1
|
Engelhardt PM, Keyzers R, Brimble MA. Histidine-bridged cyclic peptide natural products: isolation, biosynthesis and synthetic studies. Org Biomol Chem 2024; 22:8374-8396. [PMID: 39352687 DOI: 10.1039/d4ob01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Robert Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Laby Building Kelburn Parade, Wellington 6012, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Petrone DA, Maturano J, Herbort J, Plasek EE, Vivaldo-Nikitovic JM, Sarlah D. Asymmetric Synthesis of β,β-Disubstituted Alanines via a Sequential C(sp 2)-C(sp 3) Cross-Coupling-Hydrogenation Strategy. Org Lett 2024; 26:6284-6289. [PMID: 38991136 DOI: 10.1021/acs.orglett.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We report the development of a sequential C(sp2)-C(sp3) Suzuki cross-coupling-asymmetric hydrogenation strategy which allows access to a diverse array of valuable β,β-disubstituted alanine derivatives. This synthesis exhibits broad functional group tolerance, and permits efficient access to β-aryl-β-alkyl, and the more rarely reported β,β-dialkyl Ala derivatives with high yield and excellent enantioselectivity. This transformation has been exhibited on decagram quantity, and can be used to generate Fmoc amino acid derivatives which are useful for SPPS.
Collapse
Affiliation(s)
- David A Petrone
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Jonathan Maturano
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - James Herbort
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Erin E Plasek
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - J Mayeli Vivaldo-Nikitovic
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - David Sarlah
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
5
|
Fan L, Zhu X, Liu X, He F, Yang G, Xu C, Yang X. Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules 2023; 28:molecules28041647. [PMID: 36838635 PMCID: PMC9964631 DOI: 10.3390/molecules28041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
3,n-fused (n = 4-7) tricyclic indoles are pervasive motifs, embedded in a variety of biologically active molecules and natural products. Thus, numerous catalytic methods have been developed for the synthesis of these skeletons over the past few decades. In particular, palladium-catalyzed transformations have received much attention in recent years. This review summarizes recent developments in the synthesis of these tricyclic indoles with palladium-catalyzed domino reactions and their applications in the total synthesis of representative natural products.
Collapse
Affiliation(s)
- Liangxin Fan
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xinxin Zhu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingyuan Liu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangyu He
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoyu Yang
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Cuilian Xu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xifa Yang
- Institute of Pesticide, School of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| |
Collapse
|
6
|
Kuranaga T. Total syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. J Nat Med 2023; 77:1-11. [PMID: 36348140 PMCID: PMC9810689 DOI: 10.1007/s11418-022-01662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Peptidic natural products have received much attention as potential drug leads, and biosynthetic studies of peptidic natural products have contributed to the field of natural product chemistry over the past several decades. However, the key biosynthetic intermediates are generally not isolated from natural sources, and this can hamper a detailed analysis of biosynthesis. Furthermore, reported unusual structures, which are targets for biosynthetic studies, are sometimes the results of structural misassignments. Chemical synthesis techniques are imperative in solving these problems. This review focuses on the chemical syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. These studies can provide the key biosynthetic intermediates that can reveal the biosynthetic pathways and/or true structures of these natural products.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Matsumoto T, Kuranaga T, Taniguchi Y, Wang W, Kakeya H. Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A. Beilstein J Org Chem 2022; 18:1560-1566. [DOI: 10.3762/bjoc.18.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Longicatenamides A–D are cyclic hexapeptides isolated from the combined culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Because these peptides are not detected in the monoculture broth of the actinomycete, they are key tools for understanding chemical communication in the microbial world. Herein, we report the solid-phase total synthesis and structural confirmation of longicatenamide A. First, commercially unavailable building blocks were chemically synthesized with stereocontrol. Second, the peptide chain was elongated via Fmoc-based solid-phase peptide synthesis. Third, the peptide chain was cyclized in the solution phase, followed by simultaneous cleavage of all protecting groups to afford longicatenamide A. Chromatographic analysis corroborated the chemical structure of longicatenamide A. Furthermore, the antimicrobial activity of synthesized longicatenamide A was confirmed. The developed solid-phase synthesis is expected to facilitate the rapid synthesis of diverse synthetic analogues.
