1
|
Dutra FR, Romeu JGF, Dixon DA. Prediction of Redox Potentials for Ac, Th, and Pa in Aqueous Solution. J Phys Chem A 2024; 128:9730-9746. [PMID: 39480082 DOI: 10.1021/acs.jpca.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Density functional theory in conjunction with small core pseudopotentials and the associated basis sets was used to calculate potentials for multiple redox couples, covering a range of oxidation states for Ac (0 to III), Th (0 to IV), and Pa (0 to V) in aqueous solution. Solvation effects were incorporated using a supermolecule-continuum approach, with 30 water molecules representing two solvation shells, and the COSMO and SMD implicit solvation models. The calculated geometries for Ac(III), Th(IV), and Pa(V) were in reasonable agreement with the available experimental data. Using the COSMO model with the B3LYP functional, the calculated redox potentials were within ±0.2 V from experiment for most redox couples. Several pathways were explored for the Pa(V/IV) redox couple for different forms of Pa(V) and Pa(IV). Most Pa(V/IV) redox couples have very similar potentials, ranging from 0 to -0.4 V up to a pH of 1.4. At pH = 1.4, the potentials shift to values that are more negative than -0.7 V, reflecting the growing unfavorable nature of the redox process at higher pH levels. The calculated values for An(III/II) potentials were consistent with prior estimates and the available experimental data. The predicted redox potentials for An(II/I) were highly negative, as expected. For An(I/0) potentials, Th and Pa exhibited positive values, contrasting with the negative values calculated for Ac. The An+m/An(0) potentials agreed better with the experimental data when using the COSMO solvation model as compared to the SMD model.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo 13083-970, P.O. Box 6154, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
2
|
He Y, Lu JB, Zhang YY, Hu HS, Li J. Structures of Th 4+ aqueous solutions: insights from AIMD and metadynamics simulations. Phys Chem Chem Phys 2024; 26:24447-24454. [PMID: 39263704 DOI: 10.1039/d4cp02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Solution chemistry of actinide ions is critical to understanding the solvation behaviors and hydrolysis process. Using tetravalent thorium ion Th4+ as a representative example, we investigate the local structures and dynamic behaviors of hydrated Th4+ ions by ab initio molecular dynamics (AIMD) simulations using the recently developed norm-conserving pseudopotentials and basis sets optimized for actinides (J.-B. Lu et al., J. Chem. Theory Comput. 2021, 17, 3360-3371). AIMD simulations reveal two distinct solvation shells, with the first shell comprising 9 water molecules at approximately rTh-O = 2.50 Å and exhibiting a tricapped trigonal prism geometry. These conclusions are confirmed through metadynamics simulations and further structural analysis. AIMD simulations also show the slight effect of temperature and counterions on the structure of the solution. The structured solvation shells of the highly charged Th4+ ion with the specific geometry, distinct from the structure of liquid water, lead to corresponding structural changes in the hydrogen bond network in water. Additionally, beyond the solvent-shared ion pair (SIP) state observed in the unbiased AIMD simulations, the metadynamics simulations reconstruct a two-dimensional free energy surface that clearly indicates the potential stability of the contact ion pair (CIP) state in the system with Cl- as a counterion. The findings in this work provide insights into the solution chemistry of actinides and serve as a reference for studying other actinide solution systems.
Collapse
Affiliation(s)
- Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun-Bo Lu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yang-Yang Zhang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
3
|
Persson I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans 2024; 53:15517-15538. [PMID: 39211949 DOI: 10.1039/d4dt01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The structures of nine hydrated metal ions in aqueous solution have been redetermined by large angle X-ray scattering to obtain experimental data of better quality than those reported 40-50 years ago. Accurate M-OI and M-(OI-H)⋯OII distances and M-OI(H)⋯OII bond angles are reported for the hydrated magnesium(II), aluminium(III), manganese(II), iron(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) ions; the subscripts I and II denote oxygen atoms in the first and second hydration sphere, respectively. Reported structures of hydrated metal ions in aqueous solution are summarized and evaluated with emphasis on a possible relationship between M-OI-OII bond angles and bonding character. Metal ions with high charge density have M-OI-OII bond angles close to 120°, indicative of a mainly electrostatic interaction with the oxygen atom in the water molecule in the first hydration shell. Metal ions forming bonds with a significant covalent contribution, as e.g. mercury(II) and tin(II), have M-OI-OII bond angles close to 109.5°. This implies that they bind to one of the free electron pairs in the water molecule. Comparison of M-O bond distances of hydrated metal ions in the solid state with one hydration shell, and in aqueous solution with in most cases at least two hydration shells, shows no significant differences. On the other hand, the X-O bond distance in hydrated oxoanions increases by ca. 0.02 Å in aqueous solution in comparison with the corresponding X-O distance in the solid state. A linear correlation is observed between volume, calculated from the van der Waals radius of the hydrated ion, and the ionic diffusion coefficient in aqueous solution. This correlation strongly indicates that monovalent metal ions, except lithium and silver(I), and singly-charged monovalent oxoanions have a single hydration shell. Divalent metal ions, bismuth(III) and the lanthanoid(III) and actinoid(III) ions have two hydration shells. Trivalent transition and tetravalent metal ions have two full hydration shells and portion of a third one. Doubly charged oxoanions have one well-defined hydration shell and an ill-defined second one.
