1
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Chen MM, Xu CH, Zhao W, Chen HY, Xu JJ. Super-Resolution Electrogenerated Chemiluminescence Microscopy for Single-Nanocatalyst Imaging. J Am Chem Soc 2021; 143:18511-18518. [PMID: 34699210 DOI: 10.1021/jacs.1c07827] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrogenerated chemiluminescence microscopy (ECLM) provides a real-time imaging approach to visualize the surface-dependent catalytic activity of nanocatalysts, which helps to rationalize the design of catalysts. In this study, we first propose super-resolution ECLM that could measure the facet- and site-specific activities of a single nanoparticle with nanometer resolution. The stochastic nature of the ECL emission makes the generation of photons obey Poisson statistics, which fits the requirement of super-resolution radial fluctuation (SRRF). By processing an SRRF algorithm, the spatial resolution of ECL images achieved ca. 100 nm, providing more abundant details on electrocatalytic reactivities at the subparticle level. Beyond conventional wide-field ECL imaging, super-resolution ECLM provided the spatial distribution of catalytic activities at a Au nanorod and nanoplate with scales of a few hundred nanometers. It helped uncover the facet- and defect-dependent surface activity, as well as the dynamic fluctuation of reactivity patterns on single nanoparticles. The super-resolution ECLM provides high spatiotemporal resolution, which shows great potential in the field of catalysis, biological imaging, and single-entity analysis.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Amrollahi P, Zheng W, Monk C, Li CZ, Hu TY. Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes. ACS APPLIED BIO MATERIALS 2021; 4:6589-6603. [PMID: 35006963 PMCID: PMC9130051 DOI: 10.1021/acsabm.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Pouya Amrollahi
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Wenshu Zheng
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chandler Monk
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chen-Zhong Li
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
4
|
Akil S, Omar R, Kuznetsov D, Shur V, En Naciri A, Jradi S. Advanced Large-Scale Nanofabrication Route for Ultrasensitive SERS Platforms Based on Precisely Shaped Gold Nanostructures. NANOMATERIALS 2021; 11:nano11071806. [PMID: 34361192 PMCID: PMC8308318 DOI: 10.3390/nano11071806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
One of the key issues for SERS-based trace applications is engineering structurally uniform substrates with ultrasensitivity, stability, and good reproducibility. A label-free, cost-effective, and reproducible fabrication strategy of ultrasensitive SERS sensors was reported in this work. Herein, we present recent progress in self-assembly-based synthesis to elaborate precisely shaped and abundant gold nanoparticles in a large area. We demonstrated that shape control is driven by the selective adsorption of a cation (Na+, K+, and H+) on a single facet of gold nanocrystal seeds during the growth process. We studied SERS features as a function of morphology. Importantly, we found a correlation between the shape and experimental SERS enhancement factors. We observed a detection threshold of 10-20 M of bipyridine ethylene (BPE), which matches the lowest value determined in literature for BPE until now. Such novel sensing finding could be very promising for diseases and pathogen detection and opens up an avenue toward predicting which other morphologies could offer improved sensitivity.
Collapse
Affiliation(s)
- Suzanna Akil
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France; (R.O.); (A.E.N.)
- Correspondence: ; Tel.: +33-6-1839-3579
| | - Rana Omar
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France; (R.O.); (A.E.N.)
| | - Dmitry Kuznetsov
- School of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russia; (D.K.); (V.S.)
| | - Vladimir Shur
- School of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russia; (D.K.); (V.S.)
| | - Aotmane En Naciri
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France; (R.O.); (A.E.N.)
| | - Safi Jradi
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS ERL 7004, University of Technology of Troyes, 12 Rue Marie Curie, 10004 Troyes, France;
| |
Collapse
|
5
|
Zhou Z, Zhao J, Di Z, Liu B, Li Z, Wu X, Li L. Core-shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy. NANOSCALE 2021; 13:131-137. [PMID: 33336679 DOI: 10.1039/d0nr07681c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the increasing usage of porphyrinic metal-organic frameworks (MOFs) for combination therapy, the controlled encapsulation of inorganic nanoparticle-based therapeutics into such MOFs with specific structures has remained a major obstacle for improved tumor therapy. Here, we report the synthesis of a mesoporous MOF shell on the surface of gold nanorods (AuNRs), wherein a single AuNR is captured individually in single-crystalline MOFs with a controlled crystallographic orientation, for combinational phototherapy against solid tumors. The core-shell heterostructures have the benefits of a mesoporous structure and photoinduced singlet oxygen generation behavior characterized by the porphyrinic MOF shell, together with the plasmonic photothermal conversion characteristic of AuNRs. We demonstrated that the AuNR@MOF nanoplatform enables an efficient tumor treatment strategy by combining photodynamic therapy and photothermal therapy. We should emphasize that such systems could have applications beyond the field of cancer therapy, like plasmonic harvesting of light energy to induce and accelerate catalytic reactions within MOFs and multifunctional nanocarriers for agricultural formulations.
Collapse
Affiliation(s)
- Zehao Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abbas SA, Ma A, Seo D, Lim YJ, Jung K, Nam KM. Application of Spiky Nickel Nanoparticles to Hydrogen Evolution Reaction. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Syed Asad Abbas
- Department of Chemistry and Chemistry Institute of Functional Materials Pusan National University Busan 46241 Korea
| | - Ahyeon Ma
- Department of Chemistry and Chemistry Institute of Functional Materials Pusan National University Busan 46241 Korea
| | - Dongho Seo
- Department of Chemistry and Chemistry Institute of Functional Materials Pusan National University Busan 46241 Korea
| | - Yun Ji Lim
- Department of Chemistry and Chemistry Institute of Functional Materials Pusan National University Busan 46241 Korea
| | - Kwang‐Deog Jung
- Center for Clean Energy and Chemical Engineering Korea Institute of Science and Technology Seoul 02792 Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute of Functional Materials Pusan National University Busan 46241 Korea
| |
Collapse
|
7
|
Im SW, Ahn HY, Kim RM, Cho NH, Kim H, Lim YC, Lee HE, Nam KT. Chiral Surface and Geometry of Metal Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905758. [PMID: 31834668 DOI: 10.1002/adma.201905758] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Indexed: 05/15/2023]
Abstract
Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
8
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Thambi V, Kar A, Ghosh P, Paital D, Gautam ARS, Khatua S. Synthesis of Complex Nanoparticle Geometries via pH-Controlled Overgrowth of Gold Nanorods. ACS OMEGA 2019; 4:13733-13739. [PMID: 31497690 PMCID: PMC6714510 DOI: 10.1021/acsomega.9b01119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/01/2019] [Indexed: 05/29/2023]
Abstract
We show that many complex gold nanostructures such as the water chestnut, dog bone, nanobar, and octahedron, which are not easily accessible via a direct seed-growth synthesis approach, can be prepared via overgrowth of the same gold nanorods by varying pH and Ag concentrations in the growth solution. Overgrown nanostructures' shapes were determined by the rate of gold atom deposition, which is faster at higher pH. In the presence of AgNO3, codeposition of gold and silver atoms affects the shapes of overgrown nanostructures, particularly at high pH.
Collapse
Affiliation(s)
- Varsha Thambi
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Ashish Kar
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Piue Ghosh
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Diptiranjan Paital
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Abhay Raj Singh Gautam
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Saumyakanti Khatua
- Discipline
of Chemistry, Discipline of Electrical Engineering, and Discipline of
Material Science and Engineering, Indian
Institute of Technology Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
Tzounis L, Doña M, Lopez-Romero JM, Fery A, Contreras-Caceres R. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29360-29372. [PMID: 31329406 DOI: 10.1021/acsami.9b10773] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A novel wet-chemical protocol is reported for the synthesis of "temperature-programmable" catalytic colloids consisting of bimetallic core@shell AuAg nanoparticles encapsulated into poly(N-isopropylacrylamide) (pNIPAM) microgels with silver satellites (AgSTs) incorporated within the microgel structure. Spherical AuNPs of 50 nm in diameter are initially synthesized and used for growing a pNIPAM microgel shell with temperature stimulus response. A silver shell is subsequently grown on the Au core by diffusing Ag salt through the hydrophilic pNIPAM microgel (AuAg@pNIPAM microgel). The use of allylamine as a co-monomer during pNIPAM polymerization facilitates the coordination of Ag+ with the NH2 nitrogen lone pair of electrons, which are reduced to Ag seeds (∼14 nm) using a strong reducing agent, obtaining thus AuAg@pNIPAM@Ag hybrid microgels. The two systems are tested as catalysts toward the reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) by NaBH4. Both exhibit extremely sensitive temperature-dependent reaction rate constants, with the highest K1 value of the order of 0.6 L/m2 s, which is one of the highest values ever reported. The presence of plasmonic entities is confirmed by UV-vis spectroscopy. Dynamic light scattering proves the temperature responsiveness in all cases. Transmission electron microscopy and energy-dispersive X-ray (EDX) elemental mapping highlight the monodispersity of the synthesized hybrid nanostructured microgels, as well as their size and metallic composition. The amount of gold and silver in both systems is obtained by thermogravimetric analysis and the EDX spectrum. The reduction reaction kinetics is monitored by UV-vis spectroscopy at different temperatures for both catalytic systems, with the AuAg@pNIPAM@Ag microgels showing superior catalytic performance at all temperatures because of the synergistic effect of the AuAg core and the AgSTs. The principal novelty of this study lies in the "hierarchical" design of the metal-polymer-metal core@shell@satellite nanostructured colloids exhibiting synergistic capabilities of the plasmonic NPs for, among others, temperature-controlled catalytic applications.
Collapse
Affiliation(s)
- Lazaros Tzounis
- Department of Materials Science & Engineering , University of Ioannina , GR-45110 Ioannina , Greece
- Printed Electronic Devices of Things P.C. (PDoT) , Makrinitsis 122 , GR-38333 Volos , Greece
| | - Manuel Doña
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Juan Manuel Lopez-Romero
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Rafael Contreras-Caceres
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy , Complutense University of Madrid , Plaza Ramon y Cajal , 28040 Madrid , Spain
| |
Collapse
|
11
|
Pazos-Perez N, Guerrini L, Alvarez-Puebla RA. Plasmon Tunability of Gold Nanostars at the Tip Apexes. ACS OMEGA 2018; 3:17173-17179. [PMID: 31458336 PMCID: PMC6643923 DOI: 10.1021/acsomega.8b02686] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/27/2018] [Indexed: 05/25/2023]
Abstract
Herein, we present an optimized bottom-up approach to fabricate homogeneous Au nanostars with plasmon resonances fully tunable between the red and the infrared. The synthetic method relies on the kinetic control of the reaction upon optimization of the reactant concentrations (i.e., gold seeds, reducing agent, and gold salt). Optical enhancing properties of the obtained materials are demonstrated by using SERS with visible and infrared lasers.
Collapse
Affiliation(s)
- Nicolas Pazos-Perez
- Departamento
de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili, Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Luca Guerrini
- Departamento
de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili, Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili, Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Szychowski B, Leng H, Pelton M, Daniel MC. Controlled etching and tapering of Au nanorods using cysteamine. NANOSCALE 2018; 10:16830-16838. [PMID: 30167608 DOI: 10.1039/c8nr05325a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While gold nanorods (AuNRs) have found many applications due to their unique optical properties, a few challenges persist in their synthesis. Namely, it is often difficult to reproducibly synthesize AuNRs with specific and monodisperse sizes, especially at shorter aspect ratios. Here, we report a method of post-synthesis precise tailoring of AuNRs by etching with cysteamine. Cysteamine selectively etches AuNRs from their ends while preserving the initial rod shape and monodispersity, making this a viable means of obtaining highly monodisperse short AuNRs down to aspect ratio 2.3. Further, we explore the effect of this etching method on two types of silica-coated AuNRs: silica side-coated and silica end-coated AuNRs. We find that the etching process is cysteamine concentration-dependent and can lead to different degrees of sharpening of the silica-coated AuNRs, forming elongated tips. We also find that cysteamine behaves only as a ligand at concentrations above 200 mM, as no etching of the AuNRs is observed in this condition. Simulations show that excitation of plasmon resonances in these sharpened AuNRs produces local electric fields twice as strong as those produced by conventional AuNRs. Thus, cysteamine etching of AuNRs is shown to be an effective means of tailoring both the size and shape of AuNRs along with their corresponding optical properties. At the same time, the resulting cysteamine coating on the etched AuNRs displays terminal amino groups that allow for further functionalization of the nanorods.
Collapse
Affiliation(s)
- Brian Szychowski
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
14
|
González-Rubio G, de Oliveira TM, Altantzis T, La Porta A, Guerrero-Martínez A, Bals S, Scarabelli L, Liz-Marzán LM. Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth. Chem Commun (Camb) 2018; 53:11360-11363. [PMID: 28971189 DOI: 10.1039/c7cc06854a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative etching was used to produce gold seeds of different sizes and crystal habits. Following detailed characterization, the seeds were grown under different conditions. Our results bring new insights toward understanding the effect of size and crystallinity on the growth of anisotropic particles, whilst identifying guidelines for the optimisation of new synthetic protocols of predesigned seeds.
