1
|
Exploring triazine and heptazine based self assembled molecular materials through first principles investigations. J Mol Model 2018; 24:217. [PMID: 30051287 DOI: 10.1007/s00894-018-3741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Two-dimensional materials formed from the molecular self assembly of monomers through noncovalent interactions are of great importance in designing complex nanostructures with desired properties. The carbon nitride based heterocyclic systems, triazine and heptazine, are found to be promising candidates for generating various self assembled materials through (N....H) hydrogen bonding. Here, we explored graphyne and graphdiyne-like self assembled structures for carbon nitride materials using the density functional theory calculations. We systematically investigated the monolayer structures, stacked structures in different configurations, as well as the surface assembled structures on the Au(111) surface. In all four different monolayer structures, the monomers interact through the N...H hydrogen bonding. The electronic structure results indicate that the electronic properties in these structures can be tuned through the variation in the length of the acetylinic unit. The minimum energy stacked bilayer structure of triazine based material exactly matches with the experimentally reported structure. Surface assembled studies of the triazine based system show strong interaction between the Au(111) surface and the carbon nitride monolayer. Graphical abstract Self assembled two-dimensional molecular materials as well as the surface assemblies of triazine and heptazine based precursors are computationally investigated.
Collapse
|
2
|
Judd CJ, Champness NR, Saywell A. An On-Surface Reaction Confined within a Porous Molecular Template. Chemistry 2017; 24:56-61. [PMID: 29065224 DOI: 10.1002/chem.201704693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 11/07/2022]
Abstract
On-surface reactions based on metal-catalysed Ullmann coupling have been successfully employed to synthesise a wide variety of covalently coupled structures. Substrate chemistry and topology are both known to effect the progression of an on-surface reaction; offering routes to control efficiency and selectivity. Here, we detail ultra-high vacuum scanning probe microscopy experiments showing that templating a catalytically active surface, via a supramolecular template, influences the reaction pathway of an on-surface Ullmann-type coupling reaction by inhibiting one potential intermediate structure and stabilising another.
Collapse
Affiliation(s)
- Chris J Judd
- School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Neil R Champness
- School of Chemistry, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Alex Saywell
- School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
3
|
Karamzadeh B, Eaton T, Torres DM, Cebula I, Mayor M, Buck M. Sequential nested assembly at the liquid/solid interface. Faraday Discuss 2017; 204:173-190. [PMID: 28782775 DOI: 10.1039/c7fd00115k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the stepwise assembly of a four component hybrid structure on Au(111)/mica, the pores of a hydrogen bonded bimolecular network of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) and 1,3,5-triazine-2,4,6-triamine (melamine) were partitioned by three and four-armed molecules based on oligo([biphenyl]-4-ylethynyl)benzene, followed by the templated adsorption of either C60 fullerene or adamantane thiol molecules. The characterisation by ambient scanning tunneling microscopy (STM) reveals that the pore modifiers exhibit dynamics which pronouncedly depend on the molecular structure. The three-armed molecule 1,3,5-tris([1,1'-biphenyl]-4-ylethynyl)benzene (3BPEB) switches between two symmetry equivalent configurations on a time scale fast compared to the temporal resolution of the STM. Derivatisation of 3BPEB by hydroxyl groups substantially reduces the switching rate. For the four-armed molecule configurational changes are observed only occasionally. The observation of isolated fullerenes and small clusters of adamantane thiol molecules, which are arranged in a characteristic fashion, reveals the templating effect of the trimolecular supramolecular network. However, the fraction of compartments filled by guest molecules is significantly below one for both the thermodynamically controlled adsorption of C60 and the kinetically controlled adsorption of the thiol with the latter causing partial removal of the pore modifier. The experiments, on the one hand, demonstrate the feasibility of templating by nested assembly but, on the other hand, also pinpoint the requirement for the energy landscape to be tolerant to variations in the assembly process.
Collapse
Affiliation(s)
- Baharan Karamzadeh
- EastCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, UK.
| | | | | | | | | | | |
Collapse
|
4
|
Aitchison H, Meyerbröker N, Lee TL, Zegenhagen J, Potter T, Früchtl H, Cebula I, Buck M. Underpotential deposition of Cu on Au(111) from neutral chloride containing electrolyte. Phys Chem Chem Phys 2017; 19:24146-24153. [PMID: 28837189 DOI: 10.1039/c7cp04244b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structure of a chloride terminated copper monolayer electrodeposited onto Au(111) from a CuSO4/KCl electrolyte was investigated ex situ by three complementary experimental techniques (scanning tunneling microscopy (STM), photoelectron spectroscopy (PES), X-ray standing wave (XSW) excitation) and density functional theory (DFT) calculations. STM at atomic resolution reveals a stable, highly ordered layer which exhibits a Moiré structure and is described by a (5 × 5) unit cell. The XSW/PES data yield a well-defined position of the Cu layer and the value of 2.16 Å above the topmost Au layer suggests that the atoms are adsorbed in threefold hollow sites. The chloride exhibits some distribution around a distance of 3.77 Å in agreement with the observed Moiré pattern due to a higher order commensurate lattice. This structure, a high order commensurate Cl overlayer on top of a commensurate (1 × 1) Cu layer with Cu at threefold hollow sites, is corroborated by the DFT calculations.
