1
|
Liu Y, Xing L, Zhang L, Cai H, Guo M. GEFormerDTA: drug target affinity prediction based on transformer graph for early fusion. Sci Rep 2024; 14:7416. [PMID: 38548825 PMCID: PMC10979032 DOI: 10.1038/s41598-024-57879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
Predicting the interaction affinity between drugs and target proteins is crucial for rapid and accurate drug discovery and repositioning. Therefore, more accurate prediction of DTA has become a key area of research in the field of drug discovery and drug repositioning. However, traditional experimental methods have disadvantages such as long operation cycles, high manpower requirements, and high economic costs, making it difficult to predict specific interactions between drugs and target proteins quickly and accurately. Some methods mainly use the SMILES sequence of drugs and the primary structure of proteins as inputs, ignoring the graph information such as bond encoding, degree centrality encoding, spatial encoding of drug molecule graphs, and the structural information of proteins such as secondary structure and accessible surface area. Moreover, previous methods were based on protein sequences to learn feature representations, neglecting the completeness of information. To address the completeness of drug and protein structure information, we propose a Transformer graph-based early fusion research approach for drug-target affinity prediction (GEFormerDTA). Our method reduces prediction errors caused by insufficient feature learning. Experimental results on Davis and KIBA datasets showed a better prediction of drugtarget affinity than existing affinity prediction methods.
Collapse
Affiliation(s)
- Youzhi Liu
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China
| | - Linlin Xing
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China.
| | - Longbo Zhang
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China
| | - Hongzhen Cai
- Department of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Maozu Guo
- Department of Electrical and Information Engineering, Beijing University of Architecture, Beijing, 102616, China
| |
Collapse
|
2
|
Zoric MR, Pandey Kadel U, Korvinson KA, Luk HL, Nimthong-Roldan A, Zeller M, Glusac KD. Conformational flexibility of xanthene-based covalently linked dimers. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marija R. Zoric
- Department of Chemistry, Center for Photochemical Sciences; Bowling Green State University; Bowling Green OH 43403 USA
| | - Usha Pandey Kadel
- Department of Chemistry, Center for Photochemical Sciences; Bowling Green State University; Bowling Green OH 43403 USA
| | - Kirill A. Korvinson
- Department of Chemistry, Center for Photochemical Sciences; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hoi Ling Luk
- Department of Chemistry, Center for Photochemical Sciences; Bowling Green State University; Bowling Green OH 43403 USA
| | - Arunpatcha Nimthong-Roldan
- College of Science, Technology, Engineering, and Mathematics; Youngstown State University; Youngstown OH 44555 USA
| | - Matthias Zeller
- College of Science, Technology, Engineering, and Mathematics; Youngstown State University; Youngstown OH 44555 USA
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Ksenija D. Glusac
- Department of Chemistry, Center for Photochemical Sciences; Bowling Green State University; Bowling Green OH 43403 USA
| |
Collapse
|
3
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Kunert B, Gardiennet C, Lacabanne D, Calles-Garcia D, Falson P, Jault JM, Meier BH, Penin F, Böckmann A. Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 2014; 1:5. [PMID: 25988146 PMCID: PMC4428385 DOI: 10.3389/fmolb.2014.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/26/2014] [Indexed: 01/20/2023] Open
Abstract
We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments.
Collapse
Affiliation(s)
- Britta Kunert
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Carole Gardiennet
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Denis Lacabanne
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Daniel Calles-Garcia
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Pierre Falson
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Jean-Michel Jault
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | | | - François Penin
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Anja Böckmann
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| |
Collapse
|
5
|
Zinkevich T, Chevelkov V, Reif B, Saalwächter K, Krushelnitsky A. Internal protein dynamics on ps to μs timescales as studied by multi-frequency (15)N solid-state NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2013; 57:219-35. [PMID: 24048638 DOI: 10.1007/s10858-013-9782-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/06/2013] [Indexed: 05/14/2023]
Abstract
A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon (15)N T1 and on- and off-resonance T1ρ relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from (15)N-(1)H dipole-dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a "two components" model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1-10 μs can be determined reliably in spite of rather low apparent amplitudes (below 1 %), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (τ < 10(-10) s) and intermediate (10(-9) s < τ < 10(-7) s) motions are separated by a gap of one order of magnitude in time with almost no motions. For slower motions (τ > 10(-6) s) we observe a sharp ~1 order of magnitude decrease of the apparent motional amplitudes. Such a distribution obviously reflects different nature of backbone motions on different time scales, where the slow end may be attributed to weakly populated "excited states." Surprisingly, our data reveal no clearly evident correlations between secondary structure of the protein and motional parameters. We also could not notice any unambiguous correlations between motions in different time scales along the protein backbone emphasizing the importance of the inter-residue interactions and the cooperative nature of protein dynamics.