Collapse
|
8
|
Laws D, Plouch EV, Blakey SB. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links. JOURNAL OF NATURAL PRODUCTS 2022; 85:2519-2539. [PMID: 36136399 PMCID: PMC9617794 DOI: 10.1021/acs.jnatprod.2c00508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are known for their macrocyclic structures, which impart unique biological activity. One rapidly emerging subclass of RiPP natural products contains macrocyclic C-C cross-links between two amino acid side chains. These linkages, often biosynthetically formed by a single rSAM or P450 enzyme, introduce significant structural and synthetic complexity to the molecules. While nature utilizes elegant mechanisms to produce C-C cross-linked RiPPs, synthetic tools are only able to access a portion of these biologically relevant natural products. This review provides an overview of the structures in this subclass as well as a discussion on their chemical syntheses.
Collapse
Affiliation(s)
- David Laws
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Eleda V Plouch
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Simon B Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Recent advances in theoretical studies on transition-metal-catalyzed regioselective C-H functionalization of indoles. J Mol Model 2022; 28:267. [PMID: 35994132 DOI: 10.1007/s00894-022-05265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Indole compounds are widely found in natural products and drug candidates. The transition-metal-catalyzed regioselective C-H bond functionalization of indoles as the most efficient method for the synthesis of various functionalized indoles has been extensively studied in the past two decades due to its advantages of step economy and atom economy. In general, the catalysts included the transition-metals (Pd, Rh, Ru, Cu, Co, Fe, Zn, and Ga) and these reactions were accomplished with a remarkably wide range of coupling reagents for construction of various C-C and C-X (X = N, O, S) bonds. However, the general and important rules of the regioselectivity are not clear to date. Therefore, a comprehensive analysis through previous reported theoretical studies on transition-metal-catalyzed regioselective C-H bond functionalization of indoles was crucial and significant. In this review, we found that when the C-H bond activation process was the rate-determining step, the regioselectivity ordinarily occurred at the C7 or C4 positions (on benzene ring), and otherwise, the regioselectivity often occurred at C2 position (on pyrrole ring). For indoline substrates, the C-H bond functionalization occurred at the benzene ring. General rules of the regioselectivities for transition-metal-catalyzed C-H bond functionalization of indoles. This review collects major advances in the transition-metal-catalyzed C-H bond functionalization of indoles and indolines.
Collapse
|
10
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
11
|
Kersten RD, Mydy LS, Fallon TR, de Waal F, Shafiq K, Wotring JW, Sexton JZ, Weng JK. Gene-Guided Discovery and Ribosomal Biosynthesis of Moroidin Peptides. J Am Chem Soc 2022; 144:7686-7692. [PMID: 35438481 DOI: 10.1021/jacs.2c00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.
Collapse
Affiliation(s)
- Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy R Fallon
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Floris de Waal
- Bioinformatics Group, Wageningen University, Wageningen 6700AP, The Netherlands
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
12
|
Zhou N, Yu J, LiyuanHou, Wu X, Ruan Z, Feng P. Electro‐Oxidative Coupling of Azoles with 2‐ and 3‐Haloindoles/Thiophenes Providing Access to 2/3‐Halo(Azol‐1‐Yl)Indoles/Thiophenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naifu Zhou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Jianchao Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - LiyuanHou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Xing Wu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Science & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Pengju Feng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
13
|
Liu J, Wang P, Zeng W, Lu Q, Zhu Q. Late-stage construction of stapled peptides through Fujiwara-Moritani reaction between tryptophan and olefins. Chem Commun (Camb) 2021; 57:11661-11664. [PMID: 34671802 DOI: 10.1039/d1cc04202e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, the first example of a palladium-catalyzed Fujiwara-Moritani reaction for olefination of tryptophan (Trp) residues, free from directing groups, was presented. The developed reaction proceeds efficiently for peptide modification, ligation and peptide stapling.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wei Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Swain JA, Walker SR, Calvert MB, Brimble MA. The tryptophan connection: cyclic peptide natural products linked via the tryptophan side chain. Nat Prod Rep 2021; 39:410-443. [PMID: 34581375 DOI: 10.1039/d1np00043h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: from 1938 up to March 2021The electron-rich indole side chain of tryptophan is a versatile substrate for peptide modification. Upon the action of various cyclases, the tryptophan side chain may be linked to a nearby amino acid residue, opening the door to a diverse range of cyclic peptide natural products. These compounds exhibit a wide array of biological activity and possess fascinating molecular architectures, which have made them popular targets for total synthesis studies. This review examines the isolation and bioactivity of tryptophan-linked cyclic peptide natural products, along with a discussion of their first total synthesis, and biosynthesis where this has been studied.
