1
|
Yang N, Jiang X. Rational Design of Diamond Electrodes. Acc Chem Res 2023; 56:117-127. [PMID: 36584242 DOI: 10.1021/acs.accounts.2c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diamond electrodes stepped onto the stage in the early 1990s for electroanalytical applications. They possess the features of long-term chemical inertness, wide potential windows, low and stable background currents, high microstructural stability at different potentials and in different media, varied activity toward different electroactive species, reliable electrochemical response of redox systems without conventional pretreatment, high resistance to surface fouling in most cases, and possibility of forming composites with different components such as other carbon materials, carbides, and oxidizes. Most diamond electrodes are prepared in microcrystalline or nanocrystalline form using chemical vapor deposition techniques. Starting from diamond films and diamond composites, numerous nanostructured diamond electrodes have also been produced. The features of diamond electrodes are therefore heavily dependent on the growth conditions and post-treatment procures that are applied on diamond electrodes such as introduced dopant(s), surface termination(s), surface functional group(s), added components, and final structure(s). Numerous applications of diamond electrodes have been explored in the fields of electrochemical sensing, electrosynthesis, electrocatalysis, electrochemical energy storage and conversion, devices, and environmental degradation.This Account summarizes our strategies to design different diamond electrodes, including diamond films, diamond composites, as well as their nanostructures. With respect to diamond films, the modulation of their dopant(s) and surface termination(s) as well as the attachment of functional modifier(s) onto their surface are discussed. Electrochemical hydrogenation and oxygenation of diamond electrodes are detailed at an atomic scale. As the examples of designing diamond electrodes at a molecular scale, photochemical and electrochemical attachment of modifier(s) onto diamond electrodes are shown. Moreover, electrochemical grafting of diazonium salts is proposed as a new technique to identify hydrogenated, hydroxylated, and oxygenated terminations of diamond electrodes. The introduction of additional component(s) into a diamond film to form diamond composites is then overviewed, where a hydrogen-induced selective growth model is proposed to elucidate the preparation of diamond/β-SiC composites. Subsequently, the production of various diamond nanostructures from diamond films and composites by means of top-down, bottom-up, and template-free approaches is shown. Electrochemical application examples of diamond electrodes are overviewed, covering direct electrochemistry of natural Cytochrome c on a hydroxylated diamond surface, sensitive electrochemical DNA biosensing on tip-functionalized diamond nanowires, and construction of high-performance supercapacitors using diamond electrodes and redox electrolytes. Our diamond supercapacitors, also named battery-like diamond supercapacitors or diamond supercabatteries, are highlighted since they combine the features of supercapacitors and batteries. Future perspectives of diamond electrodes are outlined, ranging from their rational design and synthesis to their electrochemical applications in different fields.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Paul-Bonatz Str. 9-11, Siegen 57076, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, Paul-Bonatz Str. 9-11, Siegen 57076, Germany
| |
Collapse
|
2
|
Qiao Y, Du J, Ge R, Lu H, Wu C, Li J, Yang S, Zada S, Dong H, Zhang X. A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid. Anal Chem 2022; 94:5538-5545. [PMID: 35315641 DOI: 10.1021/acs.analchem.1c04401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skin interstitial fluid (ISF) containing a great variety of molecular biomarkers derived from cells and subcutaneous blood capillaries has recently emerged as a clinically potential component for early diagnosis of a wide range of diseases; however, the minimally invasive sampling and detection of cell-free biomarkers in ISF is still a key challenge. Herein, we developed microneedles (MNs) that consist of gelatin methacryloyl (GelMA) and graphene oxide (GO) for the enrichment and sensitive detection of multiple microRNA (miRNA) biomarkers from skin ISF. The GO-GelMA MNs exhibited robust mechanical properties, fast sampling kinetics, and large swelling capacity, which enabled collecting ISF volume high to 21.34 μL in 30 min, facilitating effective miRNA analysis. It preliminarily realized the sensitive detection of three types of psoriasis-related miRNAs biomarkers either on the patch itself or in solution after release from the hydrogel by combining catalytic hairpin assembly signal amplification reaction. The automated and minimally invasive ISF miRNA detection technology of GO-GelMA MNs has great potential to monitor cell-free clinically informative biomarkers for personalized diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.,Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
3
|
