1
|
Sun R, Hu F, Jiang H, Du W, Zhang C, Chang T, Zhou Y, Wu P, Li D, Weng Y. Electrochemical-induced phosphorylation of arenols and tyrosine containing oligopeptides. iScience 2024; 27:110487. [PMID: 39314241 PMCID: PMC11418147 DOI: 10.1016/j.isci.2024.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
A disclosed technique employs electrochemical dehydrogenative cross-coupling to create organophosphates, utilizing phosphites compounds with arenols. Inorganic iodide salts serve dual roles as redox catalysts and electrolytes in an undivided cell, omitting the need for external oxidants or bases. Initial mechanistic investigations indicate the reaction unfolds via an electro-oxidative radical pathway, facilitating the formation of P-O bonds, leading to the generation of oxygen radicals in the formation of acetylaminophenol. This environmentally friendly approach offers excellent tolerance to various functional groups, achieves high yields (up to 95% isolated yield), and accommodates a wide range of substrates, showcasing its utility for practical synthesis applications.
Collapse
Affiliation(s)
- Rong Sun
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Fan Hu
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Haoyang Jiang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Wenbin Du
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Chaochao Zhang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Tianhao Chang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Dingyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, P.R. China
| | - Yue Weng
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| |
Collapse
|
2
|
Fox PL, Choi J, Johnson ER, Stradiotto M. Mapping Electrophile Chemoselectivity in DalPhos/Nickel N-Arylation Catalysis: The Unusual Influence of Remote Sterics. Chemistry 2024:e202402391. [PMID: 39297771 DOI: 10.1002/chem.202402391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/05/2024]
Abstract
We disclose herein our evaluation of competitive (hetero)aryl-X (X: Br>Cl>OTf) reactivity preferences in bisphosphine/Ni-catalyzed C-N cross-coupling catalysis, using furfurylamine as a prototypical nucleophile, and employing DalPhos and DPPF as representative ancillary ligands with established efficacy. Beyond this general (pseudo)halide ranking, other intriguing structure-reactivity trends were noted experimentally, including the unexpected observation that bulky alkyl (e. g., R=tBu) substitution in para-R-aryl-X electrophiles strongly discourages (pseudo)halide reactivity relative to smaller substituents (e. g., nBu, Et, Me), despite being both remote from, and having a similar electronic influence on, the reacting C-X bond; such effects on nickel oxidative addition have not been documented previously and were not observed in our comparator reactions presented herein involving palladium. Density functional theory modeling of such PhPAd-DalPhos/Ni-catalyzed C-N cross-couplings revealed the origins of competitive turnover of C-Br over C-Cl, and possible ways in which bulky para-alkyl substitution might discourage net electrophile uptake/turnover, leading to inversion of halide selectivity.
Collapse
Affiliation(s)
- Peter L Fox
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jeongin Choi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
3
|
Iwasaki T, Yamada Y, Naito N, Nozaki K. Chemoselective Hydrogenolysis of Urethanes to Formamides and Alcohols in the Presence of More Electrophilic Carbonyl Compounds. J Am Chem Soc 2024; 146:25562-25568. [PMID: 39116369 DOI: 10.1021/jacs.4c06553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The development of methods for the chemical recycling of polyurethanes is recognized as an urgent issue. Herein, we report the Ir-catalyzed hydrogenolysis of the urethane C-O bond to produce formamides and alcohols, where both formamides and ester and amide functionalities are tolerated. The chemoselectivity observed is counterintuitive to the generally accepted electrophilicity order of carbonyl compounds. Hydrogenolysis of urea and isocyanurate, potential byproducts in the polycondensation process of polyurethanes, is also achieved alongside the selective degradation of polyurethanes themselves, which affords diformamides and diols. The time-course of the hydrogenative polyurethane degradation reveals that the bond cleavage occurs not from the terminal, but from any part of the polymer chain. The present catalysis offers a novel method for the recycling of polyurethane-containing polymer waste.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuto Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Naito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Li Y, Ding J, Qin W. Enhanced Selectivity in Microdroplet-Mediated Enzyme Catalysis. J Am Chem Soc 2024; 146:24389-24397. [PMID: 39073863 DOI: 10.1021/jacs.4c06171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Natural enzymes with enhanced catalytic activity and selectivity have long been studied by tuning the microenvironment around the active site, but how to modulate the active-site electric field in a simple fashion remains challenging. Here, we demonstrate that microdroplets as a simple yet versatile reactor can enhance the electric field at the active site of an enzyme. By using horseradish peroxidase as a model, improved selectivity in microdroplet-mediated enzyme catalysis can be obtained. Quantum mechanical/molecular dynamics calculations and vibrational Stark spectroscopy reveal that the electric field at the microdroplet interface can influence the electrostatic preorganization and orientation of the enzyme to enhance its internal electric field. As a result, the free energies of the substrate and heme can be tuned by the internal electric field, thereby changing its catalytic reaction pathway for a classical substrate, 3,3',5,5'-tetramethylbenzidine, and enabling selective C-N additions for specific substrates. This finding provides a green, simple, and effective way to modulate enzyme-catalyzed reactions and holds promise for a broad spectrum of biosensing and biosynthesis applications.
Collapse
Affiliation(s)
- Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Phulwale V, Shet H, Gunturu KC, Rout SR, Dandela R, Adhav S, Kapdi AR. Cu(II)/PTABS-Promoted, Chemoselective Amination of HaloPyrimidines. J Org Chem 2024; 89:9243-9254. [PMID: 38878304 DOI: 10.1021/acs.joc.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.