Collapse
Affiliation(s)
- Hannah Aitchison
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 1012] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Karamzadeh B, Eaton T, Cebula I, Torres DM, Neuburger M, Mayor M, Buck M. Bestowing structure upon the pores of a supramolecular network. Chem Commun (Camb) 2014; 50:14175-8. [PMID: 25277643 DOI: 10.1039/c4cc05934d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trigonal molecules compartmentalise the pores of a honeycomb network of 3,4:9,10-tetracarboxylic diimide (PTCDI) and 1,3,5-triazine-2,4,6-triamine (melamine). Extending the 1,3,5-tri(phenylene-ethynylene)benzene core by a phenyl group allows for a well-defined accommodation of the molecule into two symmetry equivalent positions in the pore. The corresponding styryl or phenylene-ethynylene derivatives exceed the pore size and, thus, impede pore modification.
Collapse
Affiliation(s)
- Baharan Karamzadeh
- EaStCHEM School Chemistry, University of St. Andrews, North Haugh, St. Andrews, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Shen C, Buck M. Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:258-267. [PMID: 24778947 PMCID: PMC3999799 DOI: 10.3762/bjnano.5.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/06/2014] [Indexed: 05/31/2023]
Abstract
The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.
Collapse
Affiliation(s)
- Cai Shen
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Manfred Buck
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
8
|
Cao L, Xu L, Zhao D, Tahara K, Tobe Y, De Feyter S, Lei S. Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chem Commun (Camb) 2014; 50:11946-9. [DOI: 10.1039/c4cc03658a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A surprising recognition phenomenon based on van der Waals interactions was observed, which proves that the design of the supramolecular assembly from its building blocks represents a highly promising and general strategy.
Collapse
Affiliation(s)
- Lili Cao
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| | - Lirong Xu
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| | - Dahui Zhao
- Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871, China
| | - Kazukuni Tahara
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Yoshito Tobe
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Steven De Feyter
- Division of Molecular and Nanomaterials
- Department of Chemistry
- KU Leuven – University of Leuven
- 3001 Leuven, Belgium
| | - Shengbin Lei
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| |
Collapse
|
9
|
Xu L, Zhou X, Yu Y, Tian WQ, Ma J, Lei S. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS NANO 2013; 7:8066-8073. [PMID: 23924203 DOI: 10.1021/nn403328h] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We performed a co-condensation reaction between aromatic aldehyde and aromatic diamine monomers on a highly oriented pyrolytic graphite surface either at a solid/liquid interface at room temperature or in low vacuum with moderate heating. With this simple and moderate methodology, we have obtained surface-confined 2D covalent organic frameworks (COFs) with few defects and almost entire surface coverage. The single crystalline domain can extend to more than 1 μm(2). By varying the backbone length of aromatic diamines the pore size of 2D surface COFs is tunable from ∼1.7 to 3.5 nm. In addition, the nature of the surface COF can be modified by introducing functional groups into the aromatic amine precursor, which has been demonstrated by introducing methyl groups to the backbone of the diamine. Formation of small portions of bilayers was observed by both scanning tunneling microscopy (STM) and AFM, which clearly reveals an eclipsed stacking manner.
Collapse
Affiliation(s)
- Lirong Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin, 150080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Seki T, Lin X, Yagai S. Supramolecular Engineering of Perylene Bisimide Assemblies Based on Complementary Multiple Hydrogen Bonding Interactions. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Li L, Wu R, Guang S, Su X, Xu H. The investigation of the hydrogen bond saturation effect during the dipole–dipole induced azobenzene supramolecular self-assembly. Phys Chem Chem Phys 2013; 15:20753-63. [DOI: 10.1039/c3cp52864b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Chiu YD, Dow WP, Krug K, Liu YF, Lee YL, Yau SL. Adsorption and desorption of bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14476-14487. [PMID: 22978781 DOI: 10.1021/la3025183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The adsorption and desorption of bis-(3-sulfopropyl) disulfide (SPS) on Cu and Au electrodes and its electrochemical effect on Cu deposition and dissolution were examined using cyclic voltammetry stripping (CVS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). SPS dissociates into 3-mercapto-1-propanesulfonate when it is contacted with Au and Cu electrodes, producing Cu(I)- and Au(I)-thiolate species. These thiolates couple with chloride ions and promote not only the reduction of Cu(2+) in Cu deposition but also the oxidation of Cu(0) to Cu(+) in Cu stripping. During Cu electrodeposition on the SPS-modified Au electrode, thiolates transfer from Au onto the Cu underpotential deposition (UPD) layer. The Cu UPD layer stabilizes a large part of the transferred thiolates which subsequently is buried by the Cu overpotential deposition (OPD) layer. The buried thiolates reappear on the Au electrode after the copper deposit is electrochemically stripped off. A much smaller part of thiolates transfers to the top of the Cu OPD layer. In contrast, when SPS preadsorbs on a Cu-coated Au electrode, almost all of the adsorbed SPS leaves the Cu surface during Cu electrochemical stripping and does not return to the uncovered Au surface. A reaction mechanism is proposed to explain these results.
