1
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
2
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
3
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
4
|
Weak acidic stable carbazate modified cellulose membranes target for scavenging carbonylated proteins in hemodialysis. Carbohydr Polym 2020; 231:115727. [DOI: 10.1016/j.carbpol.2019.115727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022]
|
5
|
Güixens-Gallardo P, Humpolickova J, Miclea SP, Pohl R, Kraus T, Jurkiewicz P, Hof M, Hocek M. Thiophene-linked tetramethylbodipy-labeled nucleotide for viscosity-sensitive oligonucleotide probes of hybridization and protein-DNA interactions. Org Biomol Chem 2020; 18:912-919. [PMID: 31919486 DOI: 10.1039/c9ob02634g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytosine 2'-deoxyribonucleoside dCTBdp and its triphosphate (dCTBdpTP) bearing tetramethylated thiophene-bodipy fluorophore attached at position 5 were designed and synthesized. The green fluorescent nucleoside dCTBdp showed a perfect dependence of fluorescence lifetime on the viscosity. The modified triphosphate dCTBdpTP was substrate to several DNA polymerases and was used for in vitro enzymatic synthesis of labeled oligonucleotides (ONs) or DNA by primer extension. The labeled single-stranded ONs showed a significant decrease in mean fluorescence lifetime when hybridized to the complementary strand of DNA or RNA and were also sensitive to mismatches. The labeled dsDNA sensed protein binding (p53), which resulted in the increase of its fluorescence lifetime. The triphosphate dCTBdpTP was transported to live cells where its interactions could be detected by FLIM but it did not show incorporation to genomic DNA in cellulo.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Sebastian Paul Miclea
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
6
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
7
|
Ménová P, Cahová H, Vrábel M, Hocek M. Synthesis of Base-Modified dNTPs Through Cross-Coupling Reactions and Their Polymerase Incorporation to DNA. Methods Mol Biol 2019; 1973:39-57. [PMID: 31016695 DOI: 10.1007/978-1-4939-9216-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthesis of base-modified dNTPs through the Suzuki or Sonogashira cross-coupling reactions of halogenated dNTPs with boronic acids or alkynes is reported, as well as the use of these modified dNTPs in polymerase incorporations to oligonucleotides or DNA by primer extension or PCR.
Collapse
Affiliation(s)
- Petra Ménová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Lyu S, Beiranvand N, Freindorf M, Kraka E. Interplay of Ring Puckering and Hydrogen Bonding in Deoxyribonucleosides. J Phys Chem A 2019; 123:7087-7103. [PMID: 31323178 DOI: 10.1021/acs.jpca.9b05452] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cremer-Pople ring puckering analysis and the Konkoli-Cremer local mode analysis supported by the topological analysis of the electron density were applied for the first comprehensive analysis of the interplay between deoxyribose ring puckering and intramolecular H-bonding in 2'-deoxycytidine, 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxyguanosine. We mapped for each deoxyribonucleoside the complete conformational energy surface and the corresponding pseudorotation path. We found only incomplete pseudorotation cycles, caused by ring inversion, which we coined as pseudolibration paths. On each pseudolibration path a global and a local minimum separated by a transition state were identified. The investigation of H-bond free deoxyribonucleoside analogs revealed that removal of the H-bond does not restore the full conformational flexibility of the sugar ring. Our work showed that ring puckering predominantly determines the conformational energy; the larger the puckering amplitude, the lower the conformational energy. In contrast no direct correlation between conformational energy and H-bond strength was found. The longest and weakest H-bonds are located in the local minimum region, whereas the shortest and strongest H-bonds are located outside the global and local minimum regions at the turning points of the pseudolibration paths, i.e., H-bonding determines the shape and length of the pseudolibration paths. In addition to the H-bond strength, we evaluated the covalent/electrostatic character of the H-bonds applying the Cremer-Kraka criterion of covalent bonding. H-bonding in the puric bases has a more covalent character whereas in the pyrimidic bases the H-bond character is more electrostatic. We investigated how the mutual orientation of the CH2OH group and the base influences H-bond formation via two geometrical parameters describing the rotation of the substituents perpendicular to the sugar ring and their tilting relative to the ring center. According to our results, rotation is more important for H-bond formation. In addition we assessed the influence of the H-bond acceptor, the lone pair (N, respectively O), via the delocalization energy. We found larger delocalization energies corresponding to stronger H-bonds for the puric bases. The global minimum conformation of 2'-deoxyguanosine has the strongest H-bond of all conformers investigated in this work with a bond strength of 0.436 which is even stronger than the H-bond in the water dimer (0.360). The application of our new analysis to DNA deoxyribonucleotides and to unnatural base pairs, which have recently drawn a lot of attention, is in progress.