Pham T, Qamar A, Dinh T, Masud MK, Rais‐Zadeh M, Senesky DG, Yamauchi Y, Nguyen N, Phan H. Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001294. [PMID: 33173726 PMCID: PMC7640356 DOI: 10.1002/advs.202001294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Indexed: 05/05/2023]
Abstract
Semiconductor nanowires are widely considered as the building blocks that revolutionized many areas of nanosciences and nanotechnologies. The unique features in nanowires, including high electron transport, excellent mechanical robustness, large surface area, and capability to engineer their intrinsic properties, enable new classes of nanoelectromechanical systems (NEMS). Wide bandgap (WBG) semiconductors in the form of nanowires are a hot spot of research owing to the tremendous possibilities in NEMS, particularly for environmental monitoring and energy harvesting. This article presents a comprehensive overview of the recent progress on the growth, properties and applications of silicon carbide (SiC), group III-nitrides, and diamond nanowires as the materials of choice for NEMS. It begins with a snapshot on material developments and fabrication technologies, covering both bottom-up and top-down approaches. A discussion on the mechanical, electrical, optical, and thermal properties is provided detailing the fundamental physics of WBG nanowires along with their potential for NEMS. A series of sensing and electronic devices particularly for environmental monitoring is reviewed, which further extend the capability in industrial applications. The article concludes with the merits and shortcomings of environmental monitoring applications based on these classes of nanowires, providing a roadmap for future development in this fast-emerging research field.
Collapse
Affiliation(s)
- Tuan‐Anh Pham
- Queensland Micro and Nanotechnology CentreGriffith UniversityNathanQLD4111Australia
| | - Afzaal Qamar
- Electrical Engineering DepartmentUniversity of MichiganAnn ArborMI48109USA
| | - Toan Dinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityNathanQLD4111Australia
- Department of Mechanical EngineeringUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Mostafa Kamal Masud
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Mina Rais‐Zadeh
- Electrical Engineering DepartmentUniversity of MichiganAnn ArborMI48109USA
- NASA JPLCalifornia Institute of TechnologyPasadenaCA91109USA
| | - Debbie G. Senesky
- Department of Aeronautics and AstronauticsStanford UniversityStanfordCA94305USA
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityNathanQLD4111Australia
| | - Hoang‐Phuong Phan
- Queensland Micro and Nanotechnology CentreGriffith UniversityNathanQLD4111Australia
| |
Collapse
|
4
|
Hwang HS, Jeong JW, Kim YA, Chang M. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. MICROMACHINES 2020; 11:mi11090814. [PMID: 32872236 PMCID: PMC7569884 DOI: 10.3390/mi11090814] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
A biosensor is defined as a measuring system that includes a biological receptor unit with distinctive specificities toward target analytes. Such analytes include a wide range of biological origins such as DNAs of bacteria or viruses, or proteins generated from an immune system of infected or contaminated living organisms. They further include simple molecules such as glucose, ions, and vitamins. One of the major challenges in biosensor development is achieving efficient signal capture of biological recognition-transduction events. Carbon nanomaterials (CNs) are promising candidates to improve the sensitivity of biosensors while attaining low detection limits owing to their capability of immobilizing large quantities of bioreceptor units at a reduced volume, and they can also act as a transduction element. In addition, CNs can be adapted to functionalization and conjugation with organic compounds or metallic nanoparticles; the creation of surface functional groups offers new properties (e.g., physical, chemical, mechanical, electrical, and optical properties) to the nanomaterials. Because of these intriguing features, CNs have been extensively employed in biosensor applications. In particular, carbon nanotubes (CNTs), nanodiamonds, graphene, and fullerenes serve as scaffolds for the immobilization of biomolecules at their surface and are also used as transducers for the conversion of signals associated with the recognition of biological analytes. Herein, we provide a comprehensive review on the synthesis of CNs and their potential application to biosensors. In addition, we discuss the efforts to improve the mechanical and electrical properties of biosensors by combining different CNs.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Jae Won Jeong
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| |
Collapse
|
5
|
