromaticity, the corresponding NBD complex exhibits a distinct antiaromatic character due to its highly planar conformation. Detailed density functional theory (DFT) calculations revealed that two d orbitals are involved in macrocyclic π-conjugation. We furthermore demonstrated that Craig-Möbius antiaromaticity is not present in the studied system. The synthesis of 10-platinacorroles enables a systematic comparison of the antiaromaticity and aromaticity of closely related porphyrin analogues, providing a better understanding of π-conjugation that involves d orbitals.
Collapse
Affiliation(s)
- Kazuki Miwa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan
| | - Tomoya Yokota
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan
| | - Qian Wang
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Takahiro Sakurai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan
| | - Heike Fliegl
- FIZ Karlsruhe─Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan
| |
Collapse
|
7
|
Wang C, Xu L, Rao Y, Yin B, Zhou M, Song J, Osuka A. Di(p-dibenzi)[40]decaphyrin(1.0.0.0.0.1.0.0.0.0) Pd II Complex: A Weakly Hückel 38π-Aromatic Macrocycle. Chem Asian J 2024; 19:e202300923. [PMID: 37985417 DOI: 10.1002/asia.202300923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Di(p-benzi)[40]decaphyrin(1.0.0.0.0.1.0.0.0.0) BF2 complex and tris(p-benzi)[60]pentadecaphyrin(1.0.0.0.0.1.0.0.0.0.1.0.0.0.0) BF2 complex were synthesized by Suzuki-Miyaura coupling of α,α'-diborylated tetrapyrrole BF2 -complex with 1,4-diiodobenzene. Bis-BF2 complex was converted to bis-PdII complex via its free base. Macrocycles bis-BF2 and tris-BF2 complex take Möbius topology but are nonaromatic, since the macrocyclic conjugation is disrupted by the locally aromatic 1,4-phenylene units. In contrast, bis-PdII complex is a weakly Hückel 38π-aromatic macrocycle as evinced by its red-shifted, enhanced, and structured Q-like bands and a small electrochemical HOMO-LUMO gap. Interestingly, one 1,4-pheylene part of bis-PdII complex takes a quinonoidal distorted structure and the other takes a usual benzene structure in a figure-eight conformation with Hückel topology.
Collapse
Affiliation(s)
- Chengwei Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
8
|
Tiwari S, Ravikanth M. Dibenzi Heteroheptaphyrin(2.0.1.1.1.1.0)s: Synthesis, Spectral, Redox and Theoretical Studies. Chem Asian J 2024; 19:e202300885. [PMID: 37950482 DOI: 10.1002/asia.202300885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Three examples of dibenzi heteroheptaphyrin(2.0.1.1.1.1.0)s were synthesized by condensing bis(phenylene ethene) based hexapyrrane with appropriate diol, 2,5-bis(α-hydroxy-α-arylmethyl) thiophene or selenophene in CH2 Cl2 under BF3 ⋅ OEt2 catalyzed inert atmosphere conditions followed by DDQ oxidation in open air. HR-MS analyses confirmed the identities of dibenzi heteroheptaphyrins. The DFT optimized structures revealed that dibenzi heteroheptaphyrins were highly distorted nonplanar macrocycles with two thiophene rings preferred to be in an inverted conformation. 1D & 2D NMR helped in deducing the molecular structures of dibenzi heteroheptaphyrins and supported their nonaromatic nature. The theoretical NMR calculations were carried which matched closely with the experimental NMR data. NMR studies also revealed that the π-delocaliztion was significantly altered in dibenzi heteroheptaphyrins compared to previously reported dibenzi hexaphyrins. The dibenzi heptaphyrins showed one sharp absorption band in 400-500 nm region and a broad band in the region of 600-800 nm which were bathochromically shifted in their diprotonated derivatives. The theoretical absorption calculations corroborate the slight hypsochromic shift of the broad absorption band in the lower energy region of dibenzi heptaphyrins compared to dibenzi hexaphyrins. The electrochemical studies revealed that the dibenzi heptaphyrins were easier to reduce but difficult to oxidize compared to dibenzi hexaphyrins.
Collapse
Affiliation(s)
- Shubham Tiwari
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | | |
Collapse
|
9
|
Abstract
The cis and trans structural isomers of di-p-benzidithiaoctaphyrins were synthesized by adopting two different synthetic routes using readily available precursors under acid-catalyzed conditions, and the isomers were separated using basic alumina column chromatography. 1D and 2D NMR spectroscopy were used to deduce the molecular structures of the macrocycles, which also helps to differentiate the cis isomer from the trans isomer. DFT studies revealed that both the cis and trans isomers adopt figure of eight conformations but exhibit clear differences in their structural features, and the trans isomer is more distorted than the cis isomer. Experimental and theoretical studies revealed that both the cis and trans isomers are nonaromatic stable macrocycles and show subtle differences in their structure, spectral and redox properties. The cis and trans isomers of di-p-benzidithiaoctaphyrin exhibit nonaromatic absorption features in the visible-NIR region, and electrochemical studies revealed their electron-rich nature. TD-DFT studies are in agreement with the experimental observations.
Collapse
Affiliation(s)
- Vratta Grover
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
10
|
Mahmood A, Dimitrova M, Sundholm D. Current-Density Calculations on Zn-Porphyrin 40 Nanorings. J Phys Chem A 2023; 127:7452-7459. [PMID: 37665662 PMCID: PMC10510378 DOI: 10.1021/acs.jpca.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Two porphyrinoid nanorings have been studied computationally. They were built by linking 40 Zn-porphyrin units with butadiyne bridges. The molecular structures belonging to the D40h point group were fully optimized with the Turbomole program at the density functional theory (DFT) level using the B3LYP functional and the def2-SVP basis sets. The aromatic character was studied at the DFT level by calculating the magnetically induced current-density (MICD) susceptibility using the GIMIC program. The neutral molecules are globally non-aromatic with aromatic Zn-porphyrin units. Charged nanorings could not be studied because almost degenerate frontier orbitals led to vanishing optical gaps for the cations. Since DFT calculations of the MICD are computationally expensive, we also calculated the MICD using three pseudo-π models. Appropriate pseudo-π models were constructed by removing the outer hydrogen atoms and replacing all carbon and nitrogen atoms with hydrogen atoms. The central Zn atom was either replaced with a beryllium atom or with two inner hydrogen atoms. Calculations with the computationally inexpensive pseudo-π models yielded qualitatively the same magnetic response as obtained in the all-electron calculations.