Collapse
Affiliation(s)
- Siying Lyu
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Nassim Beiranvand
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| |
Collapse
|
9
|
Jakubovska J, Tauraite D, Birštonas L, Meškys R. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 2019; 46:5911-5923. [PMID: 29846697 PMCID: PMC6158702 DOI: 10.1093/nar/gky435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2′-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo–), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.
Collapse
Affiliation(s)
- Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Lukas Birštonas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Reisacher U, Groitl B, Strasser R, Cserép GB, Kele P, Wagenknecht HA. Triazine-Modified 7-Deaza-2'-deoxyadenosines: Better Suited for Bioorthogonal Labeling of DNA by PCR than 2'-Deoxyuridines. Bioconjug Chem 2019; 30:1773-1780. [PMID: 31117344 DOI: 10.1021/acs.bioconjchem.9b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
6-Ethynyl-1,2,4-triazine is a small bioorthogonally reactive group we applied for fluorescent labeling of oligonucleotides by Diels-Alder reactions with inverse electron demand. We synthetically attached this functional group to the 7-position of 7-deaza-2'-deoxyadenosine triphosphate and to the 5-position of 2'-deoxyuridine triphosphate. Both modified nucleotide triphosphates were used in comparison for primer extension experiments (PEX) and PCR amplification to finally yield multilabeled oligonucleotides by the postsynthetic reaction with a highly reactive bicyclo[6.1.0]nonyne-rhodamine conjugate. These experiments show that 6-ethynyl-1,2,4-triazine is much better tolerated by the DNA polymerase when attached to the 7-position of 7-deaza-2'-deoxyadenosine in comparison to the attachment at the 5-position of 2'-deoxyuridine. This became evident both by PAGE analysis of the PCR products and real-time kinetic observation of DNA polymerase activity during primer extension using switchSENSE. Generally, our results imply that bioorthogonal labeling strategies are better suited for 7-deaza-2'-adenosines than conventional and available 2'-deoxyuridines.
Collapse
Affiliation(s)
- Ulrike Reisacher
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Bastian Groitl
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Gergely B Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| |
Collapse
|
11
|
Ejlersen M, Lou C, Sanghvi YS, Tor Y, Wengel J. Modification of oligodeoxynucleotides by on-column Suzuki cross-coupling reactions. Chem Commun (Camb) 2018; 54:8003-8006. [PMID: 29967912 DOI: 10.1039/c8cc01360h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The on-column functionalization of oligodeoxynucleotides via base-free Suzuki cross-coupling reactions is reported herein. These cross-coupling reactions were carried out with various boronic acids and either full-length modified oligonucleotides containing one or more 2'-deoxy-5-iodouridine (5IdU) monomer(s) or on oligonucleotide fragments immediately after incorporation of 5IdU. Five different functionalities were coupled to oligonucleotides containing one or three attachment points.
Collapse
Affiliation(s)
- Maria Ejlersen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
13
|
Suzol S, Howlader AH, Wen Z, Ren Y, Laverde EE, Garcia C, Liu Y, Wnuk SF. Pyrimidine Nucleosides with a Reactive (β-Chlorovinyl)sulfone or (β-Keto)sulfone Group at the C5 Position, Their Reactions with Nucleophiles and Electrophiles, and Their Polymerase-Catalyzed Incorporation into DNA. ACS OMEGA 2018; 3:4276-4288. [PMID: 29732453 PMCID: PMC5928487 DOI: 10.1021/acsomega.8b00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 05/28/2023]
Abstract
Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5'-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions.