Collapse
Affiliation(s)
- Yong-Da Chiu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Zhou M, Qiao X, Tong H, Gong T, Fan M, Yang Q, Dong Q, Chao J, Guo Z, Liu D. From lithium bis(trimethylsilyl)amide with cyanoamine into triazine compounds: synthesis and structures of lithium 6-((trimethylsilyl)amido)-2,4-bis(dimethylamino)[1,3,5]triazines and their manganese and cobalt complexes. Inorg Chem 2012; 51:4925-30. [PMID: 22486357 DOI: 10.1021/ic201629a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition reactions of lithium bis(trimethylsilyl)amide with dimethylcyanamide lead to novel lithium salts of 6-((trimethylsilyl)amido)-2,4-bis(dimethylamino)[1,3,5]triazines [LLi(D)](2) (L = NC(NMe(2))NC(NMe(2))NC(NSiMe(3)); D = Me(2)NCN (1), Et(2)O (2)) and to the Mn and Co complexes [LL'M] (L' = N{N(SiMe(3))C(NMe(2))}(2); M = Mn (3), Co (4)); the structures of crystalline 1, 3, and 4 are reported. Their formation involves trimethylsilyl shifts, ring formation, and unusual Me(2)NSiMe(3) elimination.
Collapse
Affiliation(s)
- Meisu Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phillips AG, Beton PH, Champness NR. Two-Dimensional Supramolecular Chemistry. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Räisänen MT, Slater (née Phillips) AG, Champness NR, Buck M. Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chem Sci 2012. [DOI: 10.1039/c1sc00543j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Chu J, Chen W, Su G, Song YF. Four new copper(II) complexes with di-substituted s-triazine-based ligands. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Lei S, Tahara K, Müllen K, Szabelski P, Tobe Y, De Feyter S. Mixing behavior of alkoxylated dehydrobenzo [12]annulenes at the solid-liquid interface: scanning tunneling microscopy and Monte Carlo simulations. ACS NANO 2011; 5:4145-4157. [PMID: 21500863 DOI: 10.1021/nn200874k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a systematic scanning tunneling microscopic study on the mixing behavior of molecules (DBAs) with different alkyl substituents at the solid-liquid interface to reveal the phase behavior of complex systems. The phase behavior of binary mixtures of alkylated DBAs at the solid-liquid interface can be predicted by the 2D isomorphism coefficient. In addition, we also investigated the influence of coadsorption of template molecules on the phase behavior of DBA mixtures. Coadsorption of these molecules significantly promotes mixing of DBAs, possibly by affecting the recognition between alkyl chains. Monte Carlo simulations prove that the 2D isomorphism coefficient can predict the phase behavior at the interface. These results are helpful for the understanding of phase behavior of complex assembling systems and also for the design of programmable porous networks and hierarchical architectures at the solid-liquid interface.
Collapse
Affiliation(s)
- Shengbin Lei
- Division of Molecular and Nanomaterials, Department of Chemistry and Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Slater (née Phillips) AG, Beton PH, Champness NR. Two-dimensional supramolecular chemistry on surfaces. Chem Sci 2011. [DOI: 10.1039/c1sc00251a] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Zhang X, Chen T, Yan HJ, Wang D, Fan QH, Wan LJ, Ghosh K, Yang HB, Stang PJ. Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly. ACS NANO 2010; 4:5685-5692. [PMID: 20828187 DOI: 10.1021/nn101727u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The formation of a desired nanostructure with concomitant patterns and functions is of utmost importance in the field of surface molecular engineering and nanotechnology. We here present a flexible host-guest assembly, which steers the formation of linear molecular nanostructures on surfaces by a hydrogen-bond-mediated assembly process. A linear monodendron molecular template with periodic hydrogen-bond binding sites is shown to accommodate a variety of molecules with pyridylethynyl terminals. The unit cell parameters in the transverse direction of the linear pattern can be tuned from 3.4 to 7.3 nm in response to the packing of the guest molecules with different sizes, shapes, and aggregation number. The introduction of hydrogen-bonding partners into the host template and into guest molecules is responsible for the steering of the linear pattern of guest molecules. The modular approach could greatly facilitate the ordering of guest molecules with desired functional moieties.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mura M, Gulans A, Thonhauser T, Kantorovich L. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface. Phys Chem Chem Phys 2010; 12:4759-67. [DOI: 10.1039/b920121a] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|