Collapse
Affiliation(s)
- Tatiana Zinkevich
- NMRGroup, Faculty of Natural Sciences II, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, Saale, 06120, Halle, Germany
| | | | | | | | | |
Collapse
|
6
|
Sengupta I, Nadaud PS, Jaroniec CP. Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc Chem Res 2013; 46:2117-26. [PMID: 23464364 DOI: 10.1021/ar300360q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2+)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philippe S. Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Demers JP, Sgourakis NG, Gupta R, Loquet A, Giller K, Riedel D, Laube B, Kolbe M, Baker D, Becker S, Lange A. The common structural architecture of Shigella flexneri and Salmonella typhimurium type three secretion needles. PLoS Pathog 2013; 9:e1003245. [PMID: 23555258 PMCID: PMC3605151 DOI: 10.1371/journal.ppat.1003245] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/23/2013] [Indexed: 11/25/2022] Open
Abstract
The Type Three Secretion System (T3SS), or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long β-hairpin (Q51–Q64) and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11), an α-helix (L12-A38), a loop (E39-P44) and a C-terminal α-helix (Q45-R83). Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their assembled state. Our study reveals a common structural architecture of T3SS needles, essential to understand T3SS-mediated infection and develop treatments. Gram-negative bacteria use a molecular machinery called the Type Three Secretion System (T3SS) to deliver toxic proteins to the host cell. Our research group has recently solved the structure of the extracellular T3SS needle of Salmonella typhimurium. Employing solid-state NMR, we could determine local structure parameters such as dihedral angles and inter-nuclear proximities for this supramolecular assembly. Concurrently, a high-resolution cryo-electron microscopy density map of the T3SS needle of Shigella flexneri was obtained by Fujii et al. Modeling of the Shigella needle subunit protein to fit the EM density produced a model incompatible with the atomic model of the Salmonella needle in terms of secondary structure and subunit orientation. Here, we determined directly the secondary structure of the Shigella needle subunit using solid-state NMR, and its orientation using in vitro and in vivo immunogold labeling in functional needles. We found that Shigella subunits adopt the same secondary structure and orientation as in the atomic model of Salmonella, and we generated a homology model of the Shigella needle consistent with the EM density. Knowing the common T3SS needle architecture is essential for understanding the secretion mechanism and interactions of the needle with other components of the T3SS, and to develop therapeutics.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nikolaos G. Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rashmi Gupta
- Department for Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Antoine Loquet
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Britta Laube
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Kolbe
- Department for Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (MK); (DB); (SB); (AL)
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| | - Adam Lange
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| |
Collapse
|
8
|
Daviso E, Eddy MT, Andreas LB, Griffin RG, Herzfeld J. Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 55:257-65. [PMID: 23334347 PMCID: PMC3615138 DOI: 10.1007/s10858-013-9707-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/09/2013] [Indexed: 05/10/2023]
Abstract
Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR (15)N-(13)C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.
Collapse
Affiliation(s)
- Eugenio Daviso
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA, 02454-9110
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Matthew T. Eddy
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Loren B. Andreas
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA, 02454-9110
| |
Collapse
|
9
|
Abstract
Solid-state NMR spectroscopy proved to be a versatile tool for characterization of structure and dynamics of complex biochemical systems. In particular, magic angle spinning (MAS) solid-state NMR came to maturity for application towards structural elucidation of biological macromolecules. Current challenges in applying solid-state NMR as well as progress achieved recently will be discussed in the following chapter focusing on conceptual aspects important for structural elucidation of proteins.
Collapse
Affiliation(s)
- Henrik Müller
- Institute of Physical Biology, Heinrich-Heine-University of Düsseldorf, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
10
|
Clément RJ, Pell AJ, Middlemiss DS, Strobridge FC, Miller JK, Whittingham MS, Emsley L, Grey CP, Pintacuda G. Spin-Transfer Pathways in Paramagnetic Lithium Transition-Metal Phosphates from Combined Broadband Isotropic Solid-State MAS NMR Spectroscopy and DFT Calculations. J Am Chem Soc 2012; 134:17178-85. [DOI: 10.1021/ja306876u] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raphaële J. Clément
- Centre de RMN à Très
Hauts Champs, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon/UCB,
Lyon 1, 69100 Villeurbanne, France
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
CB2 1EW, United Kingdom
| | - Andrew J. Pell
- Centre de RMN à Très
Hauts Champs, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon/UCB,
Lyon 1, 69100 Villeurbanne, France
| | - Derek S. Middlemiss
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
CB2 1EW, United Kingdom
| | - Fiona C. Strobridge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
CB2 1EW, United Kingdom
| | - Joel K. Miller
- Department
of Chemistry, State University of New York at Binghamton, Binghamton,
New York 13902-6000, United States
| | - M. Stanley Whittingham
- Department
of Chemistry, State University of New York at Binghamton, Binghamton,
New York 13902-6000, United States
| | - Lyndon Emsley
- Centre de RMN à Très
Hauts Champs, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon/UCB,
Lyon 1, 69100 Villeurbanne, France
| | - Clare P. Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
CB2 1EW, United Kingdom
| | - Guido Pintacuda
- Centre de RMN à Très
Hauts Champs, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon/UCB,
Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
11
|
Jaroniec CP. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 43-44:1-13. [PMID: 22464402 DOI: 10.1016/j.ssnmr.2012.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Determination of three-dimensional structures of biological macromolecules by magic-angle spinning (MAS) solid-state NMR spectroscopy is hindered by the paucity of nuclear dipolar coupling-based restraints corresponding to distances exceeding 5 Å. Recent MAS NMR studies of uniformly (13)C,(15)N-enriched proteins containing paramagnetic centers have demonstrated the measurements of site-specific nuclear pseudocontact shifts and spin relaxation enhancements, which report on electron-nucleus distances up to ~20 Å. These studies pave the way for the application of such long-distance paramagnetic restraints to protein structure elucidation and analysis of protein-protein and protein-ligand interactions in the solid phase. Paramagnetic species also facilitate the rapid acquisition of high resolution and sensitivity multidimensional solid-state NMR spectra of biomacromolecules using condensed data collection schemes, and characterization of solvent-accessible surfaces of peptides and proteins. In this review we discuss some of the latest applications of magic-angle spinning NMR spectroscopy in conjunction with paramagnetic probes to the structural studies of proteins in the solid state.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC, Meier BH. Simultaneous acquisition of PAR and PAIN spectra. JOURNAL OF BIOMOLECULAR NMR 2012; 52:283-288. [PMID: 22371268 DOI: 10.1007/s10858-012-9616-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
We present a scheme that allows the simultaneous detection of PAR and PAIN correlation spectra in a single two-dimensional experiment. For both spectra, we obtain almost the same signal-to-noise ratio as if a PAR or PAIN spectrum is recorded separately, which in turn implies that one of the spectra may be considered additional information for free. The experiment is based on the observation that in a PAIN experiment, the PAR condition is always also fulfilled. The performance is demonstrated experimentally using uniformly (13)C,(15)N-labeled samples of N-f-MLF-OH and ubiquitin.
Collapse
Affiliation(s)
- Anders B Nielsen
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 2012; 165:282-301. [DOI: 10.1016/j.chemphyslip.2012.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
|
14
|
Reif B. Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:1-12. [PMID: 22280934 DOI: 10.1016/j.jmr.2011.12.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 05/14/2023]
Abstract
High resolution proton spectra are obtained in MAS solid-state NMR in case samples are prepared using perdeuterated protein and D(2)O in the recrystallization buffer. Deuteration reduces drastically (1)H, (1)H dipolar interactions and allows to obtain amide proton line widths on the order of 20 Hz. Similarly, high-resolution proton spectra of aliphatic groups can be obtained if specifically labeled precursors for biosynthesis of methyl containing side chains are used, or if limited amounts of H(2)O in the bacterial growth medium is employed. This review summarizes recent spectroscopic developments to access structure and dynamics of biomacromolecules in the solid-state, and shows a number of applications to amyloid fibrils and membrane proteins.
Collapse
Affiliation(s)
- Bernd Reif
- Munich Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
15
|
Reif B. Deuterated peptides and proteins: structure and dynamics studies by MAS solid-state NMR. Methods Mol Biol 2012; 831:279-301. [PMID: 22167680 DOI: 10.1007/978-1-61779-480-3_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Perdeuteration and back substitution of exchangeable protons in microcrystalline proteins, in combination with recrystallization from D(2)O-containing buffers, significantly reduce (1)H, (1)H dipolar interactions. This way, amide proton line widths on the order of 20 Hz are obtained. Aliphatic protons are accessible either via specifically protonated precursors or by using low amounts of H(2)O in the bacterial growth medium. The labeling scheme enables characterization of structure and dynamics in the solid-state without dipolar truncation artifacts.