Collapse
Affiliation(s)
- Vikram Phulwale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Suyog Adhav
- BASF Chemicals India Pvt. Ltd., Plot No 12, Thane Belapur Road, Navi Mumbai 400705, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
6
|
Iwasaki T, Nozaki K. Counterintuitive chemoselectivity in the reduction of carbonyl compounds. Nat Rev Chem 2024; 8:518-534. [PMID: 38831138 DOI: 10.1038/s41570-024-00608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
The reactivity of carbonyl functional groups largely depends on the substituents on the carbon atom. Reversal of the commonly accepted order of reactivity of different carbonyl compounds requires novel synthetic approaches. Achieving selective reduction will enable the transformation of carbon resources such as plastic waste, carbon dioxide and biomass into valuable chemicals. In this Review, we explore the reduction of less reactive carbonyl groups in the presence of those typically considered more reactive. We discuss reductions, including the controlled reduction of ureas, amides and esters to aldehydes, as well as chemoselective reductions of carbonyl groups, including the reduction of ureas over carbamates, amides and esters; the reduction of amides over esters, ketones and aldehydes; and the reduction of ketones over aldehydes.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan.
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
De Abreu M, Rogge T, Lanzi M, Saiegh TJ, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202319960. [PMID: 38375976 DOI: 10.1002/anie.202319960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.
Collapse
Affiliation(s)
- Maxime De Abreu
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Tomas J Saiegh
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
- Institute of Organic Chemistry, JMU Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
8
|
Kurihara Y, Yagi M, Noguchi T, Yasufuku H, Okita A, Yoshimura S, Oishi T, Chida N, Okamura T, Sato T. Total Synthesis of Keramaphidin B and Ingenamine by Base-Catalyzed Diels-Alder Reaction Using Dynamic Regioselective Crystallization. J Am Chem Soc 2024. [PMID: 38592076 DOI: 10.1021/jacs.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The control of the selectivity is a central issue in the total synthesis of complex natural products. In this paper, we report the total synthesis of (±)-keramaphidin B and (±)-ingenamine. The key reaction is a DMAP-catalyzed Diels-Alder reaction in which the regioselectivity is completely controlled by dynamic crystallization. Our synthesis successfully demonstrates that dynamic crystallization can be an alternative when the selectivity is not controlled by either kinetic or thermodynamic approaches in solution.
Collapse
Affiliation(s)
- Yuki Kurihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Minori Yagi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Haruka Yasufuku
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ayane Okita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sho Yoshimura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
Biswas S, Hughes WB, De Angelis L, Haug GC, Trevino R, Fremin SO, Arman HD, Larionov OV, Doyle MP. The "cesium effect" magnified: exceptional chemoselectivity in cesium ion mediated nucleophilic reactions. Chem Sci 2024; 15:5277-5283. [PMID: 38577370 PMCID: PMC10988617 DOI: 10.1039/d4sc00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Chemodivergent construction of structurally distinct heterocycles from the same precursors by adjusting specific reaction parameters is an emergent area of organic synthesis; yet, understanding of the processes that underpin the reaction divergence is lacking, preventing the development of new synthetic methods by systematically harnessing key mechanistic effects. We describe herein cesium carbonate-promoted oxadiaza excision cross-coupling reactions of β-ketoesters with 1,2,3-triazine 1-oxides that form pyridones in good to high yields, instead of the sole formation of pyridines when the same reaction is performed in the presence of other alkali metal carbonates or organic bases. The reaction can be further extended to the construction of synthetically challenging pyridylpyridones. A computational study comparing the effect of cesium and sodium ions in the oxadiaza excision cross-coupling reactions reveals that the cesium-coordinated species changes the reaction preference from attack at the ketone carbonyl to attack at the ester carbon due to metal ion-specific transition state conformational accommodation, revealing a previously unexplored role of cesium ions that may facilitate the development of chemodivergent approaches to other heterocyclic systems.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
10
|
Marinus N, Reintjens NRM, Haldimann K, Mouthaan MLMC, Hobbie SN, Witte MD, Minnaard AJ. Site-Selective Palladium-catalyzed Oxidation of Unprotected Aminoglycosides and Sugar Phosphates. Chemistry 2024; 30:e202400017. [PMID: 38284753 DOI: 10.1002/chem.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Niels R M Reintjens
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Marc L M C Mouthaan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| |
Collapse
|
11
|
Zhong Z, Besnard C, Lacour J. General Ir-Catalyzed N-H Insertions of Diazomalonates into Aliphatic and Aromatic Amines. Org Lett 2024; 26:983-987. [PMID: 38277489 PMCID: PMC10863398 DOI: 10.1021/acs.orglett.3c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
A general N-H insertion reactivity of acceptor-acceptor diazo malonate reagents is reported using [Ir(cod)Cl]2 as catalyst. A large range of amines, primary and secondary, aliphatic and aromatic, is possible. Mild temperatures, perfect substrate/reactant stoichiometry, and good functional group compatibility render the process particularly attractive for the (late-stage) functionalization of amines.