Collapse
Affiliation(s)
- Sazzad
H. Suzol
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - A. Hasan Howlader
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Zhiwei Wen
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Yaou Ren
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Eduardo E. Laverde
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Carol Garcia
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Yuan Liu
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Stanislaw F. Wnuk
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
14
|
He L, Yang X, Xu K, Lin W. A mitochondria-targeted fluorescent probe for imaging endogenous malondialdehyde in HeLa cells and onion tissues. Chem Commun (Camb) 2018; 53:4080-4083. [PMID: 28349152 DOI: 10.1039/c7cc00512a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mitochondria-targeted turn-on fluorescent probe (Mito-FMP) based on a benzoxadiazole platform was developed for detection of malondialdehyde (MDA). Mito-FMP performed with large enhancement of the optical signal (774-fold) in response to MDA in an aqueous system and has the capability of monitoring endogenous MDA in HeLa cells and onion tissues.
Collapse
Affiliation(s)
- Longwei He
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Xueling Yang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
15
|
Havranová-Vidláková P, Špaček J, Vítová L, Hermanová M, Dadová J, Raindlová V, Hocek M, Fojta M, Havran L. Butylacrylate-nucleobase Conjugates as Targets for Two-step Redox Labeling of DNA with an Osmium Tetroxide Complex. ELECTROANAL 2017. [DOI: 10.1002/elan.201700702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jan Špaček
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Lada Vítová
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Monika Hermanová
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| | - Jitka Dadová
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
| | - Veronika Raindlová
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- The Czech Academy of Sciences; Institute of Organic Chemistry and Biochemistry; Flemingovo namesti 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 8, Prague- 2 12843 Czech Republic
| | - Miroslav Fojta
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
- Central European Institute of Technology; Masaryk University; Kamenice 753/5 625 00 Brno Czech Republic
| | - Luděk Havran
- The Czech Academy of Sciences; Institute of Biophysics; Královopolská 135 612 65 Brno Czech Republic
| |
Collapse
|
16
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anu Naik
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jawad Alzeer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Therese Triemer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anna Bujalska
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
17
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017; 56:10850-10853. [PMID: 28561928 DOI: 10.1002/anie.201702554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Indexed: 11/10/2022]
Abstract
A new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×103 m-1 s-1 . PTAD derivatives selectively reacted with VdU-containing oligonucleotides in a conformation-selective manner, with higher yields observed for G-quadruplex versus duplex DNA. These results demonstrate a new strategy for copper-free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.
Collapse
Affiliation(s)
- Anu Naik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
18
|
Ortiz M, Debela AM, Svobodova M, Thorimbert S, Lesage D, Cole RB, Hasenknopf B, O'Sullivan CK. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia pestis. Chemistry 2017; 23:10597-10603. [PMID: 28544266 DOI: 10.1002/chem.201701295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Ahmed M Debela
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Marketa Svobodova
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Serge Thorimbert
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Richard B Cole
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Bernold Hasenknopf
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Ciara K O'Sullivan
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
19
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Afaf El-Sagheer
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering; Suez Canal University; Suez 43721 Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Tom Brown
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| |
Collapse
|
20
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016; 55:13553-13557. [PMID: 27667506 DOI: 10.1002/anie.201606843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Indexed: 12/12/2022]
Abstract
RNA functionalization is challenging due to the instability of RNA and the limited range of available enzymatic reactions. We developed a strategy based on solid phase synthesis and post-functionalization to introduce an electrophilic site at the 3' end of tRNA analogues. The squarate diester used as an electrophile enabled sequential amidation and provided asymmetric squaramides with high selectivity. The squaramate-RNAs specifically reacted with the lysine of UDP-MurNAc-pentapeptide, a peptidoglycan precursor used by the aminoacyl-transferase FemXWv for synthesis of the bacterial cell wall. The peptidyl-RNA obtained with squaramate-RNA and unprotected UDP-MurNAc-pentapeptide efficiently inhibited FemXWv . The squaramate unit also promoted specific cross-linking of RNA to the catalytic Lys of FemXWv but not to related transferases recognizing different aminoacyl-tRNAs. Thus, squaramate-RNAs provide specificity for cross-linking with defined groups in complex biomolecules due to its unique reactivity.
Collapse
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Afaf El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721, Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France.