Collapse
Affiliation(s)
- Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
4
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Windorff CJ, Goodwin CAP, Sperling JM, Albrecht-Schönzart TE, Bai Z, Evans WJ, Huffman ZK, Jeannin R, Long BN, Mills DP, Poe TN, Ziller JW. Stabilization of Pu(IV) in PuBr 4(OPCy 3) 2 and Comparisons with Structurally Similar ThX 4(OPR 3) 2 (R = Cy, Ph) Molecules. Inorg Chem 2023; 62:18136-18149. [PMID: 37875401 DOI: 10.1021/acs.inorgchem.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - William J Evans
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Renaud Jeannin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David P Mills
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Kasperowicz T, Flosbach NT, Grödler D, Kasperowicz H, Neudörfl JM, Rennebaum T, Wickleder MS, Zegke M. Solvated actinoids: methanol, ethanol and water adducts of thorium and uranium tetrachloride. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Dennis Grödler
- University of Cologne: Universitat zu Koln Chemistry GERMANY
| | | | | | | | | | - Markus Zegke
- University of Cologne: Universitat zu Koln Chemistry Greinstr. 6 50939 Cologne GERMANY
| |
Collapse
|
7
|
Wacker JN, Nicholas AD, Vasiliu M, Marwitz AC, Bertke JA, Dixon DA, Knope KE. Impact of Noncovalent Interactions on the Structural Chemistry of Thorium(IV)-Aquo-Chloro Complexes. Inorg Chem 2021; 60:6375-6390. [PMID: 33885290 DOI: 10.1021/acs.inorgchem.1c00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Five novel tetravalent thorium (Th) compounds that consist of Th(H2O)xCly structural units were isolated from acidic aqueous solutions using a series of nitrogen-containing heterocyclic hydrogen (H) bond donors. Taken together with three previously reported phases, the compounds provide a series of monomeric ThIV complexes wherein the effects of noncovalent interactions (and H-bond donor identity) on Th structural chemistry can be examined. Seven distinct structural units of the general formulas [Th(H2O)xCl8-x]x-4 (x = 2, 4) and [Th(H2O)xCl9-x]x-5 (x = 5-7) are described. The complexes range from chloride-deficient [Th(H2O)7Cl2]2+ to chloride-rich [Th(H2O)2Cl6]2- species, and theory was used to understand the relative energies that separate complexes within this series via the stepwise chloride addition to an aquated Th cation. Electronic structure theory predicted the reaction energies of chloride addition and release of water through a series of transformations, generally highlighting an energetic driving force for chloride complexation. To probe the role of the counterion in the stabilization of these complexes, electrostatic potential (ESP) surfaces were calculated. The ESP surfaces indicated a dependence of the chloride distribution about the Th metal center on the pKa of the countercation, highlighting the directing effects of noncovalent interactions (e.g., Hbonding) on Th speciation.