Collapse
Affiliation(s)
- Bernd Reif
- Munich Center for Integrated Protein Science (CIPSM) at Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
16
|
Huber M, Böckmann A, Hiller S, Meier BH. 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 2012; 14:5239-46. [DOI: 10.1039/c2cp23872a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Abstract
Around half of all protein structures solved nowadays using solution-state nuclear magnetic resonance (NMR) spectroscopy have been because of automated data analysis. The pervasiveness of computational approaches in general hides, however, a more nuanced view in which the full variety and richness of the field appears. This review is structured around a comparison of methods associated with three NMR observables: classical nuclear Overhauser effect (NOE) constraint gathering in contrast with more recent chemical shift and residual dipole coupling (RDC) based protocols. In each case, the emphasis is placed on the latest research, covering mainly the past 5 years. By describing both general concepts and representative programs, the objective is to map out a field in which--through the very profusion of approaches--it is all too easy to lose one's bearings.
Collapse
|
18
|
Loquet A, Lv G, Giller K, Becker S, Lange A. 13C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies. J Am Chem Soc 2011; 133:4722-5. [DOI: 10.1021/ja200066s] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Antoine Loquet
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Guohua Lv
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 2011; 132:13765-75. [PMID: 20828131 DOI: 10.1021/ja104213j] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed β-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints.
Collapse
Affiliation(s)
- Hélène Van Melckebeke
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Pell AJ, Kervern G, Emsley L, Deschamps M, Massiot D, Grandinetti PJ, Pintacuda G. Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses. J Chem Phys 2011; 134:024117. [DOI: 10.1063/1.3521491] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A. Probing Water Accessibility in HET-s(218–289) Amyloid Fibrils by Solid-State NMR. J Mol Biol 2011; 405:765-72. [DOI: 10.1016/j.jmb.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
|
22
|
Bertini I, Emsley L, Felli IC, Laage S, Lesage A, Lewandowski JR, Marchetti A, Pierattelli R, Pintacuda G. High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chem Sci 2011. [DOI: 10.1039/c0sc00397b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
|
24
|
Bechinger B, Resende JM, Aisenbrey C. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 2010; 153:115-25. [PMID: 21145159 DOI: 10.1016/j.bpc.2010.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | | | | |
Collapse
|
25
|
Renault M, Cukkemane A, Baldus M. Festkörper-NMR-Spektroskopie an komplexen Biomolekülen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Renault M, Cukkemane A, Baldus M. Solid-State NMR Spectroscopy on Complex Biomolecules. Angew Chem Int Ed Engl 2010; 49:8346-57. [DOI: 10.1002/anie.201002823] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Loquet A, Giller K, Becker S, Lange A. Supramolecular Interactions Probed by 13C−13C Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15164-6. [DOI: 10.1021/ja107460j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antoine Loquet
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Barbet-Massin E, Ricagno S, Lewandowski JR, Giorgetti S, Bellotti V, Bolognesi M, Emsley L, Pintacuda G. Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy. J Am Chem Soc 2010; 132:5556-7. [PMID: 20356307 DOI: 10.1021/ja1002839] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elucidating the fine structure of amyloid fibrils as well as understanding their processes of nucleation and growth remains a difficult yet essential challenge, directly linked to our current poor insight into protein misfolding and aggregation diseases. Here we consider beta-2-microglobulin (beta2m), the MHC-1 light chain component responsible for dialysis-related amyloidosis, which can give rise to amyloid fibrils in vitro under various experimental conditions, including low and neutral pH. We have used solid-state NMR to probe the structural features of fibrils formed by full-length beta2m (99 residues) at pH 2.5 and pH 7.4. A close comparison of 2D (13)C-(13)C and (15)N-(13)C correlation experiments performed on beta2m, in both the crystalline and fibrillar states, suggests that, in spite of structural changes affecting the protein loops linking the protein beta-strands, the protein chain retains a substantial share of its native secondary structure in the fibril assembly. Moreover, variations in the chemical shifts of the key Pro32 residue suggest the involvement of a cis-trans isomerization in the process of beta2m fibril formation. Lastly, the analogy of the spectra recorded on beta2m fibrils grown at different pH values hints at a conserved architecture of the amyloid species thus obtained.