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France. .,CNRS UMR 8601, Paris, F-75006, France.
| |
Collapse
|
21
|
Olszewska A, Pohl R, Brázdová M, Fojta M, Hocek M. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjug Chem 2016; 27:2089-94. [PMID: 27479485 DOI: 10.1021/acs.bioconjchem.6b00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Marie Brázdová
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University , Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
22
|
Wang Y, Chan HW, Chan W. Facile Formation of a DNA Adduct of Semicarbazide on Reaction with Apurinic/Apyrimidinic Sites in DNA. Chem Res Toxicol 2016; 29:834-40. [DOI: 10.1021/acs.chemrestox.6b00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinan Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ho Wai Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
23
|
Liang Y, Suzol SH, Wen Z, Artiles AG, Mathivathanan L, Raptis RG, Wnuk SF. Uracil Nucleosides with Reactive Group at C5 Position: 5-(1-Halo-2-sulfonylvinyl)uridine Analogues. Org Lett 2016; 18:1418-21. [PMID: 26933954 DOI: 10.1021/acs.orglett.6b00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transition-metal-catalyzed or radical-mediated halosulfonylation of 5-ethynyluridine provided (E)-(1-halo-2-tosylvinyl)uridines. These (β-halo)vinyl sulfones undergo efficient stereoselective addition-elimination with amines or thiols to provide Z-β-aminovinyl or E-β-thiovinyl sulfones tethered to the C5 position of the uracil ring.
Collapse
Affiliation(s)
- Yong Liang
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Sazzad H Suzol
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Zhiwei Wen
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Alain G Artiles
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Raphael G Raptis
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
24
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Debela AM, Ortiz M, Beni V, Thorimbert S, Lesage D, Cole RB, O'Sullivan CK, Hasenknopf B. Biofunctionalization of Polyoxometalates with DNA Primers, Their Use in the Polymerase Chain Reaction (PCR) and Electrochemical Detection of PCR Products. Chemistry 2015; 21:17721-7. [PMID: 26490074 DOI: 10.1002/chem.201502247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11 O39 {Sn(CH2 )2 CO}](8-) and [P2 W17 O61 {Sn(CH2 )2 CO}](6-) have been used to link to a 5'-NH2 terminated 21-mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM-labeled primers was demonstrated through hybridization with a surface-immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.
Collapse
Affiliation(s)
- Ahmed M Debela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona (Spain)
| | - Mayreli Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona (Spain)
| | - Valerio Beni
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona (Spain)
| | - Serge Thorimbert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 place Jussieu, 75005 Paris (France)
| | - Denis Lesage
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 place Jussieu, 75005 Paris (France)
| | - Richard B Cole
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 place Jussieu, 75005 Paris (France)
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona (Spain). .,ICREA, Passeig Lluis Companys 23, 08010 Barcelona (Spain).
| | - Bernold Hasenknopf
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (UMR 8232), 4 place Jussieu, 75005 Paris (France).
| |
Collapse
|
26
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
27
|
Hardisty R, Kawasaki F, Sahakyan AB, Balasubramanian S. Selective Chemical Labeling of Natural T Modifications in DNA. J Am Chem Soc 2015; 137:9270-2. [PMID: 25946119 PMCID: PMC4521287 DOI: 10.1021/jacs.5b03730] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/30/2022]
Abstract
We present a chemical method to selectively tag and enrich thymine modifications, 5-formyluracil (5-fU) and 5-hydroxymethyluracil (5-hmU), found naturally in DNA. Inherent reactivity differences have enabled us to tag 5-fU chemoselectively over its C modification counterpart, 5-formylcytosine (5-fC). We rationalized the enhanced reactivity of 5-fU compared to 5-fC via ab initio quantum mechanical calculations. We exploited this chemical tagging reaction to provide proof of concept for the enrichment of 5-fU containing DNA from a pool that contains 5-fC or no modification. We further demonstrate that 5-hmU can be chemically oxidized to 5-fU, providing a strategy for the enrichment of 5-hmU. These methods will enable the mapping of 5-fU and 5-hmU in genomic DNA, to provide insights into their functional role and dynamics in biology.