Collapse
Affiliation(s)
- Guillermo González-Rubio
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain. and Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain and Ciber de Bioingeniería, Biomateriales y Nanomedicina, Ciber-BBN, 20014 Donostia-San Sebastián, Spain
| | | | - Thomas Altantzis
- EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Andrea La Porta
- EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Andrés Guerrero-Martínez
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Sara Bals
- EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain. and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA. and California NanoSystems Institute, UCLA, Los Angeles, California 90095, USA
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain. and Ciber de Bioingeniería, Biomateriales y Nanomedicina, Ciber-BBN, 20014 Donostia-San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017; 117:11476-11521. [DOI: 10.1021/acs.chemrev.7b00194] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Calum Kinnear
- Bio21 Institute & School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
16
|
Kinnear C, Rodriguez-Lorenzo L, Clift MJD, Goris B, Bals S, Rothen-Rutishauser B, Petri-Fink A. Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. NANOSCALE 2016; 8:16416-16426. [PMID: 27714053 DOI: 10.1039/c6nr03543d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The impact of nanoparticles (NPs) upon biological systems can be fundamentally associated with their physicochemical parameters. A further often-stated tenet is the importance of NP shape on rates of endocytosis. However, given the convoluted parameters concerning the NP-cell interaction, it is experimentally challenging to attribute any findings to shape alone. Herein we demonstrate that shape, below a certain limit, which is specific to nanomedicine, is not important for the endocytosis of spherocylinders by either epithelial or macrophage cells in vitro. Through a systematic approach, we reshaped a single batch of gold nanorods into different aspect ratios resulting in near-spheres and studied their cytotoxicity, (pro-)inflammatory status, and endocytosis/exocytosis. It was found that on a length scale of ∼10-90 nm and at aspect ratios less than 5, NP shape has little impact upon their entry into either macrophages or epithelial cells. Conversely, nanorods with an aspect ratio above 5 were preferentially endocytosed by epithelial cells, whereas there was a lack of shape dependent uptake following exposure to macrophages in vitro. These findings have implications both in the understanding of nanoparticle reshaping mechanisms, as well as in the future rational design of nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- C Kinnear
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - L Rodriguez-Lorenzo
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - M J D Clift
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - B Goris
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Antwerp 2020, Belgium
| | - S Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Antwerp 2020, Belgium
| | | | - A Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland and Chemistry Department, University of Fribourg, Fribourg 1700, Switzerland.
| |
Collapse
|
17
|
Abstract
Background: Photothermal response of plasmonic nanomaterials can be utilized for a number of therapeutic applications such as the ablation of solid tumors. Methods & results: Gold nanoparticles were prepared using different methods. After optimization, we applied an aqueous plant extract as the reducing and capping agent of gold and maximized the near-infrared absorption (650–900 nm). Resultant nanoparticles showed good biocompatibility when tested in vitro in human keratinocytes and yeast Saccharomyces cerevisiae. Gold nanoparticles were easily activated by controlled temperature with an ultrasonic water bath and application of a pulsed laser. Conclusion: These gold nanoparticles can be synthesized with reproducibility, modified with seemingly limitless chemical functional groups, with adequate controlled optical properties for laser phototherapy of tumors and targeted drug delivery.
Collapse
|
18
|
Underpotential Deposition and Related Phenomena at the Nanoscale: Theory and Applications. UNDERPOTENTIAL DEPOSITION 2016. [DOI: 10.1007/978-3-319-24394-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán LM. A "Tips and Tricks" Practical Guide to the Synthesis of Gold Nanorods. J Phys Chem Lett 2015; 6:4270-9. [PMID: 26538043 DOI: 10.1021/acs.jpclett.5b02123] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramon 182, 20009 Donostia-San Sebastian, Spain
| | - Ana Sánchez-Iglesias
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramon 182, 20009 Donostia-San Sebastian, Spain
| | - Jorge Pérez-Juste
- Departamento de Quı́mica Fı́sica, Universidade de Vigo , 36310 Vigo, Spain
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramon 182, 20009 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
| |
Collapse
|
20
|
Carbó-Argibay E, Rodríguez-González B. Controlled Growth of Colloidal Gold Nanoparticles: Single-Crystalline versus Multiply-twinned Particles. Isr J Chem 2015. [DOI: 10.1002/ijch.201500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Affiliation(s)
- Xuan Yang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Bo Pang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
DNA-Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Song T, Tang L, Tan LH, Wang X, Satyavolu NSR, Xing H, Wang Z, Li J, Liang H, Lu Y. DNA-Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angew Chem Int Ed Engl 2015; 54:8114-8. [DOI: 10.1002/anie.201500838] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Indexed: 01/12/2023]
|
24
|
Anisotropic Gold Nanoparticles: Preparation, Properties, and Applications. ANISOTROPIC NANOMATERIALS 2015. [DOI: 10.1007/978-3-319-18293-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 2015; 44:17883-905. [DOI: 10.1039/c5dt02964c] [Citation(s) in RCA: 911] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The versatile role of PVP in nanoparticle synthesis is discussed in this Perspective article.
Collapse
Affiliation(s)
| | | | - Lakshminarayana Polavarapu
- Photonics and Optoelectronics Group
- Department of Physics and CeNS
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | | |
Collapse
|
26
|
Liu W, Zhang H, Wen T, Yan J, Hou S, Shi X, Hu Z, Ji Y, Wu X. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12376-12383. [PMID: 25244407 DOI: 10.1021/la502623t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.
Collapse
Affiliation(s)
- Wenqi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology , Beijing 100190, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sánchez-García L, Ramírez MO, Molina P, Gallego-Gómez F, Mateos L, Yraola E, Carvajal JJ, Aguiló M, Díaz F, de Las Heras C, Bausá LE. Blue SHG enhancement by silver nanocubes photochemically prepared on a RbTiOPO4 ferroelectric crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6447-6453. [PMID: 25123401 DOI: 10.1002/adma.201401603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Silver nanocubes with low size dispersion have been selectively photo-deposited on the positive surface of a periodically poled RbTiOPO4 ferroelectric crystal. The obtained nanocubes show preferential orientations with respect to the substrate suggesting epitaxial growth. The plasmonic resonances supported by the nanocubes are exploited to enhance blue SHG at the domain walls.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Dpto. Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tserkezis C, Herrmann LO, Valev VK, Baumberg JJ, Aizpurua J. Optical response of threaded chain plasmons: from capacitive chains to continuous nanorods. OPTICS EXPRESS 2014; 22:23851-23860. [PMID: 25321963 DOI: 10.1364/oe.22.023851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a detailed theoretical analysis of the optical response of threaded plasmonic nanoparticle strings, chains of metallic nanoparticles connected by cylindrical metallic bridges (threads), based on full-electrodynamic calculations. The extinction spectra of these complex metallic nanostructures are dominated by large resonances in the near infrared, which are associated with charge transfer along the entire string. By analysing contour plots of the electric field amplitude and phase we show that such strings can be interpreted as an intermediate situation between metallic nanoparticle chains and metallic nanorods, exhibiting characteristics of both. Modifying the dielectric environment, the number of nanoparticles within the strings, and the dimensions of the threads, allows for tuning the optical response of the strings within a very broad region in the visible and near infrared.
Collapse
|
29
|
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. NANOSCALE 2014; 6:9494-530. [PMID: 25030381 DOI: 10.1039/c4nr00708e] [Citation(s) in RCA: 1081] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared. The most important results obtained in both in vivo and in vitro nanoparticle assisted photothermal treatments are summarized. The advantages and disadvantages of the different heating nanoparticles are discussed.
Collapse
Affiliation(s)
- D Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales e Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzán LM. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS NANO 2014; 8:5833-42. [PMID: 24848669 DOI: 10.1021/nn500727w] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Au nanotriangles display interesting nanoplasmonic features with potential application in various fields. However, such applications have been hindered by the lack of efficient synthetic methods yielding sufficient size and shape monodispersity, as well as by insufficient morphological stability. We present here a synthesis and purification protocol that efficiently addresses these issues. The size of the nanotriangles can be tuned within a wide range by simply changing the experimental parameters. The obtained monodispersity leads to extended self-assembly, not only on electron microscopy grids but also at the air-liquid interface, allowing transfer onto centimeter-size substrates. These extended monolayers show promising performance as surface-enhanced Raman scattering substrates, as demonstrated for thiophenol detection.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20009 Donostia, San Sebastián, Spain
| | | | | | | | | |
Collapse
|
31
|
Goris B, Polavarapu L, Bals S, Van Tendeloo G, Liz-Marzán LM. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. NANO LETTERS 2014; 14:3220-6. [PMID: 24798989 DOI: 10.1021/nl500593j] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.
Collapse
Affiliation(s)
- Bart Goris
- EMAT, University of Antwerp , Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
32
|
Deng JP, Lin JH, Hsu CY. Cysteine-assisted growth of silver on gold nanorods. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1604-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Deng JP, Chen CW, Hsieh WC, Wang CH, Hsu CY, Lin JH. Gold nanodumbbell-seeded growth of silver nanobars and nanobipyramids. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Maestro LM, Haro-González P, Sánchez-Iglesias A, Liz-Marzán LM, García Solé J, Jaque D. Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1650-8. [PMID: 24495155 DOI: 10.1021/la403435v] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quantum dot based thermometry, in combination with double beam confocal microscopy, was used to investigate the absorption/heating efficiency of gold nanoparticles with different morphologies (nanorods, nanocages, nanoshells, and nanostars), all of them with an intense localized surface plasmon resonance within the first biological window, at around 808 nm. The heating efficiency was found to be strongly dependent on the geometry of the nanostructure, with the largest values found for gold nanorods and long-edge gold nanostars, both of them with heating efficiencies close to 100%. Gold nanorods and nanocages were found to have the largest absorption cross section per unit mass among all the studied geometries, emerging as optimum photothermal agents with minimum metal loading for biosystems.
Collapse
Affiliation(s)
- Laura M Maestro
- Fluorescence Imaging Group, Departamento de Física de Materiales, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid , 28049 Spain
| | | | | | | | | | | |
Collapse
|
35
|
Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun (Camb) 2014; 49:6265-7. [PMID: 23728398 DOI: 10.1039/c3cc42999g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Five-branched gold nanostars are obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of two intense localized surface plasmon resonances (LSPRs) in the 600-900 and 1100-1600 nm ranges. Both LSPRs convert laser radiation into heat, offering two photothermally active channels in the NIR and SWIR ranges.
Collapse
|
36
|
Li N, Zhao P, Astruc D. Anisotrope Gold-Nanopartikel: Synthese, Eigenschaften, Anwendungen und Toxizität. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201300441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Li N, Zhao P, Astruc D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angew Chem Int Ed Engl 2014; 53:1756-89. [DOI: 10.1002/anie.201300441] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/26/2013] [Indexed: 12/26/2022]
|
38
|
Grzelczak M, Sánchez-Iglesias A, Liz-Marzán LM. A general approach toward polymer-coated plasmonic nanostructures. CrystEngComm 2014. [DOI: 10.1039/c4ce00724g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A generic method for the preparation of polymer-coated plasmonic nanostructures with tunable thickness of the hydrophobic polymer spacer.
Collapse
Affiliation(s)
- Marek Grzelczak
- Bionanoplasmonics Laboratory
- CIC biomaGUNE
- , Spain
- Ikerbasque
- Basque Foundation for Science
| | | | - Luis M. Liz-Marzán
- Bionanoplasmonics Laboratory
- CIC biomaGUNE
- , Spain
- Ikerbasque
- Basque Foundation for Science
| |
Collapse
|
39
|
Maestro LM, Camarillo E, Sánchez-Gil JA, Rodríguez-Oliveros R, Ramiro-Bargueño J, Caamaño AJ, Jaque F, Solé JG, Jaque D. Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows. RSC Adv 2014. [DOI: 10.1039/c4ra08956a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The absorption efficiencies of gold nanorods working in the first and second biological windows are investigated.
Collapse
Affiliation(s)
- Laura Martínez Maestro
- Fluorescence Imaging Group
- Departamento de Física de Materiales
- Instituto Nicolás Cabrera
- Facultad de Ciencias
- Universidad Autónoma de Madrid
| | | | - José A. Sánchez-Gil
- Instituto de Estructura de la Materia (IEM-CSIC)
- Consejo Superior de Investigaciones Científicas
- Madrid, Spain
| | | | - J. Ramiro-Bargueño
- Department of Signal Theory and Communication
- School of Telecommunication Engineering
- Universidad Rey Juan Carlos
- Madrid 28943, Spain
| | - A. J. Caamaño
- Department of Signal Theory and Communication
- School of Telecommunication Engineering
- Universidad Rey Juan Carlos
- Madrid 28943, Spain
| | - Francisco Jaque
- Departamento de Biología
- Universidad Autónoma de Madrid
- 28049 Spain
| | - José García Solé
- Fluorescence Imaging Group
- Departamento de Física de Materiales
- Instituto Nicolás Cabrera
- Facultad de Ciencias
- Universidad Autónoma de Madrid
| | - Daniel Jaque
- Fluorescence Imaging Group
- Departamento de Física de Materiales
- Instituto Nicolás Cabrera
- Facultad de Ciencias
- Universidad Autónoma de Madrid
| |
Collapse
|
40
|
Abstract
Gold nanorods have been receiving extensive attention owing to their extremely attractive applications in biomedical technologies, plasmon-enhanced spectroscopies, and optical and optoelectronic devices. The growth methods and plasmonic properties of Au nanorods have therefore been intensively studied. In this review, we present a comprehensive overview of the flourishing field of Au nanorods in the past five years. We will focus mainly on the approaches for the growth, shape and size tuning, functionalization, and assembly of Au nanorods, as well as the methods for the preparation of their hybrid structures. The plasmonic properties and the associated applications of Au nanorods will also be discussed in detail.