Collapse
Affiliation(s)
- Jonathan A Swain
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Stephen R Walker
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Matthew B Calvert
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Liu J, Wang P, Yan Z, Yan J, Kenry, Zhu Q. Recent Advances in Late-Stage Construction of Stapled Peptides via C-H Activation. Chembiochem 2021; 22:2762-2771. [PMID: 33949069 DOI: 10.1002/cbic.202100044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Indexed: 01/09/2023]
Abstract
Stapled peptides have been widely applied in many fields, including pharmaceutical chemistry, diagnostic reagents, and materials science. However, most traditional stapled peptide preparation methods rely on prefunctionalizations, which limit the diversity of stapled peptides. Recently, the emergence of late-stage transition metal-catalyzed C-H activation in amino acids and peptides has attracted wide interest due to its robustness and applicability for peptide stapling. In this review, we summarize the methods for late-stage construction of stapled peptides via transition metal-catalyzed C-H activation.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Dahiya R, Dahiya S, Kumar P, Kumar RV, Dahiya S, Kumar S, Saharan R, Basu P, Mitra A, Sharma A, Kashaw SK, Patel JK. Structural and biological aspects of natural bridged macrobicyclic peptides from marine resources. Arch Pharm (Weinheim) 2021; 354:e2100034. [PMID: 33913195 DOI: 10.1002/ardp.202100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Among peptide-based drugs, naturally occurring bicyclic compounds have been established as molecules with unique therapeutic potential. The diverse pharmacological activities associated with bicyclic peptides from marine tunicates, sponges, and bacteria render them suitable to be employed as effective surrogate between complex and small therapeutic moieties. Bicyclic peptides possess greater conformational rigidity and higher metabolic stability as compared with linear and monocyclic peptides. The antibody-like affinity and specificity of bicyclic peptides enable their binding to the challenging drug targets. Bridged macrobicyclic peptides from natural marine resources represent an underexplored class of molecules that provides promising platforms for drug development owing to their biocompatibility, similarity, and chemical diversity to proteins. The present review explores major marine-derived bicyclic peptides including disulfide-bridged, histidinotyrosine-bridged, or histidinoalanine-bridged macrobicyclic peptides along with their structural characteristics, synthesis, structure-activity relationship, and bioproperties.The comparison of these macrobicyclic congeners with linear/monocyclic peptides along with their therapeutic potential are also briefly discussed.
Collapse
Affiliation(s)
- Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Priyank Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, California, USA
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California, USA
| | - Saurabh Dahiya
- Department of Quality Assurance, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, India
| | - Renu Saharan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Ambala, Haryana, India
| | - Paramita Basu
- Department of Pharmaceutical & Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Arindam Mitra
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Barasat, West Bengal, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar, Mehsana, Gujarat, India
| |
Collapse
|
17
|
Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis. Org Lett 2021; 23:2084-2088. [PMID: 33656903 DOI: 10.1021/acs.orglett.1c00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aerobic oxidative cross-coupling of indoles with azoles driven by flavin-iodine-coupled organocatalysis has been developed for the green synthesis of 2-(azol-1-yl)indoles. The coupled organocatalytic system enabled the one-pot three-component synthesis of 2-azolyl-3-thioindoles from indoles, azoles, and thiols in an atom-economical manner by utilizing molecular oxygen as the only sacrificial reagent.