Collapse
Affiliation(s)
- Robyn
E. Hardisty
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Fumiko Kawasaki
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Aleksandr B. Sahakyan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Shankar Balasubramanian
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| |
Collapse
|
28
|
Abstract
To expand the chemical functionality of DNAzymes and aptamers, several new modified deoxyuridine triphosphates have been synthesized. An important precursor that enables this aim is 5-aminomethyl dUTP, whereby the pendent amine serves as a handle for further synthetic functionalization. Five functional groups were conjugated to 5-aminomethyl dUTP. Incorporation assays were performed on several templates that demand 2-5 sequential incorporation events using several commercially available DNA polymerases. It was found that Vent (exo-) DNA polymerase efficiently incorporates all five modified dUTPs. In addition, all nucleoside triphosphates were capable of supporting a double-stranded exponential PCR amplification. Modified PCR amplicons were PCR amplified into unmodified DNA and sequenced to verify that genetic information was conserved through incorporation, amplification, and reamplification. Overall these modified dUTPs represent new candidate substrates for use in selections using modified nucleotide libraries.
Collapse
|
29
|
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht HA. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions. Chembiochem 2015; 16:1541-53. [DOI: 10.1002/cbic.201500199] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022]
|
30
|
Shaughnessy KH. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides. Molecules 2015; 20:9419-54. [PMID: 26007192 PMCID: PMC6272472 DOI: 10.3390/molecules20059419] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022] Open
Abstract
Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
31
|
Tuley A, Lee YJ, Wu B, Wang ZU, Liu WR. A genetically encoded aldehyde for rapid protein labelling. Chem Commun (Camb) 2015; 50:7424-6. [PMID: 24756176 DOI: 10.1039/c4cc02000f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a mutant pyrrolysyl-tRNA synthetase-tRNA(Pyl)(CUA) pair, 3-formyl-phenylalanine is genetically incorporated into proteins at amber mutation sites in Escherichia coli. This non-canonical amino acid readily reacts with hydroxylamine dyes, leading to rapid and site-selective protein labelling.
Collapse
Affiliation(s)
- Alfred Tuley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
32
|
NIE J, LI JP, DENG H, PAN HC. Progress on Click Chemistry and Its Application in Chemical Sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60819-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Enzyme-linked electrochemical detection of DNA fragments amplified by PCR in the presence of a biotinylated deoxynucleoside triphosphate using disposable pencil graphite electrodes. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1436-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Dziuba D, Pohl R, Hocek M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun (Camb) 2015; 51:4880-2. [DOI: 10.1039/c5cc00530b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent molecular rotors are for the first time used as light-up probes for sensing of DNA–protein interaction.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|
35
|
Melton D, Lewis CD, Price NE, Gates KS. Covalent adduct formation between the antihypertensive drug hydralazine and abasic sites in double- and single-stranded DNA. Chem Res Toxicol 2014; 27:2113-8. [PMID: 25405892 PMCID: PMC4269403 DOI: 10.1021/tx5003657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Hydralazine
(4) is an antihypertensive agent that
displays both mutagenic and epigenetic properties. Here, gel electrophoretic,
mass spectroscopic, and chemical kinetics methods were used to provide
evidence that medicinally relevant concentrations of 4 rapidly form covalent adducts with abasic sites in double- and single-stranded
DNA under physiological conditions. These findings raise the intriguing
possibility that the genotoxic properties of this clinically used
drug arise via reactions with an endogenous DNA lesion rather than
with the canonical structure of DNA.