Collapse
Affiliation(s)
- Huanjun Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
41
|
Hou S, Hu X, Wen T, Liu W, Wu X. Core-shell noble metal nanostructures templated by gold nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3857-3862. [PMID: 24048971 DOI: 10.1002/adma.201301169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Indexed: 06/02/2023]
Abstract
The main research progress in core-shell noble metal nanostructures templated by gold nanorods (Au NRs) is summarized regarding synthesis, optical, and catalytic properties. Design and fabrication of core-shell hybrid nanostructures are demonstrated to be effective not only for optimizing and expanding intrinsic properties but also for creating novel localized surface plasmon enhanced optical and catalytic functionalities, thus providing great prospects in both fundamental research and potential applications.
Collapse
Affiliation(s)
- Shuai Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing 100190, China
| | | | | | | | | |
Collapse
|
42
|
Li J, Han J, Xu T, Guo C, Bu X, Zhang H, Wang L, Sun H, Yang B. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7102-7110. [PMID: 23692027 DOI: 10.1021/la401366c] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photothermal therapy using inorganic nanoparticles (NPs) is a promising technique for the selective treatment of tumor cells because of their capability to convert the absorbed radiation into heat energy. Although anisotropic gold (Au) NPs present an excellent photothermal effect, the poor structural stability during storage and/or upon laser irradiation still limits their practical application as efficient photothermal agents. With the aim of improving the stability, in this work we adopted biocompatible polypyrrole (PPy) as the shell material for coating urchinlike Au NPs. The experimental results indicate that a several nanometer PPy shell is enough to maintain the structural stability of NPs. In comparison to the bare NPs, PPy-coated NPs exhibit improved structural stability toward storage, heat, pH, and laser irradiation. In addition, the thin shell of PPy also enhances the photothermal transduction efficiency (η) of PPy-coated Au NPs, resulting from the absorption of PPy in the red and near-infrared (NIR) regions. For example, the PPy-coated Au NPs with an Au core diameter of 120 nm and a PPy shell of 6.0 nm exhibit an η of 24.0% at 808 nm, which is much higher than that of bare Au NPs (η = 11.0%). As a primary attempt at photothermal therapy, the PPy-coated Au NPs with a 6.0 nm PPy shell exhibit an 80% death rate of Hela cells under 808 nm NIR laser irradiation.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang J, Zhu Y, Lin M, Wang Q, Zhao L, Yang Y, Yao KX, Han Y. Site-Specific Growth of Au–Pd Alloy Horns on Au Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy. J Am Chem Soc 2013; 135:8552-61. [DOI: 10.1021/ja4004602] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Ming Lin
- Institute of Materials Research
and Engineering, A*STAR (Agency for Science,
Technology and Research), 3 Research Link, Singapore 117602
| | | | | | | | | | | |
Collapse
|
44
|
Cheng LC, Jiang X, Wang J, Chen C, Liu RS. Nano-bio effects: interaction of nanomaterials with cells. NANOSCALE 2013; 5:3547-69. [PMID: 23532468 DOI: 10.1039/c3nr34276j] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the advancements in nanotechnology, studies on the synthesis, modification, application, and toxicology evaluation of nanomaterials are gaining increased attention. In particular, the applications of nanomaterials in biological systems are attracting considerable interest because of their unique, tunable, and versatile physicochemical properties. Artificially engineered nanomaterials can be well controlled for appropriate usage, and the tuned physicochemical properties directly influence the interactions between nanomaterials and cells. This review summarizes recently synthesized major nanomaterials that have potential biomedical applications. Focus is given on the interactions, including cellular uptake, intracellular trafficking, and toxic response, while changing the physicochemical properties of versatile materials. The importance of physicochemical properties such as the size, shape, and surface modifications of the nanomaterials in their biological effects is also highlighted in detail. The challenges of recent studies and future prospects are presented as well. This review benefits relatively new researchers in this area and gives them a systematic overview of nano-bio interaction, hopefully for further experimental design.