Collapse
Affiliation(s)
- Jennifer N Wacker
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexander C Marwitz
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Karah E Knope
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
8
|
Piechowicz M, Chiarizia R, Skanthakumar S, Rowan SJ, Soderholm L. Leveraging Actinide Hydrolysis Chemistry for Targeted Th and U Separations using Amidoxime‐Functionalized Poly(HIPE)s. Chemphyschem 2020; 21:1157-1165. [DOI: 10.1002/cphc.202000155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Marek Piechowicz
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
- Department of Chemistry University of Chicago 5640 S Ellis Avenue Chicago, Illinois 60637 USA
| | - Renato Chiarizia
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
| | - S. Skanthakumar
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
| | - Stuart J. Rowan
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
- Department of Chemistry University of Chicago 5640 S Ellis Avenue Chicago, Illinois 60637 USA
- Pritzker School for Molecular Engineering University of Chicago 5640 S. Ellis Avenue Chicago, Illinois 60637 USA
| | - L. Soderholm
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
| |
Collapse
|
9
|
Sadhu B, Dolg M, Kulkarni MS. Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO): A relativistic density functional theory exploration. J Comput Chem 2020; 41:1427-1435. [PMID: 32125003 DOI: 10.1002/jcc.26186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/28/2022]
Abstract
A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide-ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide-ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+ . A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Michael Dolg
- Institute for Theoretical Chemistry, Greinstr. 4, University of Cologne, Cologne, Germany
| | - Mukund S Kulkarni
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
10
|
Kofod N, Nawrocki P, Juelsholt M, Christiansen TL, Jensen KMØ, Sørensen TJ. Solution Structure, Electronic Energy Levels, and Photophysical Properties of [Eu(MeOH)n−2m(NO3)m]3–m+ Complexes. Inorg Chem 2020; 59:10409-10421. [DOI: 10.1021/acs.inorgchem.0c00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolaj Kofod
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Patrick Nawrocki
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Mikkel Juelsholt
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Troels Lindahl Christiansen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Kirsten M. Ø. Jensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
11
|
Acher E, Masella M, Vallet V, Réal F. Properties of the tetravalent actinide series in aqueous phase from a microscopic simulation self-consistent engine. Phys Chem Chem Phys 2020; 22:2343-2350. [PMID: 31932817 DOI: 10.1039/c9cp04912f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of nuclear fuel recycling and environmental issues, the understanding of the properties of radio-elements with various approaches remains a challenge regarding their dangerousness. Moreover, experimentally, some issues are also of importance; first, it is imperative to work at sufficiently high concentrations to reach the sensitivities of the analytical tools, however this condition often leads to precipitation for some of them; second, stabilizing specific oxidation states of some actinides remains a challenge, thus making it difficult to extract general trends across the actinide series. Complementary to experiments, modeling can be used to unbiasedly probe the actinide's properties in an aquatic environment and offers a predictive tool. We report the first molecular dynamics simulations based on homogeneously built force fields for the whole series of the tetravalent actinides in aqueous phase from ThIV to BkIV and including PuIV. The force fields used to model the interactions among the constituents include polarization and charge donation microscopic effects. They are built from a self-consistent iterative ab initio based engine that can be included in future developments as an element of a potential machine learning procedure devoted to generating accurate force fields. The comparison of our simulated hydrated actinide properties to available experimental data shows the model robustness and the relevance of our parameter assignment engine. Moreover, our simulated structural, dynamical and evolution of the hydration free energy data show that, apart from AmIV and CmIV, the actinide properties change progressively along the series.
Collapse
|
12
|
Wacker JN, Vasiliu M, Colliard I, Ayscue RL, Han SY, Bertke JA, Nyman M, Dixon DA, Knope KE. Monomeric and Trimeric Thorium Chlorides Isolated from Acidic Aqueous Solution. Inorg Chem 2019; 58:10871-10882. [DOI: 10.1021/acs.inorgchem.9b01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jennifer N. Wacker
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ian Colliard
- Oregon State University, Department of Chemistry, Corvallis, Oregon 97331, United States
| | - R. Lee Ayscue
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Sae Young Han
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - May Nyman
- Oregon State University, Department of Chemistry, Corvallis, Oregon 97331, United States
| | - David A. Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
13
|
Wacker JN, Han SY, Murray AV, Vanagas NA, Bertke JA, Sperling JM, Surbella RG, Knope KE. From Thorium to Plutonium: Trends in Actinide(IV) Chloride Structural Chemistry. Inorg Chem 2019; 58:10578-10591. [DOI: 10.1021/acs.inorgchem.9b01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jennifer N. Wacker
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Sae Young Han
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Aphra V. Murray
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Nicole A. Vanagas
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert G. Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
14
|
Ma J, Yang C, Han J, Yu J, Hu S, Yu H, Long X. Density Functional Theory Investigations on the Mechanism of Formation of Pa(V) Ion in Hydrous Solutions. Molecules 2019; 24:E1169. [PMID: 30934559 PMCID: PMC6471942 DOI: 10.3390/molecules24061169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the enormous threat of protactinium to the environment and human health, its disposal and chemistry have long been important topics in nuclear science. [PaO(H₂O)₆]3+ is proposed as the predominant species in hydrous and acidic solutions, but little is known about its formation mechanism. In this study, density functional theory (DFT) calculations demonstrate a water coordination-proton transfer-water dissociation mechanism for the formation of PaO3+ in hydrous solutions. First, Pa(V) ion preferentially forms hydrated complexes with a coordination number of 10. Through hydrogen bonding, water molecules in the second coordination sphere easily capture two protons on the same coordinated H₂O ligand to form [PaO(H₂O)₉]3+. Water dissociation then occurs to generate the final [PaO(H₂O)₆]3+, which is the thermodynamic product of Pa(V) in hydrous solutions.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
| | - Chuting Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
| | - Jun Han
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
| | - Jie Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China.
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
| | - Haizhu Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China.
| | - Xinggui Long
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
| |
Collapse
|
15
|
Sadhu B, Mishra V. The coordination chemistry of lanthanide and actinide metal ions with hydroxypyridinone-based decorporation agents: orbital and density based analyses. Dalton Trans 2018; 47:16603-16615. [PMID: 30417921 DOI: 10.1039/c8dt03262a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of the mitigation of the biological effects of internal radionuclide contamination and for efficient decorporation, the design and development of efficient chelators for lanthanide and actinide metal ions has become a central issue. The pioneering work of Raymond and coworkers (Chem. Rev., 2003, 103, 4207-4282) led to the development of siderophore-related hydroxypyridinonate ligands for possible treatment of internalized radionuclides. However, the structure-function relationship of Ln/An bound to these ligands, particularly the bonding and coordination aspects are not clearly understood at the atomic level. Here, we have investigated the structure, binding and energetics of trivalent and tetravalent Ln/An (Sm3+, Eu3+, Am3+, Cm3+, Th4+, Pu4+) ions with spermine-based octadentate hydroxypyridinonate chelators, namely 3,4,3-LI(1,2-HOPO) and its 3,3,3 variant, using relativistic density functional theory (DFT). Furthermore, we have performed orbital and density based analyses to elucidate the nature of bonding in these complexes. In accordance with the experimental stability constant, we found the maximum binding free energy for An4+ (Pu4+, Th4+) as compared to trivalent metal ions. CDA and ECDA analyses along with orbital-based population analyses confirmed the higher ligand to metal charge transfer for An4+ than for trivalent metal ions. Furthermore, the aromaticity index analysis suggested the presence of crucial chelatoaromatic stabilization for all these metal ions with the maximum for An4+. QTAIM descriptors indicated that the binding of An/Ln with the hard oxygen donor of the ligands is of the donor-acceptor type but a higher degree of covalency exists for actinides as compared to lanthanides. Furthermore, QTAIM and molecular orbital analysis confirmed that such covalency is of the energy-driven type and strictly originates from the orbital mixing event of An-5f orbitals with the ligand orbitals.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India.
| | | |
Collapse
|
16
|
Qiao B, Skanthakumar S, Soderholm L. Comparative CHARMM and AMOEBA Simulations of Lanthanide Hydration Energetics and Experimental Aqueous-Solution Structures. J Chem Theory Comput 2018; 14:1781-1790. [DOI: 10.1021/acs.jctc.7b01018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Baofu Qiao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
17
|
Montagna M, Spezia R, Bodo E. Solvation Properties of the Actinide Ion Th(IV) in DMSO and DMSO:Water Mixtures through Polarizable Molecular Dynamics. Inorg Chem 2017; 56:11929-11937. [DOI: 10.1021/acs.inorgchem.7b01900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Montagna
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185, Rome, Italy
| | - Riccardo Spezia
- LAMBE, Université d’Evry Val d’Essonne, CEA, CNRS, Université Paris Saclay, F-91025 Evry, France
| | - Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Skanthakumar S, Jin GB, Lin J, Vallet V, Soderholm L. Linking Solution Structures and Energetics: Thorium Nitrate Complexes. J Phys Chem B 2017; 121:8577-8584. [PMID: 28817281 DOI: 10.1021/acs.jpcb.7b06567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking predictive insights into how metal-ion speciation impacts solution chemistry as well as the composition and structure of solid-precipitates, thorium correlations, with both solvent and other solute ions, were quantitatively probed in a series of acidic, nitrate/perchlorate solutions held at constant ionic strength. Difference pair-distribution functions (dPDF), obtained from high-energy X-ray scattering (HEXS) data, provide unprecedented structural information on the number of Th ligating ions in solution and how they change with increasing nitrate concentration. A fit of the end member solution, Th (4 m perchloric acid and no nitrate), reveals a homoleptic Th aqua ion with 10 waters in its first coordination shell. Analyses of the acidic solutions containing nitrate reveal exclusively bidentate NO3- complexation with Th, consistent with published solid-state MIV nitrate structures, where MIV = Ce, Th, U, Np, Pu. Metrical fits of Th coordination as a function of nitrate concentration are used to calculate Th-NO3 stability constants, information important to a molecular-scale description of reaction energetics. The coordination environments of Th in solution were compared with single-crystal structures obtained from their precipitates, Th(NO3)4(H2O)4 and Th(NO3)4(H2O)3·(H2O)2. Relative stabilities of the solid-state compounds, assessed based on the results of molecular quantum chemical calculations, reveal the importance of including an accurate description of complexed waters when predicting relative energetics of dissolved ions in aqueous solution.
Collapse
Affiliation(s)
- S Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Geng Bang Jin
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Jian Lin
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules , F-59000 Lille, France
| | - L Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
19
|
Wacker JN, Vasiliu M, Huang K, Baumbach RE, Bertke JA, Dixon DA, Knope KE. Uranium(IV) Chloride Complexes: UCl62– and an Unprecedented U(H2O)4Cl4 Structural Unit. Inorg Chem 2017; 56:9772-9780. [DOI: 10.1021/acs.inorgchem.7b01293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer N. Wacker
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Monica Vasiliu
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kevin Huang
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Ryan E. Baumbach
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
20
|
|
21
|
Aupiais J, Younes A, Moisy P, Hennig C, Rossberg A, Brunel B, Kerbaa M, Vidaud C, Den Auwer C. Structural and thermodynamic investigation of AnIVLI(O)HOPO. NEW J CHEM 2017. [DOI: 10.1039/c7nj02123b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, capillary electrophoresis coupled with inductively coupled plasma mass spectrometry has been used to determine the stability constants of PuIV with the multidentate hydroxypyridinonate chelating agents LI(O)HOPO in 0.1 M NaNO3 solution, pcH = 1.395 at 25 °C through competition with the NTA ligand.
Collapse
Affiliation(s)
| | - A. Younes
- CEA
- DRF
- BIAM
- F-30207 Bagnols sur Cèze
- France
| | - P. Moisy
- CEA
- Nuclear Energy Division
- Research Department of Mining and Fuel Recycling Processes
- F-30207 Bagnols sur Cèze
- France
| | - C. Hennig
- HZDR
- Institute of Resource Ecology
- 01314 Dresden
- Germany and Rossendorf Beamline
- ESRF
| | - A. Rossberg
- HZDR
- Institute of Resource Ecology
- 01314 Dresden
- Germany and Rossendorf Beamline
- ESRF
| | - B. Brunel
- CEA
- DAM
- DIF
- F-91297 Arpajon cedex
- France
| | - M. Kerbaa
- CEA
- DAM
- DIF
- F-91297 Arpajon cedex
- France
| | - C. Vidaud
- CEA
- DRF
- BIAM
- F-30207 Bagnols sur Cèze
- France
| | - C. Den Auwer
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice
- 06108 Nice
- France
| |
Collapse
|
22
|
Atta-Fynn R, Bylaska EJ, de Jong WA. Strengthening of the Coordination Shell by Counter Ions in Aqueous Th4+ Solutions. J Phys Chem A 2016; 120:10216-10222. [DOI: 10.1021/acs.jpca.6b09878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raymond Atta-Fynn
- Department
of Physics, The University of Texas at Arlington, Arlington, Texas 76006, United States
| | - Eric J. Bylaska
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wibe A. de Jong
- Computational
Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Gorden AEV, McKee ML. Computational Study of Reduction Potentials of Th4+ Compounds and Hydrolysis of ThO2(H2O)n, n = 1, 2, 4. J Phys Chem A 2016; 120:8169-8183. [DOI: 10.1021/acs.jpca.6b08472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne E. V. Gorden
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Michael L. McKee
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
24
|
Lin J, Jin GB, Soderholm L. Th3[Th6(OH)4O4(H2O)6](SO4)12(H2O)13: A Self-Assembled Microporous Open-Framework Thorium Sulfate. Inorg Chem 2016; 55:10098-10101. [DOI: 10.1021/acs.inorgchem.6b01762] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Lin
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Geng Bang Jin
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
25
|
Montagna M, Jeanvoine Y, Spezia R, Bodo E. Structure, Stability, and Electronic Properties of Dimethyl Sulfoxide and Dimethyl Formammide Clusters Containing Th(4.). J Phys Chem A 2016; 120:4778-88. [PMID: 26757255 DOI: 10.1021/acs.jpca.5b12007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By using accurate density functional theory calculations, we have studied the complexes of Th(4+) with dimethyl-sulfoxide (DMSO) and dimethyl-formammide (DMF) molecules. These solvents are prototypes for oxygen-donor organic environments in which the oxygen atom is connected to S and C atom, respectively. Extended structural, energetic, and electronic structure analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of Th(4+) with the two solvents. By using a cluster grow approach, we have found that, very likely, the first solvation shell contains nine molecules in the case of DMSO, while it contains eight molecules for DMF. The theoretical results shown here are in agreement with experimental data taken from the literature.