Collapse
Affiliation(s)
- Zhuang Zhong
- Department
of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Céline Besnard
- Laboratory
of Crystallography, University of Geneva, Quai Ernest Ansermet 24, CH-1211 Genève 4, Switzerland
| | - Jérôme Lacour
- Department
of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| |
Collapse
|
12
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
13
|
Zhu T, Li S, Li L, Tao C. A new perspective on predicting the reaction rate constants of hydrated electrons for organic contaminants: Exploring molecular structure characterization methods and ambient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166316. [PMID: 37591396 DOI: 10.1016/j.scitotenv.2023.166316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Hydrated electrons (eaq-) exhibit rapid degradation of diverse persistent organic contaminants (OCs) and hold great promise as a formidable reducing agent in water treatment. However, the diverse structures of compounds exert different influences on the second-order rate constant of hydrated electron reactions (keaq-), while the same OCs demonstrate notable discrepancies in keaq- values across different pH levels. This study aims to develop machine learning (ML) models that can effectively simulate the intricate reaction kinetics between eaq- and OCs. Furthermore, the introduction of the pH variable enables a comprehensive investigation into the impact of ambient conditions on this process, thereby improving the practicality of the model. A dataset encompassing 701 keaq- values derived from 351 peer-reviewed publications was compiled. To comprehensively investigate compound properties, this study introduced molecular descriptor (MD), molecular fingerprint (MF), and the integration of both (MD + MF) as model variables. Furthermore, 60 sets of predictive models were established utilizing two variable screening methodologies (MLR and RF) and ten prominent algorithms. Through statistical parameter analysis, it was determined that descriptors combined with MD and MF, the RF screening method, and the symbolism algorithm exhibited the best predictive efficacy. Importantly, the combination of descriptor models exhibited significantly superior performance compared to individual MF and MD models. Notably, the optimal model, denoted as RF - (MF + MD) - LGB, exhibited highly satisfactory predictive results (R2tra = 0.967, Q2tra = 0.840, R2ext = 0.761). The mechanistic explanation study based on Shapley Additive Explanations (SHAP) values further elucidated the crucial influences of polarity, pH, molecular weight, electronegativity, carbon-carbon double bonds, and molecular topology on the degradation of OCs by eaq-. The proposed modeling approach, particularly the integration of MF and MD, alongside the introduction of pH, may furnish innovative ideas for advanced reduction or oxidation processes (ARPs/AOPs) and machine learning applications in other domains.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Shuyin Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lili Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
14
|
Prasoon A, Yu X, Hambsch M, Bodesheim D, Liu K, Zacarias A, Nguyen NN, Seki T, Dianat A, Croy A, Cuniberti G, Fontaine P, Nagata Y, Mannsfeld SCB, Dong R, Bonn M, Feng X. Site-selective chemical reactions by on-water surface sequential assembly. Nat Commun 2023; 14:8313. [PMID: 38097633 PMCID: PMC10721922 DOI: 10.1038/s41467-023-44129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure. This constrained geometry of the porphyrin molecules prompts the subsequent directional alignment of the perylenetetracarboxylic dianhydride reagent, enabling the selective formation of a one-sided imide bond between porphyrin and reagent. Surface-specific in-situ spectroscopies reveal the underlying mechanism of the dynamic interface that promotes multilayer growth of the site-selective imide product. The site-selective reaction on the water surface is further demonstrated by three reversible and irreversible chemical reactions, such as imide-, imine-, and 1, 3-diazole (imidazole)- bonds involving porphyrin molecules. This unique sequential assembly approach enables site-selective chemical reactions that can bring on-water surface synthesis to the forefront of modern organic chemistry.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - David Bodesheim
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kejun Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Angelica Zacarias
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Aerzoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062, Dresden, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany.
| |
Collapse
|
15
|
Chen M, Ventura AM, Das S, Ibrahim AF, Zimmerman PM, Montgomery J. Oxidative Cross Dehydrogenative Coupling of N-Heterocycles with Aldehydes through C( sp3)-H Functionalization. J Am Chem Soc 2023; 145:20176-20181. [PMID: 37672664 PMCID: PMC10915535 DOI: 10.1021/jacs.3c06532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Existing methodologies for metal-catalyzed cross-couplings typically rely on preinstallation of reactive functional groups on both reaction partners. In contrast, C-H functionalization approaches offer promise in simplification of the requisite substrates; however, challenges from low reactivity and similar reactivity of various C-H bonds introduce considerable complexity. Herein, the oxidative cross dehydrogenative coupling of α-amino C(sp3)-H bonds and aldehydes to produce ketone derivatives is described using an unusual reaction medium that incorporates the simultaneous use of di-tert-butyl peroxide as an oxidant and zinc metal as a reductant. The method proceeds with a broad substrate scope, representing an attractive approach for accessing α-amino ketones through the formal acylation of C-H bonds α to nitrogen in N-heterocycles. A combination of experimental investigation and computational modeling provides evidence for a mechanistic pathway involving cross-selective nickel-mediated cross-coupling of α-amino radicals and acyl radicals.
Collapse
Affiliation(s)
- Mo Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Austin M Ventura
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ammar F Ibrahim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
16
|
Dutta L, Mondal A, Maurya JP, Mukhopadhyay D, Ramasastry SSV. Conceptual advances in nucleophilic organophosphine-promoted transformations. Chem Commun (Camb) 2023; 59:11045-11056. [PMID: 37656437 DOI: 10.1039/d3cc03648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Catalysis by trivalent nucleophilic organophosphines has emerged as an essential tool in organic synthesis. Several new organic transformations promoted by phosphines substantiate and complement the existing synthetic chemistry tools. Mere design of the substrate and reagent combinations has introduced new modes of reactivity patterns, which are otherwise difficult to achieve. These design considerations have led to the rapid build-up of complex molecular entities and laid a solid foundation to synthesise bioactive natural products and pharmaceuticals. This article presents an overview of some of the conceptual advances, including our contributions to nucleophilic organophosphine chemistry. The scope, limitations, mechanistic insights, and applications of these metal-free transformations are discussed elaborately.