Collapse
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
18
|
Cai Y, Ma Z, Jiang J, Lo CCL, Luo S, Jalan A, Cardon JM, Ramos A, Moyá DA, Joaquin D, Castle SL. Convergent Total Synthesis of Yaku'amide A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Cai
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Zhiwei Ma
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Jintao Jiang
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Concordia C. L. Lo
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Shi Luo
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Ankur Jalan
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Joseph M. Cardon
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Alexander Ramos
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Diego A. Moyá
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Steven L. Castle
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| |
Collapse
|
19
|
Cai Y, Ma Z, Jiang J, Lo CCL, Luo S, Jalan A, Cardon JM, Ramos A, Moyá DA, Joaquin D, Castle SL. Convergent Total Synthesis of Yaku'amide A. Angew Chem Int Ed Engl 2021; 60:5162-5167. [PMID: 33336547 DOI: 10.1002/anie.202014238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Total synthesis of the anticancer peptide natural product yaku'amide A is reported. Its β-tert-hydroxy amino acids were prepared by regioselective aminohydroxylation involving a chiral mesyloxycarbamate reagent. Stereospecific construction of the E- and Z-ΔIle residues was accomplished through a one-pot reaction featuring anti dehydration, azide reduction, and O→N acyl transfer. Alkene isomerization was negligible during this process. These methods enabled a highly convergent and efficient synthetic route to the natural product.
Collapse
Affiliation(s)
- Yu Cai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Zhiwei Ma
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Jintao Jiang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Concordia C L Lo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Shi Luo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Ankur Jalan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Joseph M Cardon
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Alexander Ramos
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Diego A Moyá
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
20
|
Pan C, Kuranaga T, Kakeya H. Application of the highly sensitive labeling reagent to the structural confirmation of readily isomerizable peptides. J Nat Med 2021; 75:339-343. [PMID: 33387214 DOI: 10.1007/s11418-020-01472-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Thioamycolamide A (1) is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a D-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. It has gained attention for its unique structure, and very recently we reported the total synthesis of 1 via a biomimetic route. The NMR spectra of synthetic 1 agreed with those of natural 1. However, structural identity between peptidic natural and synthetic compounds is often difficult to confirm by comparison of NMR spectra because their NMR spectra vary depending on the conditions in the NMR tube, which often result in the structural misassignment of peptidic compounds. Especially, our total synthesis based on the putative biomimetic route potentially gives 1 as a diastereomixture at the final step. The problem is that the diastereomers of peptidic mid-sized molecules often exhibit similar properties (such as NMR spectra and bioactivities), and their separation procedures are often laborious. Herein we report the structural confirmation of synthetic 1 by the LC-MS-based chromatographic comparison with the use of our highly sensitive labeling reagent L-FDVDA; the highly sensitive-advanced Marfey's method (HS-advanced Marfey's method). This work demonstrated the utility of our highly sensitive labeling reagent for the structural determination of not only scarce natural products but also readily isomerizable synthetic compounds.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Pan C, Kuranaga T, Kakeya H. Total synthesis of thioamycolamide A via a biomimetic route. Org Biomol Chem 2020; 18:8366-8370. [PMID: 33030495 DOI: 10.1039/d0ob01942a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Thioamycolamide A is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a d-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. Based on the biosynthetic insights, a concise total synthesis of thioamycolamide A was accomplished.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Fan L, Hao J, Yu J, Ma X, Liu J, Luan X. Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. J Am Chem Soc 2020; 142:6698-6707. [PMID: 32182059 DOI: 10.1021/jacs.0c00403] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional approaches on using hydroxylamine derivatives as single nitrogen sources, for the construction of n-membered (n > 3) N-heterocycles, rely upon two chemical operations by involving sequential nucleophilic and electrophilic C-N bond formations. Here, we report a highly efficient cascade of alkyne insertion/C-H activation/amination for the rapid preparation of a myriad of tricyclic indoles, in a single-step transformation, by using bifunctional secondary hydroxylamines. It is noteworthy that judicious selection of applicable amino agents, for enabling the prior oxidative addition of aryl iodide to initial Pd(0) species and subsequent two C-N bonds formation, was the key to the success of this reaction. Control experiments indicated that a five-membered palladacyclic intermediate played a crucial role in promoting the final aminative ring closure.