Collapse
Affiliation(s)
- Atif Mahmood
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Maria Dimitrova
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
11
|
Varak P, Sinha A, Ravikanth M. Synthesis and Properties of Nonaromatic meso-fused Heterobenzihomoporphyrin(2.1.1.1)s. Chem Asian J 2023; 18:e202300387. [PMID: 37440606 DOI: 10.1002/asia.202300387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Fluorene-based tripyrrane has been used as a fused precursor to synthesize three novel examples of nonaromatic meso-fused thia and selenabenzihomoporphyrin(2.1.1.1)s by condensing it with appropriate 2,5-bis(hydroxymethyl)aryl thiophene or selenophene under acid catalyzed conditions. The meso-fused heterobenzihomoporphyrins contain one fluorene unit, two pyrrole rings and one thiophene/selenophene ring connected via five meso-carbons in the macrocyclic framework. The macrocycles were thoroughly characterized by HR-MS, 1D and 2D NMR, absorption, cyclic voltammetry and DFT/TD-DFT studies. NMR, absorption, and DFT studies indicated the nonaromatic nature of meso-fused heterobenzihomoporphyrins. The macrocycles displayed one intense band at ∼380 nm along with a shoulder band at 450 nm and a broad band in the region of 590-850 nm which were bathochromically shifted in the monoprotonated derivatives and absorbed prominently in the NIR region with the peak maxima at ∼1035 nm. The electrochemical studies revealed that the macrocycles showed three well-defined oxidations and reductions, and TD-DFT studies corroborated experimental observations.
Collapse
Affiliation(s)
- Pooja Varak
- Department of Chemistry, Indian Institute of Technology Bombay, Owai, Mumbai, 400076, India
| | - Avisikta Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Owai, Mumbai, 400076, India
| | | |
Collapse
|
12
|
Tiwari S, Ravikanth M. Synthesis, Spectral, Redox and Theoretical Studies of Stable Nonaromatic Dicarba Dithia Hexaphyrin(2.0.1.1.1.0)s with Two Inverted Thiophenes. J Org Chem 2023. [PMID: 37276457 DOI: 10.1021/acs.joc.3c00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of dicarba dithia hexaphyrin(2.0.1.1.1.0)s containing two p-phenylene rings, two thiophene rings, and two pyrrole rings connected via five meso carbons were synthesized by condensing the key precursor, hexapyrrane, which was prepared over a sequence of steps, with the appropriate aromatic aldehyde under acid catalytic conditions followed by alumina chromatographic purification. Detailed one-dimensional (1D) and two-dimensional (2D) NMR studies revealed that the two thiophene rings were inverted and facing outward from the macrocyclic core. Interestingly, one of the inverted thiophene rings adopts a normal orientation in the protonated derivatives of macrocycles generated by addition of trifluoroacetic acid to the appropriate macrocyclic solution. The spectroscopic studies support the non-aromatic nature of macrocycles, and the macrocycles exhibit a distinct sharp band at ∼425 nm along with a broad band in the range of 550-1000 nm, which experienced a red shift with a clear color change in the protonated derivatives. The redox studies showed lower oxidation potentials, indicating their electron-rich nature. The density functional theoretical (DFT) studies showed that the hexaphyrins adopt oval-shaped structures, and time-dependent-DFT (TD-DFT) studies parallelly matched the experimental observations of macrocycles.
Collapse
Affiliation(s)
- Shubham Tiwari
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
13
|
Wang Q, Pyykkö J, Dimitrova M, Taubert S, Sundholm D. Current-density pathways in figure-eight-shaped octaphyrins. Phys Chem Chem Phys 2023; 25:12469-12478. [PMID: 37097103 DOI: 10.1039/d3cp01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We have calculated the current density induced by an external magnetic field in a set of figure-eight-shaped expanded porphyrinoids. The studied octaphyrins can be divided into three classes (N2, N4, and N6) based on the number of the inner hydrogen atoms of the pyrrole rings. Using the Runge-Kutta method, the current density is split into diatropic and paratropic contributions that are analyzed separately. The calculations show that one common ring current consists of two rather independent pathways. Each of them follows the outer side of the molecular frame of one half of the molecule and passes to the inner side of the frame on the other half. The ring-current pathways are similar to the ones for [12]infinitene. However, the current density of the octaphyrins is more complex having many branching points and pathways. Vertical through-space current-density pathways pass in the middle of the molecules through a plane that is parallel to the figure-eight-shaped view of the molecules when the magnetic field is perpendicular to the plane. The isolectronic N2 and the N4 dication sustain a weak paratropic ring current inside the molecule, which is also observed in the 1H NMR magnetic shielding constant of the inner hydrogen atoms. The diatropic current-density contribution dominates in the studied molecules. For the N4 and N6 molecules, the global current-density pathways are only diatropic and N6 sustains the strongest global diatropic current-density flux of 13.2 nA T-1.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| | - Jaakko Pyykkö
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| | - Maria Dimitrova
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| | - Stefan Taubert
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
| |
Collapse
|
14
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
15
|
Białek MJ, Hurej K, Furuta H, Latos-Grażyński L. Organometallic chemistry confined within a porphyrin-like framework. Chem Soc Rev 2023; 52:2082-2144. [PMID: 36852929 DOI: 10.1039/d2cs00784c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The world of modified porphyrins changed forever when an N-confused porphyrin (NCP), a porphyrin isomer, was first published in 1994. The replacement of one inner nitrogen with a carbon atom revolutionised the chemistry that one is able to perform within the coordination cavity. One could explore new pathways in the organometallic chemistry of porphyrins by forcing a carbon fragment from the ring or an inner substituent to sit close to an inserted metal ion. Since the NCP discovery, a series of modifications became available to tune the coordination properties of the cavity, introducing a fascinating realm of carbaporphyrins. The review surveys all possible carbatetraphyrins(1.1.1.1) and their spectacular coordination and organometallic chemistry.