Collapse
Affiliation(s)
- Lona Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Atanu Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Dipto Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
17
|
Monteiro NRC, Pereira TO, Machado ACD, Oliveira JL, Abbasi M, Arrais JP. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Comput Biol Med 2023; 164:107285. [PMID: 37557054 DOI: 10.1016/j.compbiomed.2023.107285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
The design of compounds that target specific biological functions with relevant selectivity is critical in the context of drug discovery, especially due to the polypharmacological nature of most existing drug molecules. In recent years, in silico-based methods combined with deep learning have shown promising results in the de novo drug design challenge, leading to potential leads for biologically interesting targets. However, several of these methods overlook the importance of certain properties, such as validity rate and target selectivity, or simplify the generative process by neglecting the multi-objective nature of the pharmacological space. In this study, we propose a multi-objective Transformer-based architecture to generate drug candidates with desired molecular properties and increased selectivity toward a specific biological target. The framework consists of a Transformer-Decoder Generator that generates novel and valid compounds in the SMILES format notation, a Transformer-Encoder Predictor that estimates the binding affinity toward the biological target, and a feedback loop combined with a multi-objective optimization strategy to rank the generated molecules and condition the generating distribution around the targeted properties. The results demonstrate that the proposed architecture can generate novel and synthesizable small compounds with desired pharmacological properties toward a biologically relevant target. The unbiased Transformer-based Generator achieved superior performance in the novelty rate (97.38%) and comparable performance in terms of internal diversity, uniqueness, and validity against state-of-the-art baselines. The optimization of the unbiased Transformer-based Generator resulted in the generation of molecules exhibiting high binding affinity toward the Adenosine A2A Receptor (AA2AR) and possessing desirable physicochemical properties, where 99.36% of the generated molecules follow Lipinski's rule of five. Furthermore, the implementation of a feedback strategy, in conjunction with a multi-objective algorithm, effectively shifted the distribution of the generated molecules toward optimal values of molecular weight, molecular lipophilicity, topological polar surface area, synthetic accessibility score, and quantitative estimate of drug-likeness, without the necessity of prior training sets comprising molecules endowed with pharmacological properties of interest. Overall, this research study validates the applicability of a Transformer-based architecture in the context of drug design, capable of exploring the vast chemical representation space to generate novel molecules with improved pharmacological properties and target selectivity. The data and source code used in this study are available at: https://github.com/larngroup/FSM-DDTR.
Collapse
Affiliation(s)
- Nelson R C Monteiro
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.
| | - Tiago O Pereira
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.
| | - Ana Catarina D Machado
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.
| | - José L Oliveira
- IEETA, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal.
| | - Maryam Abbasi
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal; Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, Portugal.
| | - Joel P Arrais
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.
| |
Collapse
|
18
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
He J, Du FH, Zhang C, Du Y. Chemoselective cycloisomerization of O-alkenylbenzamides via concomitant 1,2-aryl migration/elimination mediated by hypervalent iodine reagents. Commun Chem 2023; 6:126. [PMID: 37330613 DOI: 10.1038/s42004-023-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
As an ambident nucleophile, controlling the reaction selectivities of nitrogen and oxygen atoms in amide moiety is a challenging issue in organic synthesis. Herein, we present a chemodivergent cycloisomerization approach to construct isoquinolinone and iminoisocoumarin skeletons from o-alkenylbenzamide derivatives. The chemo-controllable strategy employed an exclusive 1,2-aryl migration/elimination cascade, enabled by different hypervalent iodine species generated in situ from the reaction of iodosobenzene (PhIO) with MeOH or 2,4,6-tris-isopropylbenzene sulfonic acid. DFT studies revealed that the nitrogen and oxygen atoms of the intermediates in the two reaction systems have different nucleophilicities and thus produce the selectivity of N or O-attack modes.
Collapse
Affiliation(s)
- Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Feng-Huan Du
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
20
|
Iwasaki T, Tsuge K, Naito N, Nozaki K. Chemoselectivity change in catalytic hydrogenolysis enabling urea-reduction to formamide/amine over more reactive carbonyl compounds. Nat Commun 2023; 14:3279. [PMID: 37308470 DOI: 10.1038/s41467-023-38997-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
The selective transformation of a less reactive carbonyl moiety in the presence of more reactive ones can realize straightforward and environmentally benign chemical processes. However, such a transformation is highly challenging because the reactivity of carbonyl compounds, one of the most important functionalities in organic chemistry, depends on the substituents on the carbon atom. Herein, we report an Ir catalyst for the selective hydrogenolysis of urea derivatives, which are the least reactive carbonyl compounds, affording formamides and amines. Although formamide, as well as ester, amide, and carbamate substituents, are considered to be more reactive than urea, the proposed Ir catalyst tolerated these carbonyl groups and reacted with urea in a highly chemoselective manner. The proposed chemo- and regioselective hydrogenolysis allows the development of a strategy for the chemical recycling of polyurea resins.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kazuki Tsuge
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoki Naito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
21
|
Lv L, Qian H. Developments and applications of allyl-(aza)allyl coupling reactions. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
22
|
Pei C, Empel C, Koenigs RM. Photochemical Intermolecular Cyclopropanation Reactions of Allylic Alcohols for the Synthesis of [3.1.0]-Bicyclohexanes. Org Lett 2023; 25:169-173. [PMID: 36602193 DOI: 10.1021/acs.orglett.2c04010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyclopropane-fused lactones are highly desirable in drug and natural products synthesis. Herein, we report on a photochemical, chemoselective reaction of aryldiazoacetates with allylic alcohols that furnishes cyclopropane-fused lactone skeletons efficiently in one step. The diastereoselectivity of the protocol was precisely controlled, and chemoselective cyclopropanation of allylic alcohols via free carbene intermediate followed by transesterification constitutes a series of bicyclic lactones in high yield without the formation of ether byproducts via typical O-H insertion reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
23
|
Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. Direct Deaminative Functionalization. J Am Chem Soc 2023; 145:17-24. [PMID: 36548788 PMCID: PMC10245626 DOI: 10.1021/jacs.2c11453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.