Collapse
Affiliation(s)
- Liangxin Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiamao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingxun Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaojun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
23
|
Thombare VJ, Holden JA, Reynolds EC, O'Brien-Simpson NM, Hutton CA. Celogentin mimetics as inhibitors of tubulin polymerization. J Pept Sci 2019; 26:e3239. [PMID: 31847053 DOI: 10.1002/psc.3239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Abstract
Bicyclic analogues of celogentin C have been synthesized in which the side chain-side chain cross-links are replaced by thioether bonds. Several of the simplified bicyclic peptides displayed potent inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Varsha J Thombare
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - James A Holden
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Eric C Reynolds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Neil M O'Brien-Simpson
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
24
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
25
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
26
|
Thombare VJ, Holden JA, Pal S, Reynolds EC, Chattopadhyay A, O'Brien-Simpson NM, Hutton CA. Antimicrobial activity of simplified mimics of celogentin C. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Wu J, Tang J, Chen H, He Y, Wang H, Yao H. Recent developments in peptide macrocyclization. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Base-Promoted Synthesis of β-Substituted-Tryptophans via a Simple and Convenient Three-Component Condensation of Nickel(II) Glycinate. Molecules 2017; 22:molecules22050695. [PMID: 28448432 PMCID: PMC6154671 DOI: 10.3390/molecules22050695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
A three-component reaction of nickel(II) glycinate was conducted for the convenient synthesis of β-substituted-tryptophans. The reaction worked smoothly under mild conditions and the procedure was simple and easy to handle.
Collapse
|
29
|
Wu LL, Zheng Y, Wang YM, Zhou ZH. Organocatalyzed enantioselective [3 + 3] annulation for the direct synthesis of conformationally constrained cyclic tryptophan derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra24288f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of optically active conformationally strained β-branched cyclic tryptophan derivatives has been realized via chiral squaramide catalyzed enantioselective formal [3 + 3] annulation of indolin-2-thiones and 4-arylmethylideneoxazolin-5(4H)-ones.
Collapse
Affiliation(s)
- L.-L. Wu
- Institute and State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Y. Zheng
- Institute and State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Y.-M. Wang
- Institute and State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Z.-H. Zhou
- Institute and State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
30
|
Kuranaga T, Mutoh H, Sesoko Y, Goto T, Matsunaga S, Inoue M. Elucidation and Total Synthesis of the Correct Structures of Tridecapeptides Yaku'amides A and B. Synthesis-Driven Stereochemical Reassignment of Four Amino Acid Residues. J Am Chem Soc 2015; 137:9443-51. [PMID: 26146759 DOI: 10.1021/jacs.5b05550] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yaku'amides A (1) and B (2) possess four α,β-dehydroamino acid residues in their linear tridecapeptide sequence and differ in their residue-3 (Gly for 1 and Ala for 2). The highly unsaturated peptide structure, characteristic cytotoxicity profile, and extreme scarcity from natural sources motivated us to launch synthetic studies of 1 and 2. Here, we report the total synthesis of the originally proposed structure of yaku'amide B (2a) by applying the route to 1a, which was previously established in our group. However, this accomplishment only proved that 2a and natural 2 were structurally different and prompted investigations directed toward determining the true structure of 2. Extensive Marfey's analyses of minute amounts of natural 2 and its degradation products presented us the possible stereoisomers, all of which were synthetically prepared for chromatographic comparison with the authentic fragments of 2. Based on this detective work, we proposed a corrected structure for yaku'amide B (2c), in which the orders of residues-7 and -8 and residues-11 and -12 are reversed. Finally, the total synthesis of 2c led to confirmation of its structural identity. Moreover, the revised structure of yaku'amide A (1c) was constructed by switching Ala-3 to Gly-3 and was found to be chromatographically matched with the re-isolated natural 1. The present work demonstrated the high reliability and sensitivity of the MS- and LC-based structural analyses and the indispensable role of chemical synthesis in structural elucidation of scarce natural products.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- †Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Mutoh