Fu Y, Xu K, Wu J, Zhang Z, He J. The effects of morphology and temperature on the tensile characteristics of carbon nitride nanothreads. NANOSCALE 2020; 12:12462-12475. [PMID: 32495792 DOI: 10.1039/d0nr03206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Very recently synthesized carbon nitride nanothreads (CNNTs) by compressing crystalline pyridine show outperform diamond nanothreads in chemical and physical properties. Here, using first-principles-based ReaxFF molecular dynamics (MD) simulations, a comprehensive investigation on the mechanical characteristics of seven experimentally synthesized CNNTs has been performed. All CNNTs exhibit unique tensile properties that change with molecular morphology, atomic arrangement and the distribution of nitrogen in the skeleton. The CNNTs with more effective covalent bonds at cross-sections are more mechanically robust. Surprisingly, a tiny CNNT with periodic unit structures of 5462-cage shows extreme ductility because of the formation of a linear polymer via 4-step dissociation-and-reformation of bonds at extremely low temperatures in the range of 1-15 K; however, it shows brittle failure at one cross-section with low ductility at higher temperatures similar to other CNNTs at different temperatures; this offers a feasible way to design a kind of lightweight material that can be used in ultra-low temperature conditions, for example, the harsh deep space environment. The results also show that temperature significantly affects the fracture stress and rupture strain but not the effective stiffness. The analysis of atomic bond orders and bond lengthening reveals that the unique nonlinear elasticity of CNNTs is attributed to the occurrence of local bond transformations. This study provides physical insights into the tensile characteristics of CNNTs for the design and application of CNNT-based nanostructures as multifunctional materials.
Collapse
Affiliation(s)
- Yuequn Fu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | | | | | | | | |
Collapse
|
6
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
7
|
Varga M, Potocký Š, Domonkos M, Ižák T, Babčenko O, Kromka A. Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement. ACS OMEGA 2019; 4:8441-8450. [PMID: 31459933 PMCID: PMC6648511 DOI: 10.1021/acsomega.9b00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Synthetic diamond films are routinely grown using chemical vapor deposition (CVD) techniques. Due to their extraordinary combination of intrinsic properties, they are used as the functional layers in various bio-optoelectronic devices. It is a challenge to grow the dimensional layers or porous structures that are required. This study reviews the fabrication of various porous diamond-based structures using linear antenna microwave plasma (LAMWP) chemical vapor deposition (CVD), a low-cost technology for growing diamond films over a large area (>1 m2) at low pressure (<100 Pa) and at low temperature (even at 350 °C). From a technological point of view, two different approaches, i.e., templated diamond growth using three different prestructured (macro-, micro-, and nanosized) porous substrates and direct bottom-up growth of ultra-nanoporous diamond (block-stone and dendritelike) films, are successfully employed to form diamond-based structures with controlled porosity and an enhanced surface area. As a bottom-up strategy, the LAMWP CVD system allows diamond growth at as high as 80% CO2 in the CH4/CO2/H2 gas mixture. In summary, the low-pressure and cold plasma conditions in the LAMWP system facilitate the growth on three-dimensionally prestructured substrates of various materials that naturally form porous self-standing diamond structures.
Collapse
Affiliation(s)
- Marián Varga
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Štepán Potocký
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Mária Domonkos
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
| | - Tibor Ižák
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Oleg Babčenko
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
| | - Alexander Kromka
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
| |
Collapse
|
8
|
Chen W, Chen Y, Wang M, Chi Y. Ultrasensitive chemiluminescence biosensors using nucleic acid-functionalized silver-cysteine nanowires as signal amplifying labels. Analyst 2019; 143:1575-1582. [PMID: 29509198 DOI: 10.1039/c7an02085f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultrasensitive chemiluminescence (CL) sensors for biomolecules (DNA and proteins) have been developed by adopting DNA-functionalized silver-cysteine hybrid nanowires (p-SCNWs) as signal amplifying labels. The sensing is established from a sandwich-type DNA hybridization, where the target DNA strands are initially hybridized with the capture DNA located at paramagnetic microspheres (PMs) and subsequently hybridized with p-SCNWs functionalized with the signal DNA probe. After magnetic separation, p-SCNWs on the hybrids were completely decomposed with HNO3 to release numerous silver ions. The powerful catalysis of silver ions toward the redox reaction of K2S2O8-Mn2+-H3PO4 causes the generation of KMnO4 that is capable of oxidizing luminol at high pH, triggering an amplified chemiluminescent signal emission. The sensing combines the extraordinary sensitivity of the catalytic chemiluminescence technology and the amplifying strategy via releasing large quantities of silver ions as the catalyst from each hybrid, enabling the assay of target DNA strands at a concentration as low as 0.34 fM. The CL signals associated with single-base pair mismatched DNA strands and non-complementary DNA strands are able to be discriminated well from the CL signal related to the complementary DNA hybridization. Likewise, the combination of p-SCNWs functionalized with an aptamer and PMs/aptamer/thrombin complex allowed the chemiluminescence sensing of thrombin with a low limit of detection corresponding to 0.17 pM.