Collapse
Affiliation(s)
- Douglas Melton
- Department of Chemistry, ‡Department of Biochemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | | | | | | |
Collapse
|
36
|
Dziuba D, Pohl R, Hocek M. Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjug Chem 2014; 25:1984-95. [PMID: 25290695 DOI: 10.1021/bc5003554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New fluorescent nucleosides and nucleoside triphosphate (dNTPs) analogs bearing the F-Bodipy fluorophore linked through a short, flexible nonconjugate tether were synthesized. The Bodipy-labeled dNTPs were substrates for several DNA polymerases which incorporated them into DNA in primer extension, nicking enzyme amplification reaction, and polymerase chain reaction. The fluorescence of F-Bodipy is not quenched upon incorporation in DNA and can be detected both in solutions and on gels.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
37
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
38
|
Jansa J, Lyčka A, Padělková Z, Grepl M, Konečný P, Hajdúch M, Džubák P. New Imidazo[1,2-c]pyrimidin-5(6H)-Ones Derived from Cytosine: Synthesis, Structure, and Cytotoxic Activity. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Josef Jansa
- Research Institute for Organic Syntheses (VUOS); Rybitví 296 CZ-533 54 Pardubice-Rybitví Czech Republic
- Department of Organic Chemistry, Faculty of Science; Palacký University; 17. listopadu 1192/12 CZ-771 46 Olomouc Czech Republic
| | - Antonín Lyčka
- Research Institute for Organic Syntheses (VUOS); Rybitví 296 CZ-533 54 Pardubice-Rybitví Czech Republic
| | - Zdeňka Padělková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentská 573 CZ-532 10 Pardubice Czech Republic
| | - Martin Grepl
- Farmak, a.s.; Na Vlčinci 16/3 CZ-771 17 Olomouc Czech Republic
| | - Petr Konečný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacký University, Olomouc; Puškinova 6 CZ-775 20 Olomouc Czech Republic
- University Hospital Olomouc; Ivana Petroviče Pavlova 6 CZ-77520 Olomouc Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacký University, Olomouc; Puškinova 6 CZ-775 20 Olomouc Czech Republic
- University Hospital Olomouc; Ivana Petroviče Pavlova 6 CZ-77520 Olomouc Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacký University, Olomouc; Puškinova 6 CZ-775 20 Olomouc Czech Republic
- University Hospital Olomouc; Ivana Petroviče Pavlova 6 CZ-77520 Olomouc Czech Republic
| |
Collapse
|
39
|
Pinheiro VB, Holliger P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 2014; 32:321-8. [PMID: 24745974 PMCID: PMC4039137 DOI: 10.1016/j.tibtech.2014.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Nucleic acids display remarkable properties beyond information storage and propagation. The well-understood base pairing rules have enabled nucleic acids to be assembled into nanostructures of ever increasing complexity. Although nanostructures can be constructed using other building blocks, including peptides and lipids, it is the capacity to evolve that sets nucleic acids apart from all other nanoscale building materials. Nonetheless, the poor chemical and biological stability of DNA and RNA constrain their applications. Recent advances in nucleic acid chemistry and polymerase engineering enable the synthesis, replication, and evolution of a range of synthetic genetic polymers (XNAs) with improved chemical and biological stability. We discuss the impact of this technology on the generation of XNA ligands, enzymes, and nanostructures with tailor-made chemistry.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
40
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2′-Deoxyribonucleoside Triphosphates (dNTPs): Better Substrates for DNA Polymerases than dATP in Competitive Incorporations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew Chem Int Ed Engl 2014; 53:7552-5. [PMID: 24890276 DOI: 10.1002/anie.201404742] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 01/31/2023]
Abstract
A series of 7-substituted 7-deazaadenine and 5-substituted cytosine 2'-deoxyribonucleoside triphosphates (dNTPs) were tested for their competitive incorporations (in the presence of dATP and dCTP) into DNA by several DNA polymerases by using analysis based on cleavage by restriction endonucleases. 7-Aryl-7-deazaadenine dNTPs were more efficient substrates than dATP because of their higher affinity for the active site of the enzyme, as proved by kinetic measurements and calculations.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | | | | |
Collapse
|
42
|
Voltammetric Study of dsDNA Modified by Multi-redox Label Based on N-methyl-4-hydrazino-7-nitrobenzofurazan. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Liang Y, Gloudeman J, Wnuk SF. Palladium-catalyzed direct arylation of 5-halouracils and 5-halouracil nucleosides with arenes and heteroarenes promoted by TBAF. J Org Chem 2014; 79:4094-103. [PMID: 24724921 PMCID: PMC4011569 DOI: 10.1021/jo500602p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The
1-N-benzyl-5-iodo(or bromo)uracil undergoes
Pd-catalyzed [Pd2(dba)3] direct arylation with
benzene and other simple arenes in the presence of TBAF in DMF without
the necessity of adding any ligands or additives to give 5-arylated
uracil analogues. The TBAF-promoted coupling also occurs efficiently
with electron rich heteroarenes at 100 °C (1 h) even with only
small excess of heteroarenes. The protocol avoids usage of the arylboronic
acid or stannane precursors for the synthesis of 5-(2-furyl, or 2-thienyl,
or 2-pyrrolyl)uracil nucleosides, which are used as important RNA
and DNA fluorescent probes. The fact that 1-N-benzyl-3-N-methyl-5-iodouracil did not undergo the TBAF-promoted
couplings with arenes or heteroarenes suