1
|
Zavala E, Dansereau S, Burke MJ, Lipchock JM, Maschietto F, Batista V, Loria JP. A salt bridge of the C-terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity. Protein Sci 2024; 33:e5009. [PMID: 38747379 PMCID: PMC11094782 DOI: 10.1002/pro.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, 15N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.
Collapse
Affiliation(s)
- Erik Zavala
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | | | | | - James M. Lipchock
- Department of Chemical and Biological SciencesMontgomery CollegeGermantownMarylandUSA
| | | | - Victor Batista
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - J. Patrick Loria
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
2
|
Alniss HY, Kemp BM, Holmes E, Hoffmann J, Ploch RM, Ramadan WS, Msallam YA, Al-Jubeh HM, Madkour MM, Celikkaya BC, Scott FJ, El-Awady R, Parkinson JA. Spectroscopic, biochemical and computational studies of bioactive DNA minor groove binders targeting 5'-WGWWCW-3' motif. Bioorg Chem 2024; 148:107414. [PMID: 38733748 DOI: 10.1016/j.bioorg.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Bryony M Kemp
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Elizabeth Holmes
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Joanna Hoffmann
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Rafal M Ploch
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Moustafa M Madkour
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bekir C Celikkaya
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
3
|
Lithgo RM, Hanževački M, Harris G, Kamps JJAG, Holden E, Gianga TM, Benesch JLP, Jäger CM, Croft AK, Hussain R, Hobman JL, Orville AM, Quigley A, Carr SB, Scott DJ. The adaptability of the ion-binding site by the Ag(I)/Cu(I) periplasmic chaperone SilF. J Biol Chem 2023; 299:105331. [PMID: 37820867 PMCID: PMC10656224 DOI: 10.1016/j.jbc.2023.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.
Collapse
Affiliation(s)
- Ryan M Lithgo
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Jos J A G Kamps
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Ellie Holden
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tiberiu-Marius Gianga
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom; Department of Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anna K Croft
- Department of Chemical Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Rohannah Hussain
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Jon L Hobman
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom
| | - Allen M Orville
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - David J Scott
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
4
|
Skvarnavičius G, Toleikis Z, Matulis D, Petrauskas V. Denaturant- or ligand-induced change in protein volume by pressure shift assay. Phys Chem Chem Phys 2022; 24:17279-17288. [DOI: 10.1039/d2cp01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A complete thermodynamic description of protein-ligand binding includes parameters related to pressure and temperature. The changes in protein volume and compressibility upon binding a ligand are pressure-related parameters that are...
Collapse
|
5
|
Skvarnavičius G, Toleikis Z, Michailovienė V, Roumestand C, Matulis D, Petrauskas V. Protein-Ligand Binding Volume Determined from a Single 2D NMR Spectrum with Increasing Pressure. J Phys Chem B 2021; 125:5823-5831. [PMID: 34032445 PMCID: PMC8279561 DOI: 10.1021/acs.jpcb.1c02917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteins
undergo changes in their partial volumes in numerous biological
processes such as enzymatic catalysis, unfolding–refolding,
and ligand binding. The change in the protein volume upon ligand binding—a
parameter termed the protein–ligand binding volume—can
be extensively studied by high-pressure NMR spectroscopy. In this
study, we developed a method to determine the protein–ligand
binding volume from a single two-dimensional (2D) 1H–15N heteronuclear single quantum coherence (HSQC) spectrum
at different pressures, if the exchange between ligand-free and ligand-bound
states of a protein is slow in the NMR time-scale. This approach required
a significantly lower amount of protein and NMR time to determine
the protein–ligand binding volume of two carbonic anhydrase
isozymes upon binding their ligands. The proposed method can be used
in other protein–ligand systems and expand the knowledge about
protein volume changes upon small-molecule binding.
Collapse
Affiliation(s)
- Gediminas Skvarnavičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Zigmantas Toleikis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania.,Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université s de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Rüdisser SH, Goldberg N, Ebert MO, Kovacs H, Gossert AD. Efficient affinity ranking of fluorinated ligands by 19F NMR: CSAR and FastCSAR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:579-594. [PMID: 32556806 DOI: 10.1007/s10858-020-00325-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.
Collapse
Affiliation(s)
- Simon H Rüdisser
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland
| | - Nils Goldberg
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Alvar D Gossert
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland.
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
7
|
Assessing molecular interactions with biophysical methods using the validation cross. Biochem Soc Trans 2018; 47:63-76. [DOI: 10.1042/bst20180271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022]
Abstract
Abstract
There are numerous methods for studying molecular interactions. However, each method gives rise to false negative- or false positive binding results, stemming from artifacts of the scientific equipment or from shortcomings of the experimental format. To validate an initial positive binding result, additional methods need to be applied to cover the shortcomings of the primary experiment. The aim of such a validation procedure is to exclude as many artifacts as possible to confirm that there is a true molecular interaction that meets the standards for publishing or is worth investing considerable resources for follow-up activities in a drug discovery project. To simplify this validation process, a graphical scheme — the validation cross — can be used. This simple graphic is a powerful tool for identifying blind spots of a binding hypothesis, for selecting the most informative combination of methods to reveal artifacts and, in general, for understanding more thoroughly the nature of a validation process. The concept of the validation cross was originally introduced for the validation of protein–ligand interactions by NMR in drug discovery. Here, an attempt is made to expand the concept to further biophysical methods and to generalize it for binary molecular interactions.