Collapse
Affiliation(s)
- Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Karolina Hurej
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | |
Collapse
|
16
|
Terabayashi T, Kayahara E, Zhang Y, Mizuhata Y, Tokitoh N, Nishinaga T, Kato T, Yamago S. Synthesis of Twisted [n]Cycloparaphenylene by Alkene Insertion. Angew Chem Int Ed Engl 2023; 62:e202214960. [PMID: 36349975 DOI: 10.1002/anie.202214960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Mono-alkene-inserted [n]cycloparaphenylenes 1 [(ene)-[n]CPP] with n=6, 8, and 10, mono-ortho-phenylene-inserted [6]CPP 2, and di-alkene-insertved [n]CPP 3 [(ene)2 -[n]CPP] with n=4, 6, and 8 were synthesized by fusing CPP precursors and alkene or ortho- phenylene groups through coupling reactions. Single-crystal X-ray diffraction analyses reveal that the strips formed by the π-surfaces of 1 and 2 exhibited a Möbius topology in the solid state. While the Möbius topology in the parent 1 and 2 in solution was lost due to the free rotation of the paraphenylene unit even at low temperatures, ene-[6]CPP 4 with eight 1-pyrrolyl groups preserved the Möbius topology even in solution. Despite a twist, 1 has in-plane conjugation and possesses a unique size dependence of the electronic properties: namely, the opposite size dependency of the HOMO-LUMO energy relative to conventional π-conjugated molecules.
Collapse
Affiliation(s)
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Yichen Zhang
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | | | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tatsuhisa Kato
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
17
|
Varak P, Sinha A, Ravikanth M. Synthesis and properties of p-benzithiahexaphyrin(1.1.1.1.1.1)s. NEW J CHEM 2023. [DOI: 10.1039/d2nj05085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Novel Mobius aromatic p-benzithiahexaphyrin(1.1.1.1.1.1)s having twisted topology were synthesized by [3 + 3] condensation of benzitripyrrane diol and appropriate 16-thiatripyrranes under TFA-catalysed conditions.
Collapse
Affiliation(s)
- Pooja Varak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avisikta Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
18
|
Zatsikha YV, Schrage BR, Blesener TS, Harrison LA, Ziegler CJ, Nemykin VN. Meso
‐Carbon Atom Nucleophilic Attack Susceptibility in the Sterically Strained Antiaromatic Bis‐BODIPY Macrocycle and Extended Electron‐Deficient BODIPY Precursor**. Chemistry 2022; 28:e202201261. [DOI: 10.1002/chem.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Enamine Ltd Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Briana R. Schrage
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Tanner S. Blesener
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Laurel A. Harrison
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | | | - Victor N. Nemykin
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| |
Collapse
|
19
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐Shell Diradical Character in the Dianions of 9‐Fluorenylidene‐Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022; 61:e202209448. [DOI: 10.1002/anie.202209448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Fan
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xuhui Wang
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
20
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐shell Diradical Character in The Dianions of 9‐Fluorenylidene Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- National University of Singapore Chemistry SINGAPORE
| | - Yi Han
- National University of Singapore Chemistry SINGAPORE
| | - Wei Fan
- National University of Singapore Chemistry SINGAPORE
| | - Xuhui Wang
- National University of Singapore Chemistry SINGAPORE
| | - Yong Ni
- National University of Singapore Chemistry SINGAPORE
| | - Jishan Wu
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
21
|
Rawat N, Ojha B, Ravikanth M. Synthesis and Properties of Nonaromatic Meta-Benziheptaphyrins and Aromatic Para-Benziheptaphyrins. Chem Asian J 2022; 17:e202200715. [PMID: 35899820 DOI: 10.1002/asia.202200715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Indexed: 11/06/2022]
Abstract
Two examples of nonaromatic m -benziheptaphyrins and two examples of aromatic p -benziheptaphyrins were synthesized by [5+2] condensation of appropriate m -benzi pentapyrrane and p -benzi pentapyrrane respectively and bithiophene diol in CH 2 Cl 2 in the presence of one equivalent of TFA under inert conditions for 30 min followed by oxidation with DDQ in open air for 1 h. The 1 H NMR studies carried out at room temperature as well as at lower temperature indicated the nonaromatic nature of m -benziheptaphyrins with inversion of two thiophene rings and aromatic nature of p -benziheptaphyrins with inversion of one of the thiophene ring. The X-ray structure obtained for one of the p -benziheptaphyrins showed a planar conformation with alignment of one of the thiophene ring away from the macrocyclic inner core but maintained its coplanarity with the mean plane and supported the aromatic nature of the macrocycle. The absorption spectra of m -benziheptaphyrins resembled with the nonaromatic systems and showed two intense bands at 445 nm, 555 nm and a very broad band in the region of 600-1100 nm whereas the p -benziheptaphyrin showed three sharp intense bands at 534 nm, 585 nm and 832 nm due to their aromatic nature. The protonation of m -benziheptaphyrins and p -benziheptaphyrins resulted in significant bathochromic shifts in their absorption maxima and showed strong absorption in NIR region. The electrochemical studies indicated that m - & p -benziheptaphyrins undergo oxidations and reductions easily. DFT and TD-DFT studies were in agreement with the experimental observations.
Collapse
Affiliation(s)
- Nisha Rawat
- Indian Institute of Technology Bombay, Chemistry, IIT bombay, powai, 400076, Mumbai, INDIA
| | - Belarani Ojha
- Indian Institute of Technology Bombay, Chemistry, 400076, INDIA
| | - Mangalampalli Ravikanth
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, 400 076, Mumbai, INDIA
| |
Collapse
|
22
|
Pushpanandan P, Ravikanth M. Synthesis and Properties of Stable 20π Porphyrinoids. CHEM REC 2022; 22:e202200144. [PMID: 35896952 DOI: 10.1002/tcr.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Indexed: 11/09/2022]
Abstract
The 20π porphyrinoids are immediate higher homologues of 18π porphyrins and differ from porphyrins in aromaticity which in turn affects the structure, properties and chemical reactivities. Research over the years indicated that the 20π porphyrinoids can be stabilized as non-aromatic/anti-aromatic or Mobius aromatic macrocycles using different strategies such as core-modification of porphyrins, non-metal/metal complexation of porphyrins, peripheral modification of porphyrins and expanded porphyrinoids. The structural properties such as aromaticity of the macrocycle can be controlled by choosing the right synthetic strategy. This review will provide an overview of the development in the chemistry of 20π porphyrinoids giving emphasize on the synthesis, structure and electronic properties of these macrocycles which have huge potential for various applications.
Collapse
Affiliation(s)
- Poornenth Pushpanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| |
Collapse
|
23
|
Szyszko B. Phenanthrene‐Embedded Carbaporphyrinoids and Related Systems: From Ligands to Cages and Molecular Switches. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bartosz Szyszko
- University of Wroclaw: Uniwersytet Wroclawski Chemistry 14 F. Joliot-Curie 14 50383 Wroclaw POLAND
| |
Collapse
|
24
|
|
25
|
Zheng Y, Wang X, Chen H, Lu T, Duan Z, Lei C. 1,4-Phenylene-Incorporated Decaphyrin(1.0.1.0.0.1.0.1.0.0): Synthesis, Structure, and Topological Chirality. Org Lett 2022; 24:2509-2514. [PMID: 35348345 DOI: 10.1021/acs.orglett.2c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expanded porphyrins represent emerging structures in realizing topological chirality; however, their inherent flexibility has hampered the effective chiral resolution. Herein, we rationally designed a decaphyrin 9, which could be separated into its enantiomers in the free-base form. The enantiomers showed noteworthy chiroptical properties, e.g., the intense circular dichroism response in the visible spectrum, and high absorption dissymmetry factors (gabs) of 0.036 at 618 nm. Theoretical analyses further explained the origin of the high gabs value.
Collapse
Affiliation(s)
- Yunchao Zheng
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Wang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Chen
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhiming Duan
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Ali M, Latif A, Bibi S, Ali S, Ali A, Ahmad M, Ahmad R, Khan AA, Khan A, Ribeiro AI, Al‐Harrasi A, Farooq U. Facile Synthesis of the Shape‐Persistent 4‐Hydroxybenzaldehyde Based Macrocycles and Exploration of their Key Electronic Properties: An Experimental and DFT Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mumtaz Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Abdul Latif
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Saeeda Bibi
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Sardar Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Akbar Ali
- Department of Chemistry Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Rashid Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Adnan Ali Khan
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Ajmal Khan
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Alany Ingrid Ribeiro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís, Km 265 São Carlos Brazil
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Umar Farooq
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus, KPK 22060 Islamabad 45550 Pakistan
| |
Collapse
|
27
|
Ruffin H, Fihey A, Boitrel B, Le Gac S. Möbius Zn
II
‐Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hervé Ruffin
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Arnaud Fihey
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Bernard Boitrel
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Stéphane Le Gac
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| |
Collapse
|
28
|
Wu S, Ni Y, Han Y, Hou X, Wang C, Hu W, Wu J. Hückel‐ and Baird‐Type Global Aromaticity in a 3D Fully Conjugated Molecular Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Congyong Wang
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| |
Collapse
|
29
|
Yao B, Liu X, Guo T, Sun H, Wang W. Molecular Möbius Strips: Twist for A Bright Future. Org Chem Front 2022. [DOI: 10.1039/d2qo00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to their unique structural features and associated intriguing properties, molecular Möbius strips have attracted considerable attention. However, the precise synthesis of such attractive molecules remains a great challenge. Recently,...
Collapse
|
30
|
Zhou W, Sarma T, Su Y, Lei C, Sessler JL. Kinetic trapping of a cobalt(ii) metallocage using a carbazole-containing expanded carbaporphyrinoid ligand. Chem Sci 2022; 13:692-697. [PMID: 35173933 PMCID: PMC8768885 DOI: 10.1039/d1sc06514a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
The meso-unsubstituted expanded porphyrinoid 3, incorporating two carbazole moieties, acts as an effective ligand for Co(ii) and permits the isolation and X-ray diffraction-based characterization of a 6 : 3 metal-to-ligand metallocage complex that converts spontaneously to the constituent 2 : 1 metal-to-ligand metalloring species in chloroform solution. The discrete metalloring is formed directly when the Co(ii) complex is crystallized from supersaturated solutions, whereas crystallization from more dilute solutions favors the metallocage. Studies with two other test cations, Pd(ii) and Zn(ii), revealed exclusive formation of the monomeric metalloring complexes with no evidence of higher order species being formed. Structural, electrochemical and UV-vis-NIR absorption spectral studies provide support for the conclusion that the Pd(ii) complex is less distorted and more effectively conjugated than its Co(ii) and Zn(ii) congeners, an inference further supported by TD-DFT calculations. The findings reported here underscore how expanded porphyrins can support coordination modes, including bimetallic complexes and self-assembled cage structures, that are not necessarily easy to access using more traditional ligand systems. Carbazole containing expanded carbaporphyrinoid ligand supports the formation of 2 : 1 metal-to-ligand complexes with Pd, Co, and Zn. Solid-state studies also revealed formation of a 6 : 3 metal-to-ligand metallocage in the case of Co complexation.![]()
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tridib Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Yonghuan Su
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|
31
|
Kim J, Oh J, Park S, Yoneda T, Osuka A, Lim M, Kim D. Modulations of a Metal-Ligand Interaction and Photophysical Behaviors by Hückel-Möbius Aromatic Switching. J Am Chem Soc 2021; 144:582-589. [PMID: 34967619 DOI: 10.1021/jacs.1c11705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In organometallic complexes containing π-conjugated macrocyclic chelate ligands, conformational change significantly affects metal-ligand electronic interactions, hence tuning properties of the complexes. In this regard, we investigated the metal-ligand interactions in hexaphyrin mono-Pd(II) complexes Pd[28]M and Pd[26]H, which exhibit a redox-induced switching of Hückel-Möbius aromaticity and subsequent molecular conformation, and their effect on the electronic structure and photophysical behaviors. In Möbius aromatic Pd[28]M, the weak metal-ligand interaction leads to the π electronic structure of the hexaphyrin ligand remaining almost intact, which undergoes efficient intersystem crossing (ISC) assisted by the heavy-atom effect of the Pd metal. In Hückel aromatic Pd[26]H, the significant metal-ligand interaction results in ligand-to-metal charge-transfer (LMCT) in the excited-state dynamics. These contrasting metal-ligand electronic interactions have been revealed by time-resolved electronic and vibrational spectroscopies and time-dependent DFT calculations. This work indicates that the conspicuous modulation of metal-ligand interaction by Hückel-Möbius aromaticity switching is an appealing approach to manipulate molecular properties of metal complexes, further enabling the fine-tuning of metal-ligand interactions and the novel design of functional organometallic materials.
Collapse
Affiliation(s)
- Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Department of Chemistry, Soonchunhyang University, Asan-si, Chungnam 31538, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tomoki Yoneda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Wu S, Ni Y, Han Y, Hou X, Wang C, Hu W, Wu J. Hückel- and Baird-type 3D Global Aromaticity in a Fully Conjugated Molecular Cage. Angew Chem Int Ed Engl 2021; 61:e202115571. [PMID: 34958520 DOI: 10.1002/anie.202115571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/05/2022]
Abstract
Global aromaticity in 3D π-conjugated molecular cages remains largely unexplored. Herein, we report the facile synthesis of a fully conjugated molecular cage ( 1 ) containing two bridged triphenylamine units and three quinoidal bithiophene arms. X-ray crystallographic analysis, NMR/ESR measurements and theoretical calculations reveal that: ( 1 ) its dication ( 1 2+ ) has an open-shell singlet ground state and is 3D globally aromatic, with individual macrocycles being 2D Hückel aromatic; (2) its tetracation ( 1 4+ ) has a triplet ground state and is also 3D globally aromatic, with individual macrocycles being 2D Baird aromatic; and (3) its hexacation ( 1 6+ ) has a closed-shell nature and shows local aromaticity. The study revealed a close relationship between 2D Hückel/Baird aromaticity and 3D global π-aromaticity.
Collapse
Affiliation(s)
- Shaofei Wu
- National University of Singapore, Chemistry, SINGAPORE
| | - Yong Ni
- National University of Singapore, Chemistry, SINGAPORE
| | - Yi Han
- National University of Singapore, Chemistry, SINGAPORE
| | - Xudong Hou
- National University of Singapore, Chemistry, SINGAPORE
| | - Congyong Wang
- National University of Singapore, Chemistry, SINGAPORE
| | - Wenping Hu
- Tianjin University, College of Science, CHINA
| | - Jishan Wu
- National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE
| |
Collapse
|
33
|
Sulfikarali T, Behera G, Ajay J, Mori S, Kakarlamudi AC, Vennapusa SR, Gokulnath S. Disruption of Antiaromaticity in Structurally Related Expanded Porphyrin-like Macrocycles with Benzene Linkers. Org Lett 2021; 24:245-249. [PMID: 34928164 DOI: 10.1021/acs.orglett.1c03903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4-Phenylene-linked cyclotrimer (3T) and cyclotetramer (4T) have been synthesized via Lewis acid-catalyzed self-condensation of appropriate precursors. Structural and Density Functional Theory (DFT) studies reveal the disruption of annulenic conjugation in both 3T and 4T by linking phenylene rings prevented them from global antiaromaticity. The single crystal X-ray structure of 4T reveals all the nitrogens are pointing toward the macrocyclic core with near-planar and square-shaped geometry, thus in sharp contrast to the ring-strained conformation of 3T.