Collapse
Affiliation(s)
- Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christopher A Reiher
- Parallel Medicinal Chemistry, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Cristina Grosanu
- High Throughput Purification, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kathleen J Berger
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Toledano-Pinedo M, Martínez del Campo T, Yanai H, Almendros P. Au(I) as a π-Lewis Base Catalyst: Controlled Synthesis of Sterically Congested Bis(triflyl)enals from α-Allenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mireia Toledano-Pinedo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Teresa Martínez del Campo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
25
|
Ping Y, Li X, Pan Q, Kong W. Ni-Catalyzed Divergent Synthesis of 2-Benzazepine Derivatives via Tunable Cyclization and 1,4-Acyl Transfer Triggered by Amide N-C Bond Cleavage. Angew Chem Int Ed Engl 2022; 61:e202201574. [PMID: 35385598 DOI: 10.1002/anie.202201574] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Ligand-directed divergent synthesis can transform common starting materials into distinct molecular scaffolds by simple tuning different ligands. This strategy enables the rapid construction of structurally rich collection of small molecules for biological evaluation and reveals novel modes of catalytic transformation, representing one of the most sought-after challenges in synthetic chemistry. We herein report a Ni-catalyzed ligand-controlled tunable cyclization/cross-couplings for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. The bidentate ligand facilitates the nucleophilic addition of the aryl halides to the amide carbonyl, followed by 1,4-acyl transfer and cross-coupling to obtain 2-benzazepin-5-ones and benzo[c]pyrano[2,3-e]azepines. The tridentate ligand promotes the selective 7-endo cyclization/cross-coupling to access to 2-benzazepin-3-ones. The protocol operates under mild reaction conditions with divergent cyclization patterns that can be easily modulated through the ligand backbone.
Collapse
Affiliation(s)
- Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qi Pan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
26
|
Yang Y, Fischer NH, Oliveira MT, Hadaf GB, Liu J, Brock-Nannestad T, Diness F, Lee JW. Carbon dioxide enhances sulphur-selective conjugate addition reactions. Org Biomol Chem 2022; 20:4526-4533. [PMID: 35605989 DOI: 10.1039/d2ob00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulphur-selective conjugate addition reactions play a central role in synthetic chemistry and chemical biology. A general tool for conjugate addition reactions should provide high selectivity in the presence of competing nucleophilic functional groups, namely nitrogen nucleophiles. We report CO2-mediated chemoselective S-Michael addition reactions where CO2 can reversibly control the reaction pHs, thus providing practical reaction conditions. The increased chemoselectivity for sulphur-alkylation products was ascribed to CO2 as a temporary and traceless protecting group for nitrogen nucleophiles, while CO2 efficiently provide higher conversion and selectivity sulphur nucleophiles on peptides and human serum albumin (HSA) with various electrophiles. This method offers simple reaction conditions for cysteine modification reactions when high chemoselectivity is required.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Niklas Henrik Fischer
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Gul Barg Hadaf
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Jian Liu
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Theis Brock-Nannestad
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Frederik Diness
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| |
Collapse
|
27
|
Addressing the quantitative conversion bottleneck in single-atom catalysis. Nat Commun 2022; 13:2807. [PMID: 35589718 PMCID: PMC9120447 DOI: 10.1038/s41467-022-30551-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Single-atom catalysts (SACs) offer many advantages, such as atom economy and high chemoselectivity; however, their practical application in liquid-phase heterogeneous catalysis is hampered by the productivity bottleneck as well as catalyst leaching. Flow chemistry is a well-established method to increase the conversion rate of catalytic processes, however, SAC-catalysed flow chemistry in packed-bed type flow reactor is disadvantaged by low turnover number and poor stability. In this study, we demonstrate the use of fuel cell-type flow stacks enabled exceptionally high quantitative conversion in single atom-catalyzed reactions, as exemplified by the use of Pt SAC-on-MoS2/graphite felt catalysts incorporated in flow cell. A turnover frequency of approximately 8000 h−1 that corresponds to an aniline productivity of 5.8 g h−1 is achieved with a bench-top flow module (nominal reservoir volume of 1 cm3), with a Pt1-MoS2 catalyst loading of 1.5 g (3.2 mg of Pt). X-ray absorption fine structure spectroscopy combined with density functional theory calculations provide insights into stability and reactivity of single atom Pt supported in a pyramidal fashion on MoS2. Our study highlights the quantitative conversion bottleneck in SAC-mediated fine chemicals production can be overcome using flow chemistry. The practical application of single atom catalyst (SAC) in liquid-phase heterogeneous catalysis is hampered by the productivity bottleneck as well as catalyst leaching. Here, a bench-top, fast-flow reactor integrated with Pt1-MoS2 SAC was fabricated for continuous production of multifunctional anilines (28 examples) at a record productivity of 5.8 g h-1.