Collapse
Affiliation(s)
- Wenjuan Chen
- Key laboratory for analytical science of food safety and biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350108, China.
| | | | | | | |
Collapse
|
9
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
10
|
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Rasheed PA, Sandhyarani N. Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors. Biosens Bioelectron 2017; 97:226-237. [DOI: 10.1016/j.bios.2017.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/04/2023]
|
12
|
DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. J Mol Model 2017; 23:292. [DOI: 10.1007/s00894-017-3462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
|
13
|
Szunerits S, Coffinier Y, Boukherroub R. Diamond Nanowires: A Recent Success Story for Biosensing. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
|
15
|
Niedziałkowski P, Ossowski T, Zięba P, Cirocka A, Rochowski P, Pogorzelski S, Ryl J, Sobaszek M, Bogdanowicz R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Yang N, Swain GM, Jiang X. Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives. ELECTROANAL 2015. [DOI: 10.1002/elan.201500577] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Randriamahazaka H, Ghilane J. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. ELECTROANAL 2015. [DOI: 10.1002/elan.201500527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry. SENSORS 2015; 15:12573-93. [PMID: 26024422 PMCID: PMC4507696 DOI: 10.3390/s150612573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
Over the last decades, carbon-based nanostructures have generated a huge interest from both fundamental and technological viewpoints owing to their physicochemical characteristics, markedly different from their corresponding bulk states. Among these nanostructured materials, carbon nanotubes (CNTs), and more recently graphene and its derivatives, hold a central position. The large amount of work devoted to these materials is driven not only by their unique mechanical and electrical properties, but also by the advances made in synthetic methods to produce these materials in large quantities with reasonably controllable morphologies. While much less studied than CNTs and graphene, diamond nanowires, the diamond analogue of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, high mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and existence of various strategies to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. In the past few years, studies on boron-doped diamond nanowires (BDD NWs) focused on increasing their electrochemical active surface area to achieve higher sensitivity and selectivity compared to planar diamond interfaces. The first part of the present review article will cover the promising applications of BDD NWS for label-free sensing. Then, the potential use of diamond nanowires as inorganic substrates for matrix-free laser desorption/ionization mass spectrometry, a powerful label-free approach for quantification and identification of small compounds, will be discussed.
Collapse
|
19
|
Siuzdak K, Bogdanowicz R, Sawczak M, Sobaszek M. Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. NANOSCALE 2015; 7:551-8. [PMID: 25413987 DOI: 10.1039/c4nr04417g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report on novel composite nanostructures based on boron-doped diamond thin films grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (∼200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2 nanotube arrays. The influence of boron-doping level, methane admixture and growth time on the performance of the Ti/TiO2/BDD electrode was studied in detail. Scanning electron microscopy (SEM) was applied to investigate the surface morphology and grain size distribution. Moreover, the chemical composition of TiO2/BDD electrodes was investigated by means of micro-Raman spectroscopy. The composite electrodes TiO2/BDD are characterized by a significantly higher capacitive current compared to BDD films deposited directly onto a Ti substrate. The novel composite electrode of TiO2 nanotube arrays overgrown by boron-doped diamond (BDD) immersed in 0.1 M NaNO3 can deliver a specific capacitance of 2.10, 4.79, and 7.46 mF cm(-2) at a scan rate of 10 mV s(-1) for a [B]/[C] ratio of 2k, 5k and 10k, respectively. The substantial improvement of electrochemical performance and the excellent rate capability could be attributed to the synergistic effect of TiO2 treatment in CH4 : H2 plasma and the high electrical conductivity of BDD layers. The analysis of electrochemical impedance spectra using an electric equivalent circuit allowed us to determine the surface area on the basis of the value of constant phase element.