Collapse
|
8
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
9
|
Gossert AD, Jahnke W. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:82-125. [PMID: 27888841 DOI: 10.1016/j.pnmrs.2016.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 05/12/2023]
Abstract
Protein-ligand interactions are at the heart of drug discovery research. NMR spectroscopy is an excellent technology to identify and validate protein-ligand interactions. A plethora of NMR methods are available which are powerful, robust and information-rich, but also have pitfalls and limitations. In this review, we will focus on how to choose between different experiments, and assess their strengths and liabilities. We introduce the concept of the validation cross, which helps to categorize experiments according to their information content and to simplify the choice of the right experiment in order to address a specific question. Additionally, we will provide the framework for drawing correct conclusions from experimental results in order to accurately evaluate such interactions. Out of scope for this review are methods for subsequent characterization of the interaction such as quantitative KD determination, binding mode analysis, or structure determination.
Collapse
Affiliation(s)
- Alvar D Gossert
- Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland.
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland
| |
Collapse
|
10
|
Jahnke W, Bold G, Marzinzik AL, Ofner S, Pellé X, Cotesta S, Bourgier E, Lehmann S, Henry C, Hemmig R, Stauffer F, Hartwieg JCD, Green JR, Rondeau JM. A General Strategy for Targeting Drugs to Bone. Angew Chem Int Ed Engl 2015; 54:14575-9. [PMID: 26457482 DOI: 10.1002/anie.201507064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/08/2022]
Abstract
Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs.
Collapse
Affiliation(s)
- Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland).
| | - Guido Bold
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Andreas L Marzinzik
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Silvio Ofner
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Xavier Pellé
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Emmanuelle Bourgier
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Sylvie Lehmann
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Chrystelle Henry
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - René Hemmig
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Frédéric Stauffer
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - J Constanze D Hartwieg
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Jonathan R Green
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| | - Jean-Michel Rondeau
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry and Oncology Research, 4002 Basel (Switzerland)
| |
Collapse
|
11
|
Jahnke W, Bold G, Marzinzik AL, Ofner S, Pellé X, Cotesta S, Bourgier E, Lehmann S, Henry C, Hemmig R, Stauffer F, Hartwieg JCD, Green JR, Rondeau JM. Gezielte Anreicherung von Wirkstoffen am Knochen am Beispiel von allosterischen FPPS-Inhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Harner MJ, Frank AO, Fesik SW. Fragment-based drug discovery using NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 56:65-75. [PMID: 23686385 PMCID: PMC3699969 DOI: 10.1007/s10858-013-9740-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/03/2013] [Indexed: 05/04/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience.
Collapse
Affiliation(s)
- Mary J Harner
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Ave, 607 Light Hall, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|
13
|
Lee Y, Zeng H, Ruedisser S, Gossert AD, Hilty C. Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein-ligand interactions. J Am Chem Soc 2012; 134:17448-51. [PMID: 23020226 DOI: 10.1021/ja308437h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorine NMR spectroscopy is widely used for detection of protein-ligand interactions in drug discovery because of the simplicity of fluorine spectra combined with a relatively high likelihood for a drug molecule to include at least one fluorine atom. In general, an important limitation of NMR spectroscopy in drug discovery is its sensitivity, which results in the need for unphysiologically high protein concentrations and large ligand:protein ratios. An enhancement in the (19)F signal of several thousand fold by dynamic nuclear polarization allows for the detection of submicromolar concentrations of fluorinated small molecules. Techniques for exploiting this gain in signal to detect ligands in the strong-, intermediate-, and weak-binding regimes are presented. Similar to conventional NMR analysis, dissociation constants are determined. However, the ability to use a low ligand concentration permits the detection of ligands in slow exchange that are not easily amenable to drug screening by traditional NMR methods. The relative speed and additional information gained may make the hyperpolarization-based approach an interesting alternative for use in drug discovery.
Collapse
Affiliation(s)
- Youngbok Lee
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
14
|
Lombès T, Moumné R, Larue V, Prost E, Catala M, Lecourt T, Dardel F, Micouin L, Tisné C. Investigation of RNA-Ligand Interactions by 19F NMR Spectroscopy Using Fluorinated Probes. Angew Chem Int Ed Engl 2012; 51:9530-4. [DOI: 10.1002/anie.201204083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Indexed: 01/08/2023]
|
15
|
Lombès T, Moumné R, Larue V, Prost E, Catala M, Lecourt T, Dardel F, Micouin L, Tisné C. Investigation of RNA-Ligand Interactions by 19F NMR Spectroscopy Using Fluorinated Probes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Jahnke W, Henry C. An in vitro Assay to Measure Targeted Drug Delivery to Bone Mineral. ChemMedChem 2010; 5:770-6. [DOI: 10.1002/cmdc.201000016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Research highlights. Nat Chem Biol 2009. [DOI: 10.1038/nchembio.230-psi1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|