Collapse
Affiliation(s)
- Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
30
|
Loquet A, Gardiennet C, Böckmann A. Protein 3D structure determination by high-resolution solid-state NMR. CR CHIM 2010. [DOI: 10.1016/j.crci.2010.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G. Ultrafast MAS Solid-State NMR Permits Extensive 13C and 1H Detection in Paramagnetic Metalloproteins. J Am Chem Soc 2010; 132:5558-9. [DOI: 10.1021/ja100398q] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Lyndon Emsley
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Moreno Lelli
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Claudio Luchinat
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Jiafei Mao
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Guido Pintacuda
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| |
Collapse
|
32
|
Bertini I, Bhaumik A, De Paëpe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C. High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 2010; 132:1032-40. [PMID: 20041641 DOI: 10.1021/ja906426p] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)-substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 +/- 0.2 A, and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 A). The proposed strategy, which may be generalized for nonmetalloproteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, CERM, University of Florence, Via L. Sacconi, 6-50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Weingarth M, Tekely P, Brüschweiler R, Bodenhausen G. Improving the quality of 2D solid-state NMR spectra of microcrystalline proteins by covariance analysis. Chem Commun (Camb) 2009; 46:952-4. [PMID: 20107661 DOI: 10.1039/b920844e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gaining time, resolution and sensitivity at the same time: covariance processing of two-dimensional NMR spectra of microcrystalline proteins improves spectral quality over conventional Fourier transformation despite a significant reduction of the experimental time.
Collapse
Affiliation(s)
- Markus Weingarth
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, Cedex 05, France
| | | | | | | |
Collapse
|
34
|
Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V. Solid-state NMR study of proteorhodopsin in the lipid environment: Secondary structure and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2563-74. [DOI: 10.1016/j.bbamem.2009.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 11/26/2022]
|
35
|
Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schütz A, Meier BH, Melki R, Böckmann A. Prion Fibrils of Ure2p Assembled under Physiological Conditions Contain Highly Ordered, Natively Folded Modules. J Mol Biol 2009; 394:108-18. [DOI: 10.1016/j.jmb.2009.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
|
36
|
Expression and purification of a recombinant amyloidogenic peptide from transthyretin for solid-state NMR spectroscopy. Protein Expr Purif 2009; 70:101-8. [PMID: 19796687 DOI: 10.1016/j.pep.2009.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/17/2022]
Abstract
We describe the expression and purification of a model amyloidogenic peptide comprising residues 105-115 of human transthyretin (TTR105-115). Recombinant TTR105-115, which does not contain any non-native residues, was prepared as part of a fusion protein construct with a highly soluble B1 immunoglobulin binding domain of protein G (GB1), with typical yields of approximately 4 mg/L of uniformly (13)C,(15)N-enriched HPLC-purified peptide per liter of minimal media culture. Amyloid fibrils formed by recombinant TTR105-115 were characterized by transmission electron microscopy and solid-state NMR spectroscopy, and found to be comparable to synthetic TTR105-115 fibrils. These results establish recombinant TTR105-115 as a valuable model system for the development of new solid-state NMR techniques for the atomic-level characterization of amyloid architecture.
Collapse
|
37
|
Laage S, Lesage A, Emsley L, Bertini I, Felli IC, Pierattelli R, Pintacuda G. Transverse-Dephasing Optimized Homonuclear J-Decoupling in Solid-State NMR Spectroscopy of Uniformly 13C-Labeled Proteins. J Am Chem Soc 2009; 131:10816-7. [DOI: 10.1021/ja903542h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ségolène Laage
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Anne Lesage
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Lyndon Emsley
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Ivano Bertini
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C. Felli
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Roberta Pierattelli
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Guido Pintacuda
- Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France, and Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
38
|
Brown SP. Recent Advances in Solid-State MAS NMR Methodology for Probing Structure and Dynamics in Polymeric and Supramolecular Systems. Macromol Rapid Commun 2009; 30:688-716. [DOI: 10.1002/marc.200800816] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/06/2009] [Indexed: 01/12/2023]
|
39
|
Nadaud PS, Helmus JJ, Kall SL, Jaroniec CP. Paramagnetic Ions Enable Tuning of Nuclear Relaxation Rates and Provide Long-Range Structural Restraints in Solid-State NMR of Proteins. J Am Chem Soc 2009; 131:8108-20. [DOI: 10.1021/ja900224z] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philippe S. Nadaud
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan J. Helmus
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Stefanie L. Kall
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
40
|
Kervern G, D'Aléo A, Toupet L, Maury O, Emsley L, Pintacuda G. Crystal-Structure Determination of Powdered Paramagnetic Lanthanide Complexes by Proton NMR Spectroscopy. Angew Chem Int Ed Engl 2009; 48:3082-6. [DOI: 10.1002/anie.200805302] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Kervern G, D'Aléo A, Toupet L, Maury O, Emsley L, Pintacuda G. Crystal-Structure Determination of Powdered Paramagnetic Lanthanide Complexes by Proton NMR Spectroscopy. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|