Collapse
|
28
|
Ping Y, Li X, Pan Q, Kong W. Ni‐Catalyzed Divergent Synthesis of 2‐Benzazepine Derivatives via Tunable Cyclization and 1,4‐Acyl Transfer Triggered by Amide N‐C Bond Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Ping
- The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Xiao Li
- The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Qi Pan
- The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
29
|
Li G, Xing Y, Zhao H, Zhang J, Hong X, Szostak M. Chemoselective Transamidation of Thioamides by Transition-Metal-Free N-C(S) Transacylation. Angew Chem Int Ed Engl 2022; 61:e202200144. [PMID: 35122374 PMCID: PMC8983593 DOI: 10.1002/anie.202200144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 01/13/2023]
Abstract
Thioamides represent highly valuable isosteric in the strictest sense "single-atom substitution" analogues of amides that have found broad applications in chemistry and biology. A long-standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R-C(S)-NR1 R2 ) into another (R-C(S)-NR3 N4 ). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N-C(S) transacylation. The method relies on site-selective N-tert-butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground-state-destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late-stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Yangyang Xing
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing, 100190, PR China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
30
|
Bhatt D, Chae S, Kim HY, Oh K. One-Pot Synthesis of N-Hydroxypyrroles via Soft α-Vinyl Enolization of ( E)-β-Chlorovinyl Ketones: A Traceless Arylsulfinate Mediator Strategy. Org Lett 2022; 24:2636-2640. [PMID: 35385289 DOI: 10.1021/acs.orglett.2c00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A traceless arylsulfinate mediator strategy has been developed to switch the reaction course of β-chlorovinyl ketones with N-hydroxyamine. The soft α-vinyl enolization of (E)-β-chlorovinyl ketones was conducted in the presence of sodium arylsulfinate to give transient alkenyl sulfones that in turn reacted with NH2OH to give novel access to N-hydroxypyrroles. The mechanistic studies revealed the initial formation of oxazine intermediates that rearranged to thermodynamically stable aromatic products, N-hydroxypyrroles, under microwave-assisted heating conditions.
Collapse
Affiliation(s)
- Divya Bhatt
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Soyeon Chae
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
31
|
Mayr S, Zipse H. Annelated Pyridine Bases for the Selective Acylation of 1,2‐Diols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefanie Mayr
- Ludwig-Maximilians-Universitat Munchen Chemistry GERMANY
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität Department of Chemistry Butenandt-Str. 5-13 81377 München GERMANY
| |
Collapse
|
32
|
Li G, Xing Y, Zhao H, Zhang J, Hong X, Szostak M. Chemoselective Transamidation of Thioamides by Transition‐Metal‐Free N–C(S) Transacylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guangchen Li
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | | | - Hui Zhao
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology Chemistry CHINA
| | - Jin Zhang
- Shaanxi University of Science and Technology Chemistry CHINA
| | - Xin Hong
- Zhejiang University Department of Chemistry CHINA
| | - Michal Szostak
- Rutgers University Department of Chemistry 73 Warren St. 07102 Newark UNITED STATES
| |
Collapse
|
33
|
Kang H, Li CJ. Ruthenium(ii)-catalyzed regioselective 1,6-conjugate addition of umpolung aldehydes as carbanion equivalents. Chem Sci 2022; 13:118-122. [PMID: 35059159 PMCID: PMC8694324 DOI: 10.1039/d1sc03732c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Highly regioselective 1,6-conjugate addition was developed using hydrazone as carbanion equivalent catalyzed by ruthenium under mild conditions.
Collapse
Affiliation(s)
- Hyotaik Kang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| |
Collapse
|
34
|
Wang XG, Ou W, Liu MH, Liu ZJ, Huang PQ. Tandem Catalysis Enabled Highly Chemoselective Deoxygenative Alkynylation and Alkylation of Tertiary Amides: A Versatile Entry to Functionalized α-Substituted Amines. Org Chem Front 2022. [DOI: 10.1039/d2qo00335j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the highly chemoseive catalytic reductive alkynylation and reductive alkylation of tertiary amides to give propargylamines and α-branched amines, respectively. The method features a tandem iridium (Vaska’s complex)-catalyzed...
Collapse
|
35
|
Abstract
Relative rates for the Lewis base-catalyzed acylation of aryl-substituted 1,2-diols with anhydrides differing in size have been determined by turnover-limited competition experiments and absolute kinetics measurements. Depending on the structure of the anhydride reagent, the secondary hydroxyl group of the 1,2-diol reacts faster than the primary one. This preference towards the secondary hydroxyl group is boosted in the second acylation step from the monoesters to the diester through size and additional steric effects. In absolute terms the first acylation step is found to be up to 35 times faster than the second one for the primary alcohols due to neighboring group effects.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| |
Collapse
|
36
|
Lv L, Qian H, Ma Y, Huang S, Yan X, Li Z. Ligand-controlled regioselective and chemodivergent defluorinative functionalization of gem-difluorocyclopropanes with simple ketones. Chem Sci 2021; 12:15511-15518. [PMID: 35003579 PMCID: PMC8654029 DOI: 10.1039/d1sc05451a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Modulating the reaction selectivity is highly attractive and pivotal to the rational design of synthetic regimes. The defluorinative functionalization of gem-difluorocyclopropanes constitutes a promising route to construct β-vinyl fluorine scaffolds, whereas chemo- and regioselective access to α-substitution patterns remains a formidable challenge. Presented herein is a robust Pd/NHC ligand synergistic strategy that could enable the C-F bond functionalization with exclusive α-regioselectivity with simple ketones. The key design adopted enolates as π-conjugated ambident nucleophiles that undergo inner-sphere 3,3'-reductive elimination warranted by the sterically hindered-yet-flexible Pd-PEPPSI complex. The excellent branched mono-defluorinative alkylation was achieved with a sterically highly demanding IHept ligand, while subtly less bulky SIPr acted as a bifunctional ligand that not only facilitated α-selective C(sp3)-F cleavage, but also rendered the newly-formed C(sp2)-F bond as the linchpin for subsequent C-O bond formation. These examples represented an unprecedented ligand-controlled regioselective and chemodivergent approach to various mono-fluorinated terminal alkenes and/or furans from the same readily available starting materials.
Collapse
Affiliation(s)
- Leiyang Lv
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Huijun Qian
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China Beijing 100872 China
| |
Collapse
|
37
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
38
|
Upp DM, Huang R, Li Y, Bultman MJ, Roux B, Lewis JC. Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Upp
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Rui Huang
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
| | - Max J. Bultman
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Benoit Roux
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Jared C. Lewis
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| |
Collapse
|
39
|
Upp DM, Huang R, Li Y, Bultman MJ, Roux B, Lewis JC. Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions*. Angew Chem Int Ed Engl 2021; 60:23672-23677. [PMID: 34288306 DOI: 10.1002/anie.202107982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/08/2022]
Abstract
Artificial metalloenzymes (ArMs) are commonly used to control the stereoselectivity of catalytic reactions, but controlling chemoselectivity remains challenging. In this study, we engineer a dirhodium ArM to catalyze diazo cross-coupling to form an alkene that, in a one-pot cascade reaction, is reduced to an alkane with high enantioselectivity (typically >99 % ee) by an alkene reductase. The numerous protein and small molecule components required for the cascade reaction had minimal effect on ArM catalysis. Directed evolution of the ArM led to improved yields and E/Z selectivities for a variety of substrates, which translated to cascade reaction yields. MD simulations of ArM variants were used to understand the structural role of the cofactor on ArM conformational dynamics. These results highlight the ability of ArMs to control both catalyst stereoselectivity and chemoselectivity to enable reactions in complex media that would otherwise lead to undesired side reactions.
Collapse
Affiliation(s)
- David M Upp
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Rui Huang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Max J Bultman
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Benoit Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
40
|
Pan Q, Ping Y, Wang Y, Guo Y, Kong W. Ni-Catalyzed Ligand-Controlled Regiodivergent Reductive Dicarbofunctionalization of Alkenes. J Am Chem Soc 2021; 143:10282-10291. [PMID: 34162201 DOI: 10.1021/jacs.1c03827] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition-metal-catalyzed dicarbofunctionalization of alkenes involving intramolecular Heck cyclization followed by intermolecular cross-coupling has emerged as a powerful engine for building heterocycles with sterically congested quaternary carbon centers. However, only exo-cyclization/cross-coupling products can be obtained; endo-selective cyclization/cross-coupling has not been reported yet and still poses a formidable challenge. We herein report the first example of catalyst-controlled dicarbofunctionalization of alkenes for the regiodivergent synthesis of five- and six-membered benzo-fused lactams bearing all-carbon quaternary centers. Using a chiral Pyrox- or Phox-type bidentate ligand, 5-exo cyclization/cross-couplings proceed favorably to produce indole-2-ones in good yields with excellent regioselectivity and enantioselectivities (up to 98% ee). When C6-carboxylic acid-modified 2,2'-bipyridine was used as the ligand, 3,4-dihydroquinolin-2-ones were obtained in good yields through 6-endo-selective cyclization/cross-coupling processes. This transformation is modular and tolerant of a variety of functional groups. The ligand rather than the substrate structures precisely dictates the regioselectivity pattern. Moreover, the synthetic value of this regiodivergent protocol was demonstrated by the preparation of biologically relevant molecules and structural scaffolds.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yifan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Ya Guo
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
41
|
Doerr M, Romero A, Daza MC. Effect of the acyl-group length on the chemoselectivity of the lipase-catalyzed acylation of propranolol-a computational study. J Mol Model 2021; 27:198. [PMID: 34115202 DOI: 10.1007/s00894-021-04808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The selective N-acylation of 1,2-amino alcohols has been proposed to occur through the proton shuttle mechanism. However, the O-acetylation of propranolol catalyzed by Candida antarctica lipase B is an exception. We investigated the relation between the chemoselectivity of this reaction and the acyl group length. For this purpose, we compared the acyl groups: ethanoyl, butanoyl, octanoyl, and hexadecanoyl. We studied the Michaelis complexes between serine-acylated Candida antarctica lipase B and propranolol, employing a computational approach that involved sampling Michaelis complex conformations through ensemble docking plus consensus scoring and molecular dynamics simulations. The conformations were then classified as near attack conformations for acylation of the amino or hydroxy group. The relative populations of these two classes of conformations were found to be consistent with the experimentally observed chemoselective O-acetylation. We predict that increasing the length of the hydrocarbon chain of the acyl group will cause O-acylation to be unfavorable with respect to N-acylation. The nucleophilic attack of propranolol to the acylated lipase was found to be more favorable through the classical mechanism when compared with the proton shuttle mechanism.
Collapse
Affiliation(s)
- Markus Doerr
- Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga, Colombia.
| | - Alexander Romero
- Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga, Colombia
| | - Martha C Daza
- Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga, Colombia
| |
Collapse
|
42
|
Yazaki R. Development of Catalytic Reactions for Precise Control of Chemoselectivity. Chem Pharm Bull (Tokyo) 2021; 69:516-525. [PMID: 34078797 DOI: 10.1248/cpb.c21-00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic chemoselective reactions of innately less reactive functionalities over more reactive functionalities are described. A cooperative catalyst comprising a soft Lewis acid/hard Brønsted base enabled chemoselective activation of a hydroxyl group over an amino group, allowing for nucleophilic addition to electron-deficient olefins. The reaction could be applicable for a variety of amino alcohols, including pharmaceuticals, without requiring a tedious protection-deprotection process. Chemoselective enolization and subsequent α-functionalization of carboxylic acid derivatives were also achieved by a redox active catalyst through the radical process, providing unnatural α-amino/hydroxy acid derivatives bearing a complex carbon framework and a diverse set of functionalities. The present chemoselective catalysis described herein offers new opportunities to expand the chemical space for innovative drug discovery research.
Collapse
Affiliation(s)
- Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
43
|
Tamaki T, Nagaki A. Reaction Selectivity Control in Flash Synthetic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
44
|
Tak RK, Amemiya F, Noda H, Shibasaki M. Generation and application of Cu-bound alkyl nitrenes for the catalyst-controlled synthesis of cyclic β-amino acids. Chem Sci 2021; 12:7809-7817. [PMID: 34168835 PMCID: PMC8188474 DOI: 10.1039/d1sc01419f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
The advent of saturated N-heterocycles as valuable building blocks in medicinal chemistry has led to the development of new methods to construct such nitrogen-containing cyclic frameworks. Despite the apparent strategic clarity, intramolecular C-H aminations with metallonitrenes have only sporadically been explored in this direction because of the intractability of the requisite alkyl nitrenes. Here, we report copper-catalysed intramolecular amination using an alkyl nitrene generated from substituted isoxazolidin-5-ones upon N-O bond cleavage. The copper catalysis exclusively aminates aromatic C(sp2)-H bonds among other potentially reactive groups, offering a solution to the chemoselectivity problem that has been troublesome with rhodium catalysis. A combined experimental and computational study suggested that the active species in the current cyclic β-amino acid synthesis is a dicopper alkyl nitrene, which follows a cyclisation pathway distinct from the analogous alkyl metallonitrene.
Collapse
Affiliation(s)
- Raj K Tak
- Institute of Microbial Chemistry (BIKAKEN) Tokyo3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Fuyuki Amemiya
- Institute of Microbial Chemistry (BIKAKEN) Tokyo3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN) Tokyo3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN) Tokyo3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| |
Collapse
|
45
|
Yue WJ, Day CS, Martin R. Site-Selective Defluorinative sp3 C–H Alkylation of Secondary Amides. J Am Chem Soc 2021; 143:6395-6400. [DOI: 10.1021/jacs.1c03126] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wen-Jun Yue
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Craig S. Day
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
46
|
Reeves EK, Entz ED, Neufeldt SR. Chemodivergence between Electrophiles in Cross-Coupling Reactions. Chemistry 2021; 27:6161-6177. [PMID: 33206420 DOI: 10.1002/chem.202004437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Chemodivergent cross-couplings are those in which either one of two (or more) potentially reactive functional groups can be made to react based on choice of conditions. In particular, this review focuses on cross-couplings involving two different (pseudo)halides that can compete for the role of the electrophilic coupling partner. The discussion is primarily organized by pairs of electrophiles including chloride vs. triflate, bromide vs. triflate, chloride vs. tosylate, and halide vs. halide. Some common themes emerge regarding the origin of selectivity control. These include catalyst ligation state and solvent polarity or coordinating ability. However, in many cases, further systematic studies will be necessary to deconvolute the influences of metal identity, ligand, solvent, additives, nucleophilic coupling partner, and other factors on chemoselectivity.
Collapse
Affiliation(s)
- Emily K Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
47
|
Dong K, Zheng H, Su Y, Humeidi A, Arman H, Xu X, Doyle MP. Catalyst-Directed Divergent Catalytic Approaches to Expand Structural and Functional Scaffold Diversity via Metallo-Enolcarbene Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuiyong Dong
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Haifeng Zheng
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yongliang Su
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ahmad Humeidi
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Michael P. Doyle
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
48
|
Mayr S, Marin-Luna M, Zipse H. Size-Driven Inversion of Selectivity in Esterification Reactions: Secondary Beat Primary Alcohols. J Org Chem 2021; 86:3456-3489. [PMID: 33555864 DOI: 10.1021/acs.joc.0c02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Relative rates for the Lewis base-mediated acylation of secondary and primary alcohols carrying large aromatic side chains with anhydrides differing in size and electronic structure have been measured. While primary alcohols react faster than secondary ones in transformations with monosubstituted benzoic anhydride derivatives, relative reactivities are inverted in reactions with sterically biased 1-naphthyl anhydrides. Further analysis of reaction rates shows that increasing substrate size leads to an actual acceleration of the acylation process, the effect being larger for secondary as compared to primary alcohols. Computational results indicate that acylation rates are guided by noncovalent interactions (NCIs) between the catalyst ring system and the DED substituents in the alcohol and anhydride reactants. Thereby stronger NCIs are formed for secondary alcohols than for primary alcohols.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Marta Marin-Luna
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
49
|
An JH, Kim KD, Lee JH. Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents. J Org Chem 2021; 86:2876-2894. [DOI: 10.1021/acs.joc.0c02805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Kyu Dong Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| |
Collapse
|
50
|
Feng Z, Wang H, Liu M, Chen T, Liu Y, Xu W, Wang H, Liu J. In situ grafting of PEG Acrylate on drugs with aliphatic hydroxyl functionalities via RAFT polymerization to synthesize drug/polymer conjugates with improved water solubility. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|