Collapse
Affiliation(s)
- Liang-Chien Cheng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Niu W, Zhang L, Xu G. Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. NANOSCALE 2013; 5:3172-3181. [PMID: 23467455 DOI: 10.1039/c3nr00219e] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Controlled synthesis of noble metal nanocrystals has received enormous attention due to the ability of tailoring the properties of nanocrystals by tuning their shape, size, and composition. The seed-mediated growth method is one of the most reliable and versatile methods to control the shapes of noble metal nanocrystals. This feature article highlights recent strategies regarding shape-controlled synthesis of noble metal nanocrystals by the seed-mediated growth method, with the aim of introducing new strategies and offering new mechanistic insights into nanocrystal shape evolution. Critical parameters affecting the nucleation and growth of noble metal NCs are systemically introduced and analyzed. New developments of extended seed-mediated growth methods were also introduced. Finally, the perspectives of future research on the seed-mediated growth method are also discussed.
Collapse
Affiliation(s)
- Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
46
|
Grzelczak M, Liz-Marzán LM. Colloidal nanoplasmonics: from building blocks to sensing devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4652-4663. [PMID: 23421758 DOI: 10.1021/la4001544] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanoplasmonics is a rapidly developing field of research and technology that is based on the ability of small metal particles to interact strongly with light of wavelength significantly larger than their size. The development of nanoplasmonics has been closely associated with the application of colloid science to the controlled growth of metal nanocrystals in solution and to directing the self-assembly of such nanocrystals into organized arrays with enhanced collective properties. Engineering the morphology and the assembly of metal nanoparticles is a key step toward the fabrication of devices with great potential in detection and diagnosis as well as in a wide variety of other fields. In this Feature Article, we provide an overview of the recent work in our laboratory, which in our view somehow reflects the evolution of the field itself and provides guidelines for future research.
Collapse
Affiliation(s)
- Marek Grzelczak
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Donostia-San Sebastián, Spain
| | | |
Collapse
|
47
|
Katz-Boon H, Rossouw CJ, Dwyer C, Etheridge J. Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy 2013; 124:61-70. [DOI: 10.1016/j.ultramic.2012.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 08/14/2012] [Accepted: 08/18/2012] [Indexed: 11/30/2022]
|
48
|
|
49
|
Grzelczak M, Mezzasalma SA, Ni W, Herasimenka Y, Feruglio L, Montini T, Pérez-Juste J, Fornasiero P, Prato M, Liz-Marzán LM. Antibonding plasmon modes in colloidal gold nanorod clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8826-8833. [PMID: 22044275 DOI: 10.1021/la203750d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The optical response of nanoplasmonic colloids in disperse phase is strictly related to their shape. However, upon self-assembly, new optical features, for example, bonding or antibonding modes, emerge as a result of the mutual orientations of nanoparticles. The geometry of the final assemblies often determines which mode is dominating in the overall optical response. These new plasmon modes, however, are mostly observed in silico, as self-assembly in the liquid phase leads to cluster formation with a broad range of particle units. Here we show that low-symmetry clustering of gold nanorods (AuNRs) in solution can also reveal antibonding modes. We found that UV-light irradiation of colloidal dispersions of AuNRs in N-methyl-2-pyrrolidone (NMP), stabilized by poly(vinylpyrrolidone) (PVP) results in the creation of AuNRs clusters with ladderlike morphology, where antibonding modes can be identified. We propose that UV irradiation induces formation of radicals in solvent molecules, which then promote cross-linking of PVP chains on the surface of adjacent particles. This picture opens up a number of relevant questions in nanoscience and is expected to find application in light induced self-assembly of particles with various compositions and morphologies.
Collapse
Affiliation(s)
- Marek Grzelczak
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41:2740-79. [PMID: 22109657 PMCID: PMC5876014 DOI: 10.1039/c1cs15237h] [Citation(s) in RCA: 2013] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).
Collapse
Affiliation(s)
- Erik C. Dreaden
- Laser Dynamics Laboratory, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Alaaldin M. Alkilany
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg, Memphis, TN 38152-3550, USA
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. E-mail: ; Fax: +1 217 244 3186; Tel: +1 217 333 7680
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|