Collapse
Affiliation(s)
- Thondikkal Sulfikarali
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 016, India
| | - Govind Behera
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 016, India
| | - Jayaprakash Ajay
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 016, India
| | - Shigeki Mori
- Division of Material Science, Advanced Research Support Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | - Sabapathi Gokulnath
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 016, India
| |
Collapse
|
34
|
Li K, Xu Z, Xu J, Weng T, Chen X, Sato S, Wu J, Sun Z. Overcrowded Ethylene-Bridged Nanohoop Dimers: Regioselective Synthesis, Multiconfigurational Electronic States, and Global Hückel/Möbius Aromaticity. J Am Chem Soc 2021; 143:20419-20430. [PMID: 34817177 DOI: 10.1021/jacs.1c10170] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and preparation of molecular systems with multiple geometric and electronic configurations are the cornerstones for multifunctional materials with stimuli-responsive behaviors. We describe here the regioselective and facile synthesis of two types of overcrowded ethylene-bridged nanohoop dimers, with folded and twisted geometric structures as well as closed-shell, diradical and dication electronic structures. The strained nanohoop structures have a profound effect on the overall molecular and electronic configurations, which resulted in the destabilized diradical state. X-ray crystallographic analysis revealed the folded molecular geometry for the neutral species and twisted geometry for the dication species. The unique molecular dynamics, optical properties, and dynamic redox properties were disclosed in the solution phase by spectroscopic and electrochemical methods. Furthermore, the global Hückel and Möbius aromaticity were revealed by a combination of experimental and theoretical approaches. Our studies shed light on the design of nanohoop-incorporated multiconfigurational materials with unique topologies and functions.
Collapse
Affiliation(s)
- Ke Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Taoyu Weng
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sota Sato
- Department of Applied Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
35
|
Kim J, Oh J, Osuka A, Kim D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 2021; 51:268-292. [PMID: 34879124 DOI: 10.1039/d1cs00742d] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, Baird (anti)aromaticity has been referred to as a description of excited-state (anti)aromaticity. With the term of Baird's rule, recent studies have intensively verified that the Hückel aromatic [4n + 2]π (or antiaromatic [4n]π) molecules in the ground state are reversed to give Baird aromatic [4n]π (or Baird antiaromatic [4n + 2]π) molecules in the excited states. Since the Hückel (anti)aromaticity has great influence on the molecular properties and reaction mechanisms, the Baird (anti)aromaticity has been expected to act as a dominant factor in governing excited-state properties and processes, which has attracted intensive scientific investigations for the verification of the concept of reversed aromaticity in the excited states. In this scientific endeavor, porphyrinoids have recently played leading roles in the demonstration of the aromaticity reversal in the excited states and its conceptual development. The distinct structural and electronic nature of porphyhrinoids depending on their (anti)aromaticity allow the direct observation of excited-state aromaticity reversal, Baird's rule. The explicit experimental demonstration with porphyrinoids has contributed greatly to its conceptual development and application in novel functional organic materials. Based on the significant role of porphyrinoids in the field of excited-state aromaticity, this review provides an overview of the experimental verification of the reversal concept of excited-state aromaticity by porphyrinoids and the recent progress on its conceptual application in novel functional molecules.
Collapse
Affiliation(s)
- Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea.
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
36
|
|
37
|
Sundholm D, Dimitrova M, Berger RJF. Current density and molecular magnetic properties. Chem Commun (Camb) 2021; 57:12362-12378. [PMID: 34726205 DOI: 10.1039/d1cc03350f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the molecular response to an external magnetic field perturbing quantum mechanical systems. We present state-of-the-art methods for calculating magnetically-induced current-density susceptibilities. We discuss the essence and properties of current-density susceptibilities and how molecular magnetic properties can be calculated from them. We also review the theory of spin-current densities, how relativity affects current densities and magnetic properties. An overview of the magnetic ring-current criterion for aromaticity is given, which has implications on theoretical and experimental research. The recently reported theory of antiaromaticity and how molecular symmetry affects the magnetic response are discussed and applied to closed-shell paramagnetic molecules. The topology of magnetically induced current densities and its consequences for molecular magnetic properties are also presented with twisted and toroidal molecules as examples.
Collapse
Affiliation(s)
- Dage Sundholm
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland.
| | - Maria Dimitrova
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland. .,Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| | - Raphael J F Berger
- Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| |
Collapse
|
38
|
Ruffin H, Fihey A, Boitrel B, Le Gac S. Möbius Zn II -Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angew Chem Int Ed Engl 2021; 61:e202113844. [PMID: 34813138 DOI: 10.1002/anie.202113844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/07/2022]
Abstract
By their conformational flexibility, Möbius aromatic hexaphyrins provide a dynamic chirality attractive to develop stimuli responsive systems such as chiroptical switches. A regular [28]hexaphyrin has been equipped with a chiral coordinating arm to achieve transfer of chirality from a fix stereogenic element to the dynamic Möbius one. The arm allows straightforward formation of labile monometallic ZnII complexes with an exogenous ligand, either a carboxylato or an amino with opposite inwards/outwards orientations relative to the Möbius ring. As a corollary, the chiral coordinating arm is constrained over the ring or laterally, inducing opposite P and M Möbius configurations with unprecedented high stereoselectivity (diast. excess greater than 95 %). By tuning the transfer of chirality, these achiral effectors generate electronic circular dichroism spectra with bisignate Cotton effect of opposite signs. Switching between distinct chiroptical states was ultimately achieved in mild conditions owing to ligand exchange, with high robustness (10 cycles).
Collapse
Affiliation(s)
- Hervé Ruffin
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Arnaud Fihey
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| |
Collapse
|
39
|
Zhou W, Hao M, Lu T, Duan Z, Sarma T, Sessler JL, Lei C. Carbazole-Containing Carbadecaphyrins: Non-aromatic Expanded Porphyrins that Undergo Proton-Triggered Conformational Changes. Chemistry 2021; 27:16173-16180. [PMID: 34532908 DOI: 10.1002/chem.202102939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 12/14/2022]
Abstract
A pair of meso-unsubstituted expanded carbaporphyrins containing two carbazole moieties were prepared in high isolated yields (82 and 76 %, respectively). The two macrocycles, namely 3 and 4, differ with respect to their substitution at the carbazole N-atoms i. e. by H and i-Bu, respectively. As prepared in their free-base forms, macrocycles 3 and 4 adopt figure-of-eight conformations and are best characterized as 40 π-electron, non-aromatic species possessing a decaphyrin(1.1.0.0.0.1.1.0.0.0) skeleton. Protonation of 3 with either trifluoroacetic acid (TFA) or perchloric acid (HClO4 ) produces a parallelogram-shaped structure. A similar structure is produced when N-functionalized system 4 is treated with TFA. In contrast, protonation of 4 with HClO4 leads it to adopt a twisted Möbius strip-like structure in the solid state, thus allowing access to three distinct conformational states as a function of the conditions.
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Mengdi Hao
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Tridib Sarma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, Cotton University, Guwahati, 781001, Assam, India
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas, 78712-1224, United States
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
40
|
Kawashima H, Ukai S, Nozawa R, Fukui N, Fitzsimmons G, Kowalczyk T, Fliegl H, Shinokubo H. Determinant Factors of Three-Dimensional Aromaticity in Antiaromatic Cyclophanes. J Am Chem Soc 2021; 143:10676-10685. [PMID: 34170675 DOI: 10.1021/jacs.1c04348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional aromaticity arising from the close stacking of two antiaromatic π-conjugated macrocycles has recently received considerable attention. Here, a cyclophane consisting of two antiaromatic Ni(II) norcorrole units tethered with two flexible alkyl chains was synthesized. The norcorrole cyclophane showed crystal polymorphism providing three different solid-state structures. Surprisingly, one of them adopted an aligned face-to-face stacking arrangement with negligible displacement along the slipping axis. Although the exchange repulsion between two π-clouds should be maximized in this orientation, the π-π distance is remarkably close (3.258 Å). Three-dimensional aromaticity in this conformation has been supported experimentally and theoretically as evidenced by small bond length alternations as well as the presence of a diatropic ring current. An analogous cyclophane with two aromatic Ni(II) porphyrin units was prepared for comparison. The porphyrin cyclophane exhibited a slipped-stacking conformation with a larger displacement (2.9 Å) and a larger interplanar distance (3.402 Å) without noticeable change of the aromaticity of each porphyrin unit. In solution, the norcorrole cyclophane forms a twist stacking arrangement with effective interplanar orbital overlap and exists in an equilibrium between stacked and nonstacked structures. Thermodynamic parameters of the stacking process were estimated, revealing an inherently large attractive interaction operating between two norcorrole units, which has been further supported by energy decomposition analysis.
Collapse
Affiliation(s)
- Hiroyuki Kawashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryo Nozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Garrett Fitzsimmons
- Department of Chemistry, Advanced Materials Science & Engineering Center and Institute for Energy Studies, Western Washington University, Bellingham, Washington 98229, United States
| | - Tim Kowalczyk
- Department of Chemistry, Advanced Materials Science & Engineering Center and Institute for Energy Studies, Western Washington University, Bellingham, Washington 98229, United States
| | - Heike Fliegl
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
41
|
Boitrel B, Le Gac S. Interconversion between Möbius chiroptical states sustained by hexaphyrin dynamic coordination. Chem Commun (Camb) 2021; 57:3559-3562. [PMID: 33704315 DOI: 10.1039/d1cc00741f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Harnessing the chiroptical properties of molecular Möbius rings is motivated by fundamental aspects while challenged by synthetic difficulties. Focusing on Möbius aromatic Zn(ii) hexaphyrin complexes, interconversion between two chiral states was achieved through binding and release of an amino ligand (forward/backward stimuli), leading to different chiroptical switching phenomena (amplification, on-off, inversion). The amine either supplies the chirality or behaves as an achiral effector regulating the Zn(ii)-binding of a second (chiral) carboxylato ligand. These results highlight the Möbius [28]hexaphyrin scaffold as an attractive chiral switchable unit.
Collapse
Affiliation(s)
- Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France.
| | | |
Collapse
|
42
|
Szyszko B, Rymut P, Matviyishyn M, Białońska A, Latos‐Grażyński L. Kinetic versus Thermodynamic Control Over Multiple Conformations of Di‐2,7‐naphthihexaphyrin(1.1.1.1.1.1). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry University of Wrocław 14 F. Joliot-Curie St. 50–383 Wrocław Poland
| | - Paweł Rymut
- Department of Chemistry University of Wrocław 14 F. Joliot-Curie St. 50–383 Wrocław Poland
| | - Maksym Matviyishyn
- Department of Chemistry University of Wrocław 14 F. Joliot-Curie St. 50–383 Wrocław Poland
| | - Agata Białońska
- Department of Chemistry University of Wrocław 14 F. Joliot-Curie St. 50–383 Wrocław Poland
| | | |
Collapse
|
43
|
Szyszko B, Rymut P, Matviyishyn M, Białońska A, Latos-Grażyński L. Kinetic versus Thermodynamic Control Over Multiple Conformations of Di-2,7-naphthihexaphyrin(1.1.1.1.1.1). Angew Chem Int Ed Engl 2020; 59:20137-20146. [PMID: 33462869 DOI: 10.1002/anie.202008518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Di-2,7-naphthihexaphyrin(1.1.1.1.1.1), a non-aromatic carba-analogue of the hexaphyrin(1.1.1.1.1.1), incorporating two built-in 2,7-naphthylene moieties was synthesized as two separate, conformationally locked stereoisomers. Both conformers followed complex protonation pathways involving structurally different species, which can be targeted under kinetic and thermodynamic control. The neutralization of the ultimate dicationic product, accessible from both stereoisomers of the free base, allowed to realize the complex conformational switching cycle involving six structurally different species.