Collapse
Affiliation(s)
- K Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk, Poland
| | | | | | | |
Collapse
|
20
|
Yang Y, Yuen MF, Chen X, Xu S, Tang Y, Zhang W. Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. CrystEngComm 2015. [DOI: 10.1039/c4ce02267j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jang B, Chen XZ, Siegfried R, Montero Moreno JM, Özkale B, Nielsch K, Nelson BJ, Pané S. Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores. RSC Adv 2015. [DOI: 10.1039/c5ra20170e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new integrative process that supports a highly-ordered nanoporous membrane with tunable pore parameters on a mechanically-robust substrate was developed.
Collapse
Affiliation(s)
- Bumjin Jang
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| | - Reto Siegfried
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| | | | - Berna Özkale
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| | - Kornelius Nielsch
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 20355 Hamburg
- Germany
| | - Bradley J. Nelson
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab
- Institute of Robotics and Intelligent Systems
- ETH Zurich
- Zurich
- Switzerland
| |
Collapse
|
22
|
Yu Y, Wu L, Zhi J. Diamant-Nanodrähte: Herstellung, Struktur, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Yu Y, Wu L, Zhi J. Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed Engl 2014; 53:14326-51. [PMID: 25376154 DOI: 10.1002/anie.201310803] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/12/2022]
Abstract
C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P.R. China)
| | | | | |
Collapse
|
24
|
Zhang W, Patel K, Schexnider A, Banu S, Radadia AD. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS NANO 2014; 8:1419-28. [PMID: 24397797 PMCID: PMC4004312 DOI: 10.1021/nn405240g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 ± 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 10(6) cfu/mL E. coli O157:H7, the resistance to charge transfer at the IDEs decreased by ∼ 38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 10(8) cfu/mL E. coli O157:H7, the charge transfer resistance changed by ∼ 46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity.
Collapse
|
25
|
Terry JG, Schmüser I, Underwood I, Corrigan DK, Freeman NJ, Bunting AS, Mount AR, Walton AJ. Nanoscale electrode arrays produced with microscale lithographic techniques for use in biomedical sensing applications. IET Nanobiotechnol 2014; 7:125-34. [PMID: 24206769 DOI: 10.1049/iet-nbt.2013.0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput. However, the fabrication methodology used here relies on the fact that vertical dimensions (i.e. layer thicknesses) have long been manufacturable at the nanoscale using thin film deposition techniques that are well established in mainstream microelectronics. The authors report for the first time two aspects that highlight the particular suitability of these MNEE array systems for probe monolayer biosensing. The first is simulation, which shows the enhanced sensitivity to the redox reaction of the solution redox couple. The second is the enhancement of probe film functionalisation observed for the probe film model molecule, 6-mercapto-1-hexanol compared with microsquare electrodes. Such surface modification for specific probe layer biosensing and detection is of significance for a wide range of biomedical and other sensing and analytical applications.
Collapse
|
26
|
Chen YC, Chang L. Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv 2014. [DOI: 10.1039/c4ra01042f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Continuous diamond thin films can be grown on sapphire substrates by microwave plasma chemical vapor deposition utilizing a pretreatment of adamantane dip coating on the substrate for enhanced nucleation.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Li Chang
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu, Republic of China
| |
Collapse
|
27
|
Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Wang Q, Subramanian P, Li M, Yeap WS, Haenen K, Coffinier Y, Boukherroub R, Szunerits S. Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANInanocomposites. Biosens Bioelectron 2013; 42:415-8. [DOI: 10.1016/j.bios.2012.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 11/22/2022]
|
30
|
Yang T, Guo X, Ma Y, Li Q, Zhong L, Jiao K. Electrochemical impedimetric DNA sensing based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite. Colloids Surf B Biointerfaces 2013; 107:257-61. [PMID: 23498361 DOI: 10.1016/j.colsurfb.2013.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
A sensitive electrochemical impedimetric DNA biosensor based on the integration of tin oxide (SnO2) nanoparticles, chitosan (CHIT) and multi-walled carbon nanotubes (MWNTs) is presented in this paper. The MWNTs-SnO2-CHIT composite modified gold electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with individual MWNTs-CHIT, SnO2-CHIT and bare gold electrode, this composite showed the most obvious electrochemical signal of the redox probe [Fe(CN)6](3-/4-). According to the change of the electron transfer resistance (R(et)) induced by the hybridization, target DNA was successfully detected via EIS. This DNA electrochemical biosensor was applied to detect phosphinothricin acetyltransferase (PAT) gene in transgenic corn. The synergistic effect of the MWNTs-SnO2-CHIT remarkably enhanced DNA immobilization and hybridization detection. The dynamic detection range was from 1.0×10(-11) mol/L to 1.0×10(-6) mol/L with a detection limit of 2.5×10(-12) mol/L. This sensing platform showed inner advantage, such as simplicity, good stability, and high sensitivity.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Eco-chemical Engineering (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | | | | | |
Collapse
|
31
|
Yang T, Guan Q, Meng L, Yang R, Li Q, Jiao K. A simple preparation method for large-area, wavy graphene oxide nanowalls and their application to freely switchable impedimetric DNA detection. RSC Adv 2013. [DOI: 10.1039/c3ra44076a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
32
|
Volkov DS, Semenyuk PI, Korobov MV, Proskurnin MA. Quantification of nanodiamonds in aqueous solutions by spectrophotometry and thermal lens spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812100115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Wang Z, Zhang J, Yin Z, Wu S, Mandler D, Zhang H. Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets. NANOSCALE 2012; 4:2728-2733. [PMID: 22434054 DOI: 10.1039/c2nr30142c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoelectrode ensembles (NEEs) have been fabricated by the electrodeposition of Au nanoparticles (AuNPs) on single-layer graphene oxide (GO) sheets coated on a glassy carbon electrode (GCE). The fabricated NEEs show a typical sigmoidal shaped voltammetric profile, arising from the low coverage density of AuNPs on GCE and large distance among them, which can be easily controlled by varying the electrodeposition time. As a proof of concept, after the probe HS-DNA is immobilized on the NEEs through the Au-S bonding, the target DNA is detected with the methylene blue intercalator. Our results show that the target DNA can be detected as low as 100 fM, i.e. 0.5 amol DNA in 5 μL solution.
Collapse
Affiliation(s)
- Zhijuan Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
34
|
van Grinsven B, Vanden Bon N, Strauven H, Grieten L, Murib M, Monroy KLJ, Janssens SD, Haenen K, Schöning MJ, Vermeeren V, Ameloot M, Michiels L, Thoelen R, De Ceuninck W, Wagner P. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA. ACS NANO 2012; 6:2712-21. [PMID: 22356595 DOI: 10.1021/nn300147e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.
Collapse
Affiliation(s)
- Bart van Grinsven
- Institute for Materials Research IMO, IMOMEC, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruslinda AR, Penmatsa V, Ishii Y, Tajima S, Kawarada H. Highly sensitive detection of platelet-derived growth factor on a functionalized diamond surface using aptamer sandwich design. Analyst 2012; 137:1692-7. [PMID: 22349046 DOI: 10.1039/c2an15933c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamer-based fluorescence detection of platelet-derived growth factor (PDGF) on a functionalized diamond surface was demonstrated. In this work, a sandwich design based on the ability of PDGF to bind with aptamers at its two available binding sites was employed. It was found that this sandwich design approach significantly increases the fluorescence signal intensity, and thereby a very low detection limit of 4 pM was achieved. The effect of the ionic strength of MgCl(2) buffer solution was also investigated, and the most favourable binding for PDGF-BB occurred at a Mg(2+) concentration of 5.5 mM. Since the aptamers bind to the target PDGF with high affinity, fluorescence detection exhibited high selectivity towards different biomolecules. The high reproducibility of detection was confirmed by performing three cycles of measurements over a period of three days.
Collapse
Affiliation(s)
- A Rahim Ruslinda
- School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | | | | | |
Collapse
|
36
|
Meziane D, Barras A, Kromka A, Houdkova J, Boukherroub R, Szunerits S. Thiol-yne reaction on boron-doped diamond electrodes: application for the electrochemical detection of DNA-DNA hybridization events. Anal Chem 2011; 84:194-200. [PMID: 22022777 DOI: 10.1021/ac202350c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boron-doped diamond (BDD) interfaces were chemically functionalized through the catalyst free thiol-yne reaction. Different thiolated precursors (e.g., perfluorodecanethiol, 6-(ferrocenyl)-hexanethiol, DNA) were successfully "clicked" to alkynyl-terminated BDD by irradiating the interface at 365 nm for 30 min. Thiolated oligonucleotide strands were immobilized using the optimized reaction conditions, and the surface concentration was tuned to obtain a surface coverage of 3.1 × 10(12) molecules cm(-2). Electrochemical impedance spectroscopy (EIS) was employed to follow the kinetics of hybridization and dehybridization events. The sensitivity of the oligonucleotide modified BDD interface was assayed, and a detection limit of 1 nM was obtained.
Collapse
Affiliation(s)
- Dalila Meziane
- Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université de Lille1, Parc de la Haute Borne, 50 avenue de Halley, B;P 70478, 59658 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
An Z, Lu S, Zhao L, He J. Layered-metal-hydroxide nanosheet arrays with controlled nanostructures to assist direct electronic communication at biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12745-12750. [PMID: 21875137 DOI: 10.1021/la2024956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets.
Collapse
Affiliation(s)
- Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | |
Collapse
|
38
|
Hoffmann R, Kriele A, Obloh H, Tokuda N, Smirnov W, Yang N, Nebel CE. The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials 2011; 32:7325-32. [DOI: 10.1016/j.biomaterials.2011.06.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/21/2011] [Indexed: 11/30/2022]
|
39
|
Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays. BIOSENSORS-BASEL 2011; 1:118-33. [PMID: 25586924 PMCID: PMC4264365 DOI: 10.3390/bios1030118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
Abstract
Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.
Collapse
|
40
|
van Grinsven B, Vanden Bon N, Grieten L, Murib M, Janssens SD, Haenen K, Schneider E, Ingebrandt S, Schöning MJ, Vermeeren V, Ameloot M, Michiels L, Thoelen R, De Ceuninck W, Wagner P. Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation. LAB ON A CHIP 2011; 11:1656-1663. [PMID: 21448492 DOI: 10.1039/c1lc20027e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this article, we report on the electronic monitoring of DNA denaturation by NaOH using electrochemical impedance spectroscopy in combination with fluorescence imaging as a reference technique. The probe DNA consisting of a 36-mer fragment was covalently immobilized on nanocrystalline-diamond electrodes and hybridized with different types of 29-mer target DNA (complementary, single-nucleotide defects at two different positions, and a non-complementary random sequence). The mathematical separation of the impedimetric signals into the time constant for NaOH exposure and the intrinsic denaturation-time constants gives clear evidence that the denaturation times reflect the intrinsic stability of the DNA duplexes. The intrinsic time constants correlate with calculated DNA-melting temperatures. The impedimetric method requires minimal instrumentation, is label-free and fast with a typical time scale of minutes and is highly reproducible. The sensor electrodes can be used repetitively. These elements suggest that the monitoring of chemically induced denaturation at room temperature is an interesting approach to measure DNA duplex stability as an alternative to thermal denaturation at elevated temperatures, used in DNA-melting experiments and single nucleotide polymorphism (SNP) analysis.
Collapse
Affiliation(s)
- B van Grinsven
- Hasselt University, Institute for Materials Research, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Radadia AD, Stavis CJ, Carr R, Zeng H, King WP, Carlisle JA, Aksimentiev A, Hamers RJ, Bashir R. Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1040-1050. [PMID: 21949497 PMCID: PMC3177702 DOI: 10.1002/adfm.201002251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunoassays for detection of bacterial pathogens rely on the selectivity and stability of bio-recognition elements such as antibodies tethered to sensor surfaces. The search for novel surfaces that improve the stability of biomolecules and assay performance has been pursued for a long time. However, the anticipated improvements in stability have not been realized in practice under physiological conditions because the surface functionalization layers on commonly used substrates, silica and gold, are themselves unstable on time scales of days. In this paper, we show that covalent linking of antibodies to diamond surfaces leads to substantial improvements in biological activity of proteins as measured by the ability to selectively capture cells of the pathogenic bacterium Escherichia coli O157:H7 even after exposure to buffer solutions at 37 °C for extended periods of time, approaching 2 weeks. Our results from ELISA, XPS, fluorescence microscopy, and MD simulations suggest that by using highly stable surface chemistry and controlling the nanoscale organization of the antibodies on the surface, it is possible to achieve significant improvements in biological activity and stability. Our findings can be easily extended to functionalization of micro and nanodimensional sensors and structures of biomedical diagnostic and therapeutic interest.