Collapse
Affiliation(s)
- Maria Montagna
- Department of Chemistry, University of Rome "La Sapienza" , 00185 Roma, Italy
| | - Yannick Jeanvoine
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS, Université d'Evry-Val-d'Essonne , 91000 Évry, France
| | - Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS, Université d'Evry-Val-d'Essonne , 91000 Évry, France
| | - Enrico Bodo
- Department of Chemistry, University of Rome "La Sapienza" , 00185 Roma, Italy
| |
Collapse
|
26
|
Banik NL, Vallet V, Réal F, Belmecheri RM, Schimmelpfennig B, Rothe J, Marsac R, Lindqvist-Reis P, Walther C, Denecke MA, Marquardt CM. First structural characterization of Pa(iv) in aqueous solution and quantum chemical investigations of the tetravalent actinides up to Bk(IV): the evidence of a curium break. Dalton Trans 2016; 45:453-7. [PMID: 26465740 DOI: 10.1039/c5dt03560k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
More than a century after its discovery the structure of the Pa(4+) ion in acidic aqueous solution has been investigated for the first time experimentally and by quantum chemistry. The combined results of EXAFS data and quantum chemically optimized structures suggest that the Pa(4+) aqua ion has an average of nine water molecules in its first hydration sphere at a mean Pa-O distance of 2.43 Å. The data available for the early tetravalent actinide (An) elements from Th(4+) to Bk(4+) show that the An-O bonds have a pronounced electrostatic character, with bond distances following the same monotonic decreasing trend as the An(4+) ionic radii, with a decrease of the hydration number from nine to eight for the heaviest ions Cm(4+) and Bk(4+). Being the first open-shell tetravalent actinide, Pa(4+) features a coordination chemistry very similar to its successors. The electronic configuration of all open-shell systems corresponds to occupation of the valence 5f orbitals, without contribution from the 6d orbitals. Our results thus demonstrate that Pa(iv) resembles its early actinide neighbors.
Collapse
Affiliation(s)
- Nidhu lal Banik
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Valérie Vallet
- Laboratoire PhLAM, UMR-CNRS 8523, Université Lille 1 (Sciences et Technologies), F-59655 Villeneuve d'Ascq, France
| | - Florent Réal
- Laboratoire PhLAM, UMR-CNRS 8523, Université Lille 1 (Sciences et Technologies), F-59655 Villeneuve d'Ascq, France
| | - Réda Mohamed Belmecheri
- Laboratoire de Thermodynamique et Modélisation Moléculaire, Faculté de Chimie, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Algeria
| | - Bernd Schimmelpfennig
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Jörg Rothe
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Rémi Marsac
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Patric Lindqvist-Reis
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz, Leibniz Universität Hannover, Hannover, Germany
| | - Melissa A Denecke
- Dalton Nuclear Institute, The University of Manchester, Manchester, UK
| | - Christian M Marquardt
- Institut für Nukleare Entsorgung, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
27
|
Shi WQ, Yuan LY, Wang CZ, Wang L, Mei L, Xiao CL, Zhang L, Li ZJ, Zhao YL, Chai ZF. Exploring actinide materials through synchrotron radiation techniques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7807-7848. [PMID: 25169914 DOI: 10.1002/adma.201304323] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well.
Collapse
Affiliation(s)
- Wei-Qun Shi
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Enegy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu JB, Chen X, Qiu YH, Xu CF, Schwarz WHE, Li J. Theoretical Studies of Structure and Dynamics of Molten Salts: The LiF–ThF4 System. J Phys Chem B 2014; 118:13954-62. [DOI: 10.1021/jp509425p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian-Biao Liu
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
- College
of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin Chen
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yi-Heng Qiu
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chao-Fei Xu
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - W. H. Eugen Schwarz
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department
of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular
Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Li P, Song LF, Merz KM. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B 2014; 119:883-95. [PMID: 25145273 PMCID: PMC4306492 DOI: 10.1021/jp505875v] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Highly charged metal ions act as
catalytic centers and structural
elements in a broad range of chemical complexes. The nonbonded model
for metal ions is extensively used in molecular simulations due to
its simple form, computational speed, and transferability. We have
proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded
model for divalent metal ions in previous work, which showed a marked
improvement over the 12-6 LJ nonbonded model. In the present study,
by treating the experimental hydration free energies and ion–oxygen
distances of the first solvation shell as targets for our parametrization,
we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions
for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6
LJ nonbonded model increases dramatically for the highly charged metal
ions. We then parametrized the 12-6-4 LJ-type nonbonded model for
these metal ions with the three water models. The final parameters
reproduced the target values with good accuracy, which is consistent
with our previous experience using this potential. Finally, tests
were performed on a protein system, and the obtained results validate
the transferability of these nonbonded model parameters.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | | | | |
Collapse
|
31
|
Mostapha S, Fontaine-Vive F, Berthon L, Boubals N, Zorz N, Solari PL, Charbonnel MC, Den Auwer C. On the structure of thorium and americium adenosine triphosphate complexes. Int J Radiat Biol 2014; 90:966-74. [PMID: 24499480 DOI: 10.3109/09553002.2014.886795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. MATERIALS AND METHODS Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electrospray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. RESULTS We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. CONCLUSIONS The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes.
Collapse
Affiliation(s)
- Sarah Mostapha
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Marcoule, Nuclear Energy Division, Radiochemistry and Processes Department , 30207 Bagnols sur Cèze
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Spezia R, Jeanvoine Y, Beuchat C, Gagliardi L, Vuilleumier R. Hydration properties of Cm(iii) and Th(iv) combining coordination free energy profiles with electronic structure analysis. Phys Chem Chem Phys 2014; 16:5824-32. [DOI: 10.1039/c3cp54958e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Density functional theoretical study on the preferential selectivity of macrocyclic dicyclohexano-18-crown-6 for Sr+2 ion over Th+4 ion during extraction from an aqueous phase to organic phases with different dielectric constants. J Mol Model 2013; 19:5277-91. [DOI: 10.1007/s00894-013-2015-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/15/2013] [Indexed: 11/25/2022]
|
34
|
Réal F, Vallet V, Flament JP, Masella M. Revisiting a many-body model for water based on a single polarizable site: From gas phase clusters to liquid and air/liquid water systems. J Chem Phys 2013; 139:114502. [DOI: 10.1063/1.4821166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
35
|
Hu YJ, Knope KE, Skanthakumar S, Kanatzidis MG, Mitchell JF, Soderholm L. Understanding the role of aqueous solution speciation and its application to the directed syntheses of complex oxidic Zr chlorides and sulfates. J Am Chem Soc 2013; 135:14240-8. [PMID: 23968256 DOI: 10.1021/ja405555h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of an in-depth understanding of solution-phase speciation and its relationship to solid-state phase formation is a grand challenge in synthesis science. It has severely limited the ability of inorganic chemists to predict or rationalize the formation of compounds from solutions. The need to investigate mechanisms that underlie self-assembly has motivated this study of aqueous Zr-sulfate chemistry as a model system, with the goal of understanding the structures of oligomeric clusters present in solution. We used high-energy X-ray scattering (HEXS) data to quantify Zr correlations in a series of solutions as a function of sulfate concentration. The pair distribution function (PDF) from the sulfate-free sample reveals that the average oligomeric Zr moiety is larger than the tetrameric building unit, [Zr4(OH)8(H2O)16](8+), generally understood to dominate its solution speciation. At sulfate concentrations greater than 1 m (molal), bidentate sulfate is observed, a coordination not seen in Zr(SO4)2·4H2O (2), which forms upon evaporation. Also seen in solution are correlations consistent with sulfate-bridged Zr dimers and the higher-order oligomers seen in 2. At intermediate sulfate concentrations there are correlations consistent with large Zr hydroxo-/oxo-bridged clusters. Crystals of [Zr18(OH)26O20(H2O)23.2(SO4)12.7]Cl0.6·nH2O (3) precipitate from these solutions. The Raman spectrum of 3 has a peak at 1017 cm(-1) that can be used as a signature for its presence in solution. Raman studies on deuterated solutions point to the important role of sulfate in the crystallization process. These solution results emphasize the presence of well-defined prenucleation correlations on length scales of <1 nm, often considered to be within the structurally amorphous regime.
Collapse
Affiliation(s)
- Yung-Jin Hu
- Chemical Sciences and Engineering Division, ‡Materials Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | | | | | | | | |
Collapse
|
36
|
Fairley M, Unruh DK, Donovan A, Abeysinghe S, Forbes TZ. Synthesis and characterization of homo- and heteronuclear molecular Al3+ and Th4+ species chelated by the ethylenediaminetetraacetate (edta) ligand. Dalton Trans 2013; 42:13706-14. [DOI: 10.1039/c3dt51517f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Réal F, Trumm M, Schimmelpfennig B, Masella M, Vallet V. Further insights in the ability of classical nonadditive potentials to model actinide ion-water interactions. J Comput Chem 2012; 34:707-19. [DOI: 10.1002/jcc.23184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/12/2012] [Accepted: 10/19/2012] [Indexed: 11/06/2022]
|
38
|
Knope KE, Soderholm L. Solution and Solid-State Structural Chemistry of Actinide Hydrates and Their Hydrolysis and Condensation Products. Chem Rev 2012; 113:944-94. [DOI: 10.1021/cr300212f] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karah E. Knope
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| |
Collapse
|
39
|
Conversion of thorium(IV) oxide into thorium(IV) trifluoromethanesulfonate: Crystal structure of thorium(IV) trifluoromethanesulfonate dihydrate. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Smirnov PR, Trostin VN. Sructural parameters of the nearest surrounding of tri- and tetravalent actinide ions in aqueous solutions of actinide salts. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212070031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Wilson RE. Structural Periodicity in the Coordination Chemistry of Aqueous Pu(IV) Sulfates. Inorg Chem 2012; 51:8942-7. [DOI: 10.1021/ic301025f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard E. Wilson