Collapse
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Paweł Rymut
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Maksym Matviyishyn
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Agata Białońska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383, Wrocław, Poland
| | | |
Collapse
|
44
|
Kim J, Kim G, Kim D. The relationship between photophysical properties and aromaticity/antiaromaticity of various expanded porphyrins — a Hans Fischer Career Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding aromaticity is crucial for predicting the molecular properties and reactivity of cyclic [Formula: see text]-conjugated systems. In this review, representative reports on the evaluation of aromaticity via spectroscopic methods in various expanded porphyrin systems are presented. The relationship between the photophysical properties and distinct aromatic characteristics in Hückel aromatic compounds was revealed through notable spectroscopic features exhibited by aromatic expanded porphyrins. Furthermore, modulating the molecular conformation and chemical environment enabled us to distinguish unique Möbius aromatic molecules successfully. These findings provide insight into the elemental molecular properties and aromaticity in expanded porphyrin systems and their potential real-world applications.
Collapse
Affiliation(s)
- Jinseok Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Gakhyun Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
45
|
Pino-Rios R, Cárdenas-Jirón G, Tiznado W. Local and macrocyclic (anti)aromaticity of porphyrinoids revealed by the topology of the induced magnetic field. Phys Chem Chem Phys 2020; 22:21267-21274. [PMID: 32935691 DOI: 10.1039/d0cp03272g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aromaticity in porphyrinoids results from the π conjugation through two different annular perimeters: the macrocyclic ring and the local heterocyclic rings appended to it. Analyses, based on aromatic stabilization energies (ASE), indicate that the local circuits (6π) are responsible for the significant aromatic stabilization of these systems. This local aromaticity can be coupled with the one from 4n + 2π macrocyclic circuit. It can either compensate for the destabilization due to a 4n π macrocyclic circuit, or be the only source of aromatic stabilization in porphyrinoids with macrocycles without π-conjugated bonds. This "multifaceted" aromatic character of porphyrinoids makes it challenging to analyze their aromaticity using magnetic descriptors because of the intricate interaction of local versus macro-cyclic circulation. In this contribution, we show that the analysis of the bifurcation of the induced magnetic field, Bind, allows clear identification and quantification of both local, and macrocyclic aromaticity, in a representative group of porphyrinioids. In porphyrin, bifurcation values accurately predict the local and macrocyclic contribution rate to overall aromatic stabilization determined by ASE.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile.
| | - Gloria Cárdenas-Jirón
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile.
| | - William Tiznado
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello (UNAB), Av. República 275, Santiago, Región Metropolitana, Chile.
| |
Collapse
|
46
|
Szyszko B, Latos-Grażyński L. Expanded Carbaporphyrinoids. Angew Chem Int Ed Engl 2020; 59:16874-16901. [PMID: 31825555 DOI: 10.1002/anie.201914840] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/11/2022]
Abstract
This Review outlines the progress in the field of synthetic expanded carbaporphyrinoids. The evolution of this topic is demonstrated with expanded porphyrin-inspired systems with a variety of incorporated entities that introduce one or more carbon atoms into the cavity. The discussion starts with platyrins-the macrocycles that were identified as parent molecules of not only the expanded carbaporphyrinoids, but the carbaporphyrinoid class in general. After historic considerations, the plethora of expanded porphyrin-like macrocycles containing N-confused or neo-confused pyrrole motifs and different carbocyclic subunits are presented. Special emphasis is given to applications of expanded carbaporphyrinoids in different areas, including organometallic chemistry, switching systems, or aromaticity, concluding with the demonstration of a covalent cage based on an expanded carbaporphyrinoid.
Collapse
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383, Wrocław, Poland
| | | |
Collapse
|
47
|
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry University of Wrocław 14 F. Joliot-Curie St. 50-383 Wrocław Polen
| | | |
Collapse
|
48
|
Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D. Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhouyang Luo
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiao Yang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Kang Cai
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiangyu Fu
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
49
|
Boitrel B, Le Gac S. Match-mismatch effects in two-fold transfer of chirality within a Möbius metallo-receptor. Chem Commun (Camb) 2020; 56:9166-9169. [PMID: 32657288 DOI: 10.1039/d0cc03877f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two-fold transfer of chirality has been investigated in a Möbius Zn(ii) hexaphyrin metallo-receptor able to bind simultaneously two different chiral molecules. Match/mismatch effects influence the dynamic stereoselective twisting of the π-system, and allow tuning of the induced chiroptical activity. Such allosteric control is attractive for building chirality sensing systems.
Collapse
Affiliation(s)
- Bernard Boitrel
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes F-35000, France.
| | - Stéphane Le Gac
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes F-35000, France.
| |
Collapse
|
50
|
Szyszko B, Przewoźnik M, Białek MJ, Białońska A, Chmielewski PJ, Latos-Grażyński L. Conformation-Dependent Response to the Protonation of Diphenanthrioctaphyrin(1.1.1.0.1.1.1.0): A Route to Pseudorotaxane-Like Structures. Chemistry 2020; 26:8555-8566. [PMID: 32203626 DOI: 10.1002/chem.202000940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Indexed: 12/14/2022]
Abstract
Diphenanthrioctaphyrin(1.1.1.0.1.1.1.0), an expanded carbaporphyrinoid incorporating two phenanthrenylene moieties, exists as two separate, yet interconvertible, locked stereoisomers. These species demonstrate complex dynamic behavior upon protonation, consisting in multiple conformational rearrangements and anion-binding events. The formation of one of the final dicationic forms is accompanied by the inclusion of a complex anion(s) within the macrocyclic cavity yielding a pseudorotaxane-like host-guest complex. Protonation with trifluoroacetic or dichloroacetic acids followed by neutralization afforded a conformation-switching cycle, which involves six structurally different species. Analogous acidification with chiral 10-camphorsulfonic acid and subsequent neutralization generated one of the free base stereoisomers with enantiomeric excess. Therefore, it was shown that the simple acid-base chemistry of diphenanthrioctaphyrin can act as stimulus, inducing chirality into the system, allowing for the manipulation of the stereochemical information imprinted into the enantiomers of the macrocycle.
Collapse
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Monika Przewoźnik
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Agata Białońska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Piotr J Chmielewski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | | |
Collapse
|