Collapse
Affiliation(s)
- Adarsh D. Radadia
- Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| | - Courtney J. Stavis
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rogan Carr
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Hongjun Zeng
- Advanced Diamond Technologies, Inc, Romeoville, IL 60446, USA
| | - William P. King
- Department of Mechanical Science and Engineering, Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| | | | | | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rashid Bashir
- Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| |
Collapse
|
42
|
Ueda A, Kato D, Kurita R, Kamata T, Inokuchi H, Umemura S, Hirono S, Niwa O. Efficient Direct Electron Transfer with Enzyme on a Nanostructured Carbon Film Fabricated with a Maskless Top-Down UV/Ozone Process. J Am Chem Soc 2011; 133:4840-6. [DOI: 10.1021/ja108614d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akio Ueda
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Dai Kato
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryoji Kurita
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyuki Kamata
- Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hiroaki Inokuchi
- University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigeru Umemura
- Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Shigeru Hirono
- MES-Afty Corporation, 2-35-2 Hyoe, Hachioji, Tokyo 192-0918, Japan
| | - Osamu Niwa
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
43
|
Terashima C, Arihara K, Okazaki S, Shichi T, Tryk DA, Shirafuji T, Saito N, Takai O, Fujishima A. Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching. ACS APPLIED MATERIALS & INTERFACES 2011; 3:177-182. [PMID: 21214209 DOI: 10.1021/am1007722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.
Collapse
Affiliation(s)
- Chiaki Terashima
- Research Center for Materials Backcasting Technology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liang Y, Meinhardt T, Jarre G, Ozawa M, Vrdoljak P, Schöll A, Reinert F, Krueger A. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 2011; 354:23-30. [DOI: 10.1016/j.jcis.2010.10.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/12/2010] [Accepted: 10/20/2010] [Indexed: 11/16/2022]
|
45
|
An Z, He J. Direct electronic communication at bio-interfaces assisted by layered-metal-hydroxide slab arrays with controlled nano-micro structures. Chem Commun (Camb) 2011; 47:11207-9. [DOI: 10.1039/c1cc13941j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Lud SQ, Neppl S, Richter G, Bruno P, Gruen DM, Jordan R, Feulner P, Stutzmann M, Garrido JA. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15895-900. [PMID: 20845943 DOI: 10.1021/la102225r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.
Collapse
Affiliation(s)
- Simon Q Lud
- Walter Schottky Institut, Technische Universität München, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The surface of hydrogen-terminated diamond resembles a solid hydrocarbon substrate. Interestingly, the C-H bonds on the diamond surface are not as unreactive as that of saturated hydrocarbon molecules owing to its unique surface electronic properties. The invention of C-H bond activation and C-C coupling reactions on the diamond surface allows chemists to develop powerful chemical transistors, biosensors, and photovoltaic cells on the diamond platform.
Collapse
Affiliation(s)
- Yu Lin Zhong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | | |
Collapse
|
48
|
|
49
|
Direct electrochemical detection of DNA methylation for retinoblastoma and CpG fragments using a nanocarbon film. Anal Biochem 2010; 405:59-66. [DOI: 10.1016/j.ab.2010.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/13/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
50
|
Ramgir NS, Yang Y, Zacharias M. Nanowire-based sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1705-1722. [PMID: 20712030 DOI: 10.1002/smll.201000972] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface-to-volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single-molecule detection with superior sensing performance. In this work, progress made towards the use of nanowires for achieving better sensing performance is critically reviewed. In particular, various nanowires types (metallic, semiconducting, and insulating) and their employment either as a sensor material or as a template material are discussed. Major obstacles and future steps towards the ultimate nanosensors based on nanowires are addressed.
Collapse
Affiliation(s)
- Niranjan S Ramgir
- Nanotechnology Institute of Microsystems Engineering (IMTEK) Georges-Köhler-Allee 103 Freiburg, D 79110, Germany
| | | | | |
Collapse
|