- †Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Sesoko
- †Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomomi Goto
- †Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,‡Research Foundation ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Shigeki Matsunaga
- §Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayuki Inoue
- †Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS. Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era. Chem Rev 2015; 115:9232-76. [DOI: 10.1021/acs.chemrev.5b00034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahlam M. Armaly
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yvonne C. DePorre
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Emilia J. Groso
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul S. Riehl
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Beukeaw D, Udomsasporn K, Yotphan S. Iodine-Catalyzed Oxidative Cross-Coupling of Indoles and Azoles: Regioselective Synthesis of N-Linked 2-(Azol-1-yl)indole Derivatives. J Org Chem 2015; 80:3447-54. [DOI: 10.1021/jo502933e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Danupat Beukeaw
- Center
for Catalysis and
Center of Excellence for Innovation in Chemistry (PERCH−CIC),
Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kwanchanok Udomsasporn
- Center
for Catalysis and
Center of Excellence for Innovation in Chemistry (PERCH−CIC),
Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Center
for Catalysis and
Center of Excellence for Innovation in Chemistry (PERCH−CIC),
Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Li L, Hu W, Jia Y. Synthetic studies of cyclic peptides stephanotic acid methyl ester, celogentin C, and moroidin. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Huang PQ, Ou W, Xiao KJ, Wang AE. Tertiary amide-based Knoevenagel-type reactions: a direct, general, and chemoselective approach to enaminones. Chem Commun (Camb) 2014; 50:8761-3. [DOI: 10.1039/c4cc03826f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Synthesis of tryptophans by Lewis acid promoted ring-opening of aziridine-2-carboxylates: optimization of protecting group and Lewis acid. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Wu WB, Huang JM. Highly Regioselective C–N Bond Formation through C–H Azolation of Indoles Promoted by Iodine in Aqueous Media. Org Lett 2012; 14:5832-5. [DOI: 10.1021/ol302609m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wen-Bin Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jing-Mei Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
37
|
Funktionalisierung von C-H-Bindungen: neue Synthesemethoden für Naturstoffe und Pharmazeutika. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201666] [Citation(s) in RCA: 756] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Yamaguchi J, Yamaguchi AD, Itami K. CH Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew Chem Int Ed Engl 2012; 51:8960-9009. [DOI: 10.1002/anie.201201666] [Citation(s) in RCA: 2423] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Indexed: 01/04/2023]
|
39
|
Chen DYK, Youn SW. C-H activation: a complementary tool in the total synthesis of complex natural products. Chemistry 2012; 18:9452-74. [PMID: 22736530 DOI: 10.1002/chem.201201329] [Citation(s) in RCA: 455] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/05/2023]
Abstract
The recent advent of transition-metal mediated C-H activation is revolutionizing the synthetic field and gradually infusing a "C-H activation mind-set" in both students and practitioners of organic synthesis. As a powerful testament of this emerging synthetic tool, applications of C-H activation in the context of total synthesis of complex natural products are beginning to blossom. Herein, recently completed total syntheses showcasing creative and ingenious incorporation of C-H activation as a strategic manoeuver are compared with their "non-C-H activation" counterparts, illuminating a new paradigm in strategic synthetic design.
Collapse
Affiliation(s)
- David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea.
| | | |
Collapse
|
40
|
Abstract
In this critical review, the strategic and economic benefits of C-H functionalization logic will be analyzed through the critical lens of total synthesis. In order to illustrate the dramatically simplifying effects this type of logic can potentially have on synthetic planning, we take the reader through a series of case studies in which it has already been successfully applied. In the first section, a chronological look at key historical syntheses will be examined, leading into modern day examples. In the second section, our own experience with applying and executing synthesis with a C-H functionalization "mindset" will be discussed (114 references).
Collapse
Affiliation(s)
- Will R Gutekunst
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
41
|
Wang J, Zhou S, Lin D, Ding X, Jiang H, Liu H. Highly diastereo- and enantioselective synthesis of syn-β-substituted tryptophans via asymmetric Michael addition of a chiral equivalent of nucleophilic glycine and sulfonylindoles. Chem Commun (Camb) 2011; 47:8355-7. [PMID: 21695312 DOI: 10.1039/c1cc12619a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
McMurray L, O'Hara F, Gaunt MJ. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem Soc Rev 2011; 40:1885-98. [DOI: 10.1039/c1cs15013h] [Citation(s) in RCA: 1396] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
DalZotto C, Michaux J, Martinand-Lurin E, Campagne JM. Chan-Lam-Evans Coupling of Cbz-Protected Histidines. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Poirier M, Goudreau S, Poulin J, Savoie J, Beaulieu PL. Metal-Free Coupling of Azoles with 2- and 3-Haloindoles Providing Access to Novel 2- or 3-(Azol-1-yl)indole Derivatives. Org Lett 2010; 12:2334-7. [DOI: 10.1021/ol100685p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Poirier
- Chemistry Department, Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Québec, Canada H7S 2G5
| | - Sébastien Goudreau
- Chemistry Department, Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Québec, Canada H7S 2G5
| | - Jason Poulin
- Chemistry Department, Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Québec, Canada H7S 2G5
| | - Jolaine Savoie
- Chemistry Department, Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Québec, Canada H7S 2G5
| | - Pierre L. Beaulieu
- Chemistry Department, Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Québec, Canada H7S 2G5
| |
Collapse
|
46
|
Hu W, Zhang F, Xu Z, Liu Q, Cui Y, Jia Y. Stereocontrolled and Efficient Total Synthesis of (−)-Stephanotic Acid Methyl Ester and (−)-Celogentin C. Org Lett 2010; 12:956-9. [DOI: 10.1021/ol902944f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weimin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Fengying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Ma B, Banerjee B, Litvinov DN, He L, Castle SL. Total synthesis of the antimitotic bicyclic peptide celogentin C. J Am Chem Soc 2010; 132:1159-71. [PMID: 20038144 PMCID: PMC2810426 DOI: 10.1021/ja909870g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An account of the total synthesis of celogentin C is presented. A right-to-left synthetic approach to this bicyclic octapeptide was unsuccessful due to an inability to elaborate derivatives of the right-hand ring. In the course of these efforts, it was discovered that the mild Braslau modification of the McFadyen-Stevens reaction offers a useful method of reducing recalcitrant esters to aldehydes. A left-to-right synthetic strategy was then examined. The unusual Leu-Trp side-chain cross-link present in the left-hand macrocycle was fashioned via a three-step sequence comprised of an intermolecular Knoevenagel condensation, a radical conjugate addition, and a SmI(2)-mediated nitro reduction. A subsequent macrolactamization provided the desired ring system. The high yield and concise nature of the left-hand ring synthesis offset the modest diastereoselectivity of the radical conjugate addition. Formation of the Trp-His side-chain linkage characteristic of the right-hand ring was then accomplished by means of an indole-imidazole oxidative coupling. Notably, Pro-OBn was required as an additive in this reaction. Detailed mechanistic investigations indicated that Pro-OBn moderates the concentration of NCS in the reaction mixture, thereby minimizing the production of an undesired dichlorinated byproduct. The natural product was obtained after macrolactamization and deprotection. The chemical shifts of the imidazole hydrogen atoms exhibited significant dependence on temperature, concentration, and pH. Antitumor screening indicated that celogentin C inhibits the growth of some cancer cell lines.
Collapse
Affiliation(s)
- Bing Ma
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Biplab Banerjee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Dmitry N. Litvinov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Liwen He
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Steven L. Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
48
|
Feng Y, Chen G. Total Synthesis of Celogentin C by Stereoselective CH Activation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905134] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
|
50
|
Ishikura M, Yamada K, Abe T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 2010; 27:1630-80. [DOI: 10.1039/c005345g] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|