- Chemical Sciences
and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| |
Collapse
|
42
|
Vasiliu M, Knope KE, Soderholm L, Dixon DA. Spectroscopic and Energetic Properties of Thorium(IV) Molecular Clusters with a Hexanuclear Core. J Phys Chem A 2012; 116:6917-26. [DOI: 10.1021/jp303493t] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Monica Vasiliu
- Chemistry
Department, The University of Alabama,
Shelby Hall, Box 870336,
Tuscaloosa, Alabama 35487-0336, United States
| | - Karah E. Knope
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| | - David A. Dixon
- Chemistry
Department, The University of Alabama,
Shelby Hall, Box 870336,
Tuscaloosa, Alabama 35487-0336, United States
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| |
Collapse
|
43
|
Spezia R, Beuchat C, Vuilleumier R, D’Angelo P, Gagliardi L. Unravelling the Hydration Structure of ThX4 (X = Br, Cl) Water Solutions by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. J Phys Chem B 2012; 116:6465-75. [DOI: 10.1021/jp210350b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Riccardo Spezia
- CNRS, Laboratoire Analyse et
Modélisation pour la Biologie et l’Environnement, UMR 8587 Université d’Evry Val d’Essonne, 91025 Evry Cedex, France
| | - Cesar Beuchat
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211
Geneva, Switzerland
| | - Rodolphe Vuilleumier
- Ecole Normale Supérieure, Département
de Chimie, 24, rue Lhomond, 75005 Paris, France,
and UPMC Univ Paris 06, 4, Place Jussieu,
75005 Paris, UMR 8640 CNRS-ENS-UPMC, France
| | - Paola D’Angelo
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5,
00185 Roma, Italy
| | - Laura Gagliardi
- Department
of Chemistry and
Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United
States
| |
Collapse
|
44
|
Hennig C, Takao S, Takao K, Weiss S, Kraus W, Emmerling F, Scheinost AC. Structure and stability range of a hexanuclear Th(iv)–glycine complex. Dalton Trans 2012; 41:12818-23. [DOI: 10.1039/c2dt31367g] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Walther C, Rothe J, Schimmelpfennig B, Fuss M. Thorium nanochemistry: the solution structure of the Th(iv)–hydroxo pentamer. Dalton Trans 2012; 41:10941-7. [DOI: 10.1039/c2dt30243h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Wilson RE, Skanthakumar S, Cahill CL, Soderholm L. Structural Studies Coupling X-ray Diffraction and High-Energy X-ray Scattering in the UO22+–HBraq System. Inorg Chem 2011; 50:10748-54. [DOI: 10.1021/ic201265s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - C. L. Cahill
- Department of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
47
|
Knope KE, Wilson RE, Skanthakumar S, Soderholm L. Synthesis and Characterization of Thorium(IV) Sulfates. Inorg Chem 2011; 50:8621-9. [DOI: 10.1021/ic201175u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karah E. Knope
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
48
|
Schmidt M, Eng PJ, Stubbs JE, Fenter P, Soderholm L. A new x-ray interface and surface scattering environmental cell design for in situ studies of radioactive and atmosphere-sensitive samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:075105. [PMID: 21806225 DOI: 10.1063/1.3605484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a novel design of a purpose-built, portable sample cell for in situ x-ray scattering experiments of radioactive or atmosphere sensitive samples. The cell has a modular design that includes two independent layers of containment that are used simultaneously to isolate the sensitive samples. Both layers of containment can be flushed with an inert gas, thus serving a double purpose as containment of radiological material (either as a solid sample or as a liquid phase) and in separating reactive samples from the ambient atmosphere. A remote controlled solution flow system is integrated into the containment system that allows sorption experiments to be performed on the diffractometer. The cell's design is discussed in detail and we demonstrate the cell's performance by presenting first results of crystal truncation rod measurements. The results were obtained from muscovite mica single crystals reacted with 1 mM solutions of Th(IV) with 0.1 M NaCl background electrolyte. Data were obtained in specular as well as off-specular geometry.
Collapse
Affiliation(s)
- M Schmidt
- Argonne National Laboratory, Chemical Sciences and Engineering Division, Argonne, Illinois 60439, USA.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
50
|
Soderholm L, Skanthakumar S, Wilson RE. Structural Correspondence between Uranyl Chloride Complexes in Solution and Their Stability Constants. J Phys Chem A 2011; 115:4959-67. [DOI: 10.1021/jp111551t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|