1
|
Buslov I, Desmons S, Duhoo Y, Hu X. Engineered Phenylalanine Ammonia-Lyases for the Enantioselective Synthesis of Aspartic Acid Derivatives. Angew Chem Int Ed Engl 2024; 63:e202406008. [PMID: 38713131 DOI: 10.1002/anie.202406008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroarylalanines, but their substrate scope remains limited, typically including only arylacrylic acids. Moreover, the enantioselectivity in the hydroamination of electron-deficient substrates is often poor. Here, we report the structure-based engineering of PAL from Planctomyces brasiliensis (PbPAL), enabling preparative-scale enantioselective hydroaminations of previously inaccessible yet synthetically useful substrates, such as amide- and ester-containing fumaric acid derivatives. Through the elucidation of cryo-electron microscopy (cryo-EM) PbPAL structure and screening of the structure-based mutagenesis library, we identified the key active site residue L205 as pivotal for dramatically enhancing the enantioselectivity of hydroamination reactions involving electron-deficient substrates. Our engineered PALs demonstrated exclusive α-regioselectivity, high enantioselectivity, and broad substrate scope. The potential utility of the developed biocatalysts was further demonstrated by a preparative-scale hydroamination yielding tert-butyl protected l-aspartic acid, widely used as intermediate in peptide solid-phase synthesis.
Collapse
Affiliation(s)
- Ivan Buslov
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Sarah Desmons
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Yoan Duhoo
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Brack Y, Sun C, Yi D, Bornscheuer UT. Exploring the Substrate Switch Motif of Aromatic Ammonia Lyases. Chembiochem 2023; 24:e202300584. [PMID: 37747300 DOI: 10.1002/cbic.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Aromatic ammonia lyases (AALs) are important enzymes for biocatalysis as they enable the asymmetric synthesis of chiral l-α-amino acids from the corresponding α,β-unsaturated precursors. AALs have very similar protein structures and active site pockets but exhibit strict substrate specificity towards tyrosine, phenylalanine, or histidine. Herein, through systematic bioinformatics and structural analysis, we discovered eight new motifs of amino acid residues in AALs. After introducing them - as well as four already known motifs - into different AALs, we learned that altering the substrate specificity by engineering the substrate switch motif in phenylalanine ammonia lyases (PALs), phenylalanine/tyrosine ammonia lyases (PTALs), and tyrosine ammonia lyases (TALs) was only partially successful. However, we discovered that three previously unknown residue combinations introduced a substrate switch from tyrosine to phenylalanine in TAL, which was converted up to 20-fold better compared to the wild-type TAL enzyme.
Collapse
Affiliation(s)
- Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Chenghai Sun
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Dong Yi
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
- Department of Biopharmaceuticals, China State Institute of Pharmaceutical Industry, Gebaini Road 285, 201203, Shanghai, P. R. China
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| |
Collapse
|
3
|
Tomoiagă RB, Tork SD, Filip A, Nagy LC, Bencze LC. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity. Appl Microbiol Biotechnol 2023; 107:1243-1256. [PMID: 36662259 DOI: 10.1007/s00253-023-12374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.
Collapse
Affiliation(s)
- Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Alina Filip
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Towards a general approach for tailoring the hydrophobic binding site of phenylalanine ammonia-lyases. Sci Rep 2022; 12:10606. [PMID: 35739148 PMCID: PMC9226071 DOI: 10.1038/s41598-022-14585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Unnatural substituted amino acids play an important role as chiral building blocks, especially for pharmaceutical industry, where the synthesis of chiral biologically active molecules still represents an open challenge. Recently, modification of the hydrophobic binding pocket of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) resulted in specifically tailored PcPAL variants, contributing to a rational design template for PAL-activity enhancements towards the differently substituted substrate analogues. Within this study we tested the general applicability of this rational design model in case of PALs, of different sources, such as from Arabidopsis thaliana (AtPAL) and Rhodosporidium toruloides (RtPAL). With some exceptions, the results support that the positions of substrate specificity modulating residues are conserved among PALs, thus the mutation with beneficial effect for PAL-activity enhancement can be predicted using the established rational design model. Accordingly, the study supports that tailoring PALs of different origins and different substrate scope, can be performed through a general method. Moreover, the fact that AtPAL variants I461V, L133A and L257V, all outperformed in terms of catalytic efficiency the corresponding, previously reported, highly efficient PcPAL variants, of identical catalytic site, suggests that not only catalytic site differences influence the PAL-activity, thus for the selection of the optimal PAL-biocatalysts for a targeted process, screening of PALs from different origins, should be included.
Collapse
|
5
|
Kempa EE, Galman JL, Parmeggiani F, Marshall JR, Malassis J, Fontenelle CQ, Vendeville JB, Linclau B, Charnock SJ, Flitsch SL, Turner NJ, Barran PE. Rapid Screening of Diverse Biotransformations for Enzyme Evolution. JACS AU 2021; 1:508-516. [PMID: 34056634 PMCID: PMC8154213 DOI: 10.1021/jacsau.1c00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts. This DiBT-MS screening workflow has been applied to the directed evolution of a phenylalanine ammonia lyase (PAL) as a case study, enhancing its activity toward electron-rich cinnamic acid derivatives which are relevant to lignocellulosic biomass degradation. Additional benefits of the screening platform include the discovery of biocatalysts (kinases, imine reductases) with novel activities and the incorporation of ion mobility technology for the identification of product hits with increased confidence.
Collapse
Affiliation(s)
- Emily E Kempa
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James L Galman
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - James R Marshall
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Julien Malassis
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | - Clement Q Fontenelle
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | | | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | - Simon J Charnock
- Prozomix Ltd., Building 4, West End Ind. Estate, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Sabine L Flitsch
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E Barran
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Bata Z, Molnár Z, Madaras E, Molnár B, Sánta-Bell E, Varga A, Leveles I, Qian R, Hammerschmidt F, Paizs C, Vértessy BG, Poppe L. Substrate Tunnel Engineering Aided by X-ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zsófia Bata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Erzsébet Madaras
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Bence Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Str. 11, RO-400028 Cluj-Napoca, Romania
| | - Ibolya Leveles
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Renzhe Qian
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, A-1090 Vienna, Austria
| | - Friedrich Hammerschmidt
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, A-1090 Vienna, Austria
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Str. 11, RO-400028 Cluj-Napoca, Romania
| | - Beáta G. Vértessy
- Institute of Enzymology, ELKH Research Center of Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Str. 11, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Kampatsikas I, Pretzler M, Rompel A. Die Erzeugung von Tyrosinaseaktivität in einer Catecholoxidase erlaubt die Identifizierung der für die C‐H‐Aktivierung in Typ‐III‐Kupferenzymen verantwortlichen Aminosäurereste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
8
|
Kampatsikas I, Pretzler M, Rompel A. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew Chem Int Ed Engl 2020; 59:20940-20945. [PMID: 32701181 PMCID: PMC7693034 DOI: 10.1002/anie.202008859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Tyrosinases (TYRs) catalyze the hydroxylation of phenols and the oxidation of the resulting o-diphenols to o-quinones, while catechol oxidases (COs) exhibit only the latter activity. Aurone synthase (AUS) is not able to react with classical tyrosinase substrates, such as tyramine and l-tyrosine, while it can hydroxylate its natural substrate isoliquiritigenin. The structural difference of TYRs, COs, and AUS at the heart of their divergent catalytic activities is still a puzzle. Therefore, a library of 39 mutants of AUS from Coreopsis grandiflora (CgAUS) was generated and the activity studies showed that the reactivity of the three conserved histidines (HisA2 , HisB1 , and HisB2 ) is tuned by their adjacent residues (HisB1 +1, HisB2 +1, and waterkeeper residue) either to react as stronger bases or / and to stabilize a position permissive for substrate proton shuffling. This provides the understanding for C-H activation based on the type-III copper center to be used in future biotechnological processes.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
9
|
Investigation into isomerization reaction of phenylalanine aminomutase from Pantoea agglomerans. Enzyme Microb Technol 2019; 132:109428. [PMID: 31731949 DOI: 10.1016/j.enzmictec.2019.109428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Phenylalanine aminomutase (PaPAM) from Pantoea agglomerans is a member of the MIO (4-methylene-imidazol-5-one) family of enzymes, which isomerizes α-phenylalanine to β-phenylalanine, and could be used to synthesize unnatural β-arylalanine. However, the mechanism of isomerization reaction is not clear. To investigate the mechanism, the gene (pam), which encodes PaPAM, was first expressed in E.coli, and recombinant PaPAM was prepared using affinity chromatography. Then, 15N-(2S)-α-phenylalanine, (2S)-(3-2H2)-α-phenylalanine and (2S,3S)-[2,3-2H2]-α-phenylalanine were used as substrates to analyze the mechanism of isomerization reaction. The results of MS and NMR showed that the isomerization reaction was performed through the intramolecular exchange of NH2 with pro-3R hydrogen of α-phenylalanine. The PaPAM shuttles the α-NH2 of α-phenylalanine to β site to replace the pro-3R hydrogen. Simultaneously, the pro-3R hydrogen is shifted to α site to produce β-phenylalanine. Furthermore, a key residue, Phe at position 455 in the active site, was determined to control the exchange way using molecular docking and sequence alignment of MIO family enzymes. The results indicated that the key 455 Phe residue is involved in changing the binding orientation of the carboxyl group of the intermediate trans-cinnamic acid to control the NH2-H pair exchange.
Collapse
|
10
|
Nagy EZA, Tork SD, Lang PA, Filip A, Irimie FD, Poppe L, Toşa MI, Schofield CJ, Brem J, Paizs C, Bencze LC. Mapping the Hydrophobic Substrate Binding Site of Phenylalanine Ammonia-Lyase from Petroselinum crispum. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Emma Z. A. Nagy
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Souad D. Tork
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Pauline A. Lang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alina Filip
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Florin D. Irimie
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - László Poppe
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Monica I. Toşa
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Christopher J. Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - László C. Bencze
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
11
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
12
|
Csuka P, Juhász V, Kohári S, Filip A, Varga A, Sátorhelyi P, Bencze LC, Barton H, Paizs C, Poppe L. Pseudomonas fluorescensStrain R124 Encodes Three Different MIO Enzymes. Chembiochem 2018; 19:411-418. [DOI: 10.1002/cbic.201700530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Pál Csuka
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Vivien Juhász
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Szabolcs Kohári
- Fermentia Microbiological Ltd; Berlini út 47-49 1049 Budapest Hungary
| | - Alina Filip
- Biocatalysis and Biotransformation Research Center; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Center; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd; Berlini út 47-49 1049 Budapest Hungary
| | - László Csaba Bencze
- Biocatalysis and Biotransformation Research Center; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Hazel Barton
- Department of Biology; The University of Akron; ASEC West Tower 178 Akron OH 44325 USA
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - László Poppe
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
- Biocatalysis and Biotransformation Research Center; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
- SynBiocat Ltd; Szilasliget u. 3 1172 Budapest Hungary
| |
Collapse
|
13
|
Parmeggiani F, Weise NJ, Ahmed ST, Turner NJ. Synthetic and Therapeutic Applications of Ammonia-lyases and Aminomutases. Chem Rev 2017; 118:73-118. [DOI: 10.1021/acs.chemrev.6b00824] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fabio Parmeggiani
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Weise
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Syed T. Ahmed
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| |
Collapse
|
14
|
Dreßen A, Hilberath T, Mackfeld U, Billmeier A, Rudat J, Pohl M. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL). J Biotechnol 2017; 258:148-157. [PMID: 28392421 DOI: 10.1016/j.jbiotec.2017.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows KM-values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules.
Collapse
Affiliation(s)
- Alana Dreßen
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Thomas Hilberath
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Ursula Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Arne Billmeier
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Jens Rudat
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section: Technical Biology, Engler-Bunte-Ring 3, D-76131 Karlsruhe, Germany.
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
15
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
16
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
17
|
Walter T, Wijewardena D, Walker KD. Mutation of Aryl Binding Pocket Residues Results in an Unexpected Activity Switch in an Oryza sativa Tyrosine Aminomutase. Biochemistry 2016; 55:3497-503. [DOI: 10.1021/acs.biochem.6b00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tyler Walter
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Devinda Wijewardena
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 2015; 81:4458-76. [PMID: 25911487 DOI: 10.1128/aem.00405-15] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022] Open
Abstract
Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 μM cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 μM p-coumaric acid OD600 unit(-1) in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases.
Collapse
|
19
|
Heberling MM, Masman MF, Bartsch S, Wybenga GG, Dijkstra BW, Marrink SJ, Janssen DB. Ironing out their differences: dissecting the structural determinants of a phenylalanine aminomutase and ammonia lyase. ACS Chem Biol 2015; 10:989-97. [PMID: 25494407 DOI: 10.1021/cb500794h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deciphering the structural features that functionally separate ammonia lyases from aminomutases is of interest because it may allow for the engineering of more efficient aminomutases for the synthesis of unnatural amino acids (e.g., β-amino acids). However, this has proved to be a major challenge that involves understanding the factors that influence their activity and regioselectivity differences. Herein, we report evidence of a structural determinant that dictates the activity differences between a phenylalanine ammonia lyase (PAL) and aminomutase (PAM). An inner loop region that closes the active sites of both PAM and PAL was mutated within PAM (PAM residues 77-97) in a stepwise approach to study the effects when the equivalent residue(s) found in the PAL loop were introduced into the PAM loop. Almost all of the single loop mutations triggered a lyase phenotype in PAM. Experimental and computational evidence suggest that the induced lyase features result from inner loop mobility enhancements, which are possibly caused by a 310-helix cluster, flanking α-helices, and hydrophobic interactions. These findings pinpoint the inner loop as a structural determinant of the lyase and mutase activities of PAM.
Collapse
Affiliation(s)
- Matthew M. Heberling
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marcelo F. Masman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Sebastian Bartsch
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | - Dick B. Janssen
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
20
|
Bartha‐Vári JH, Toşa MI, Irimie F, Weiser D, Boros Z, Vértessy BG, Paizs C, Poppe L. Immobilization of Phenylalanine Ammonia-Lyase on Single-Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuous-Flow Modes. ChemCatChem 2015; 7:1122-1128. [PMID: 26925171 PMCID: PMC4744988 DOI: 10.1002/cctc.201402894] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/17/2014] [Indexed: 12/05/2022]
Abstract
Carboxylated single-walled carbon nanotubes (SwCNTCOOH) were used as a support for the covalent immobilization of phenylalanine ammonia-lyase (PAL) from parsley by two different methods. The nanostructured biocatalysts (SwCNTCOOH-PALI and SwCNTCOOH-PALII) with low diffusional limitation were tested in the batch-mode kinetic resolution of racemic 2-amino-3-(thiophen-2-yl)propanoic acid (1) to yield a mixture of (R)-1 and (E)-3-(thiophen-2-yl)acrylic acid (2) and in ammonia addition to 2 to yield enantiopure (S)-1. SwCNTCOOH-PALII was a stable biocatalyst (>90 % of the original activity remained after six cycles with 1 and after three cycles in 6 m NH3 with 2). The study of ammonia addition to 2 in a continuous-flow microreactor filled with SwCNTCOOH-PALII (2 m NH3, pH 10.0, 15 bar) between 30-80 °C indicated no significant loss of activity over 72 h up to 60 °C. SwCNTCOOH-PALII in the continuous-flow system at 30 °C was more productive (specific reaction rate, rflow=2.39 μmol min-1 g-1) than in the batch reaction (rbatch=1.34 μmol min-1 g-1).
Collapse
Affiliation(s)
- Judith H. Bartha‐Vári
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Monica I. Toşa
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Florin‐Dan Irimie
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Diána Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
| | - Zoltán Boros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| | - Beáta G. Vértessy
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest (Hungary)
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest (Hungary)
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| |
Collapse
|
21
|
Parmeggiani F, Lovelock SL, Weise NJ, Ahmed ST, Turner NJ. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process. Angew Chem Int Ed Engl 2015; 54:4608-11. [PMID: 25728350 PMCID: PMC4531825 DOI: 10.1002/anie.201410670] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/08/2015] [Indexed: 11/25/2022]
Abstract
The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination.
Collapse
Affiliation(s)
- Fabio Parmeggiani
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| | | | | | | | | |
Collapse
|
22
|
Parmeggiani F, Lovelock SL, Weise NJ, Ahmed ST, Turner NJ. Synthesis of d- and l-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process. ACTA ACUST UNITED AC 2015; 127:4691-4694. [PMID: 27478261 PMCID: PMC4955227 DOI: 10.1002/ange.201410670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/08/2015] [Indexed: 11/08/2022]
Abstract
The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination.
Collapse
Affiliation(s)
- Fabio Parmeggiani
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| | - Nicholas J Weise
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| | - Syed T Ahmed
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| | - Nicholas J Turner
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester (UK)
| |
Collapse
|
23
|
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 2015. [DOI: 10.1039/c5ra08196c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase, a versatile enzyme with industrial and medical applications.
Collapse
Affiliation(s)
- Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products
- Beijing
- China
| |
Collapse
|
24
|
Zhu L, Zhou L, Cui W, Liu Z, Zhou Z. Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1. ACTA ACUST UNITED AC 2014. [PMID: 28626644 PMCID: PMC5466100 DOI: 10.1016/j.btre.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans-cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of RgPAL is 9 and the RgPAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant RgPAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant RgPAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of RgPAL, the improvement of the RgPAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The RgPAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the eeD value of d-phenylalanine using RgPAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of RgPAL.
Collapse
Affiliation(s)
- Longbao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Lovelock SL, Lloyd RC, Turner NJ. Phenylalanine Ammonia Lyase Catalyzed Synthesis of Amino Acids by an MIO-Cofactor Independent Pathway. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Lovelock SL, Lloyd RC, Turner NJ. Phenylalanine Ammonia Lyase Catalyzed Synthesis of Amino Acids by an MIO-Cofactor Independent Pathway. Angew Chem Int Ed Engl 2014; 53:4652-6. [DOI: 10.1002/anie.201311061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/08/2022]
|
27
|
Weiser D, Varga A, Kovács K, Nagy F, Szilágyi A, Vértessy BG, Paizs C, Poppe L. Bisepoxide Cross-Linked Enzyme Aggregates-New Immobilized Biocatalysts for Selective Biotransformations. ChemCatChem 2014. [DOI: 10.1002/cctc.201300806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. New generation of biocatalysts for organic synthesis. Angew Chem Int Ed Engl 2014; 53:3070-95. [PMID: 24520044 DOI: 10.1002/anie.201302195] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 02/04/2023]
Abstract
The use of enzymes as catalysts for the preparation of novel compounds has received steadily increasing attention over the past few years. High demands are placed on the identification of new biocatalysts for organic synthesis. The catalysis of more ambitious reactions reflects the high expectations of this field of research. Enzymes play an increasingly important role as biocatalysts in the synthesis of key intermediates for the pharmaceutical and chemical industry, and new enzymatic technologies and processes have been established. Enzymes are an important part of the spectrum of catalysts available for synthetic chemistry. The advantages and applications of the most recent and attractive biocatalysts--reductases, transaminases, ammonia lyases, epoxide hydrolases, and dehalogenases--will be discussed herein and exemplified by the syntheses of interesting compounds.
Collapse
Affiliation(s)
- Bettina M Nestl
- Technische Biochemie, Universität Stuttgart, Stuttgart (Germany)
| | | | | | | |
Collapse
|
29
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. Biokatalysatoren für die organische Synthese - die neue Generation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201302195] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Wang K, Hou Q, Liu Y. Insight into the mechanism of aminomutase reaction: A case study of phenylalanine aminomutase by computational approach. J Mol Graph Model 2013; 46:65-73. [DOI: 10.1016/j.jmgm.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
|
31
|
Bartsch S, Wybenga GG, Jansen M, Heberling MM, Wu B, Dijkstra BW, Janssen DB. Redesign of a Phenylalanine Aminomutase into a Phenylalanine Ammonia Lyase. ChemCatChem 2013. [DOI: 10.1002/cctc.201200871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Heberling MM, Wu B, Bartsch S, Janssen DB. Priming ammonia lyases and aminomutases for industrial and therapeutic applications. Curr Opin Chem Biol 2013; 17:250-60. [PMID: 23557642 DOI: 10.1016/j.cbpa.2013.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 01/17/2023]
Abstract
Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the non-reliance on external cofactors and direct functionalization of an olefinic bond make ammonia lyases attractive biocatalysts for use in the synthesis of natural and non-natural amino acids, including β-amino acids. The approach of combining structure-guided enzyme engineering with efficient mutant library screening has extended the synthetic scope of these enzymes in recent years and has resolved important mechanistic issues for AMs and ALs, including those containing the MIO (4-methylideneimidazole-5-one) internal cofactor.
Collapse
Affiliation(s)
- Matthew M Heberling
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Toşa MI, Brem J, Mantu A, Irimie FD, Paizs C, Rétey J. The Interaction of Nitrophenylalanines with Wild Type and Mutant 4-Methylideneimidazole-5-one-less Phenylalanine Ammonia Lyase. ChemCatChem 2013. [DOI: 10.1002/cctc.201200536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Pilbák S, Farkas Ö, Poppe L. Mechanism of the Tyrosine Ammonia Lyase Reaction-Tandem Nucleophilic and Electrophilic Enhancement by a Proton Transfer. Chemistry 2012; 18:7793-802. [DOI: 10.1002/chem.201103662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Indexed: 11/09/2022]
|
35
|
Chesters C, Wilding M, Goodall M, Micklefield J. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes. Angew Chem Int Ed Engl 2012; 51:4344-8. [PMID: 22461423 DOI: 10.1002/anie.201200669] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Christopher Chesters
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
36
|
Chesters C, Wilding M, Goodall M, Micklefield J. Thermal Bifunctionality of Bacterial Phenylalanine Aminomutase and Ammonia Lyase Enzymes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Strom S, Wanninayake U, Ratnayake ND, Walker KD, Geiger JH. Insights into the Mechanistic Pathway of thePantoea agglomeransPhenylalanine Aminomutase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Strom S, Wanninayake U, Ratnayake ND, Walker KD, Geiger JH. Insights into the Mechanistic Pathway of thePantoea agglomeransPhenylalanine Aminomutase. Angew Chem Int Ed Engl 2012; 51:2898-902. [DOI: 10.1002/anie.201108525] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/26/2012] [Indexed: 11/11/2022]
|
39
|
Wu B, Szymański W, Wybenga GG, Heberling MM, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB. Mechanism-Inspired Engineering of Phenylalanine Aminomutase for Enhanced β-Regioselective Asymmetric Amination of Cinnamates. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Wu B, Szymański W, Wybenga GG, Heberling MM, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB. Mechanism-Inspired Engineering of Phenylalanine Aminomutase for Enhanced β-Regioselective Asymmetric Amination of Cinnamates. Angew Chem Int Ed Engl 2011; 51:482-6. [DOI: 10.1002/anie.201106372] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/12/2011] [Indexed: 11/11/2022]
|
41
|
Wu B, Szymański W, Heberling MM, Feringa BL, Janssen DB. Aminomutases: mechanistic diversity, biotechnological applications and future perspectives. Trends Biotechnol 2011; 29:352-62. [PMID: 21477876 DOI: 10.1016/j.tibtech.2011.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Aminomutases carry out the chemically challenging exchange of a hydrogen atom and an amine substituent present on neighboring carbon atoms. In recent years, aminomutases have been intensively investigated for their biophysical, structural and mechanistic characteristics. The reactions catalyzed by these enzymes have considerable potential for biotechnological applications. Here, we present an overview of this diverse group of enzymes, with a focus on enzymatic mechanisms and recent developments in their use in applied biocatalysis.
Collapse
Affiliation(s)
- Bian Wu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Turner NJ. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Curr Opin Chem Biol 2011; 15:234-40. [DOI: 10.1016/j.cbpa.2010.11.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
|
43
|
Bartsch S, Bornscheuer UT. Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Eng Des Sel 2010; 23:929-33. [PMID: 21036782 DOI: 10.1093/protein/gzq089] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenylalanine ammonia lyases (PAL) catalyze the reversible, non-reductive amination of trans-cinnamic acid to l-phenylalanine in the presence of high ammonia concentrations. Since neither cofactor recycling nor other additives are needed and by this asymmetric synthesis theoretical yields of 100% can be reached, it is an interesting reaction for industrial processes. In this study we demonstrate the superior properties of p-nitro-cinnamic acid (p-n-CA) in the amination reaction using the PAL from Petroselinum crispum (pcPAL). By focused-directed evolution, three mutants were identified showing increased reaction rates and decreased substrate inhibition. Together, the F137V mutant with p-n-CA showed a 15-fold increased reaction rate compared with the pcPAL WT with the natural cinnamic acid. The high reaction rates were also proven in preparative scale experiments. Activities towards other p-substituted cinnamic acids showing different electronic effects of the substituent were analyzed. Focused-directed evolution around the carboxylic acid- and amine-binding site always decreased PAL activity, due to a sensitive H-bond network.
Collapse
Affiliation(s)
- Sebastian Bartsch
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | | |
Collapse
|
44
|
Abstract
It is well known that an acidic hydrogen atom can form hydrogen bonds to a hydrogen bond acceptor, a Lewis base. It is considerably less known that the proton can coordinate two or more atoms conveniently in bonding modes that cannot be described as hydrogen bonding. Agostic interactions, bridging hydrides, 3-centre-2-electron bonds in boranes, bifurcated hydrogen atoms, they are all elements of the coordination chemistry of the proton and, of course, the hydrogen bond comes in more than one facette as well.
Collapse
Affiliation(s)
- Olaf Kühl
- Bioinorganic Research Group, Institut für Biochemie, EMA Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany.
| |
Collapse
|
45
|
Seff AL, Pilbák S, Silaghi-Dumitrescu I, Poppe L. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. J Mol Model 2010; 17:1551-63. [DOI: 10.1007/s00894-010-0849-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
46
|
Wu B, Szymański W, de Wildeman S, Poelarends G, Feringa B, Janssen D. Efficient Tandem Biocatalytic Process for the Kinetic Resolution of Aromatic β-Amino Acids. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Rétey J, Paizs C, Ioana Toşa M, Csaba Bencze L, Brem J, Dan Irimie F. 2-Amino-3-(5-phenylfuran-2-yl)propionic Acids and 5-Phenylfuran-2-ylacrylic Acids are Novel Substrates of Phenylalanine Ammonia-Lyase. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Szymanski W, Wu B, Weiner B, de Wildeman S, Feringa BL, Janssen DB. Phenylalanine Aminomutase-Catalyzed Addition of Ammonia to Substituted Cinnamic Acids: a Route to Enantiopure α- and β-Amino Acids. J Org Chem 2009; 74:9152-7. [DOI: 10.1021/jo901833y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wiktor Szymanski
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute
- Laboratories for Organic Chemistry, Stratingh Institute for Chemistry
| | - Bian Wu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute
| | - Barbara Weiner
- Laboratories for Organic Chemistry, Stratingh Institute for Chemistry
| | | | - Ben L. Feringa
- Laboratories for Organic Chemistry, Stratingh Institute for Chemistry
| | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute
| |
Collapse
|
49
|
Structure and chemistry of 4-methylideneimidazole-5-one containing enzymes. Curr Opin Chem Biol 2009; 13:460-8. [PMID: 19620019 DOI: 10.1016/j.cbpa.2009.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
Abstract
The prosthetic group 4-methylideneimidazole-5-one (MIO) is the catalytic component of the ammonia lyase class of enzymes. This family is responsible for the processing of amino acids in a variety of metabolic pathways through the elimination of ammonia to form unsaturated products. Recently, new chemistry has been attributed to this family with the discovery of MIO-based aminomutases. The mechanism of electrophilic chemistry catalyzed by MIO-based enzymes has been investigated for several decades. Recent X-ray crystal structures of members of the family have provided novel insight into the molecular basis for catalysis and substrate recognition. In addition, the inclusion of aminomutases in natural product biosynthetic pathways has spurned recent advances toward rational engineering and chemoenzymatic applications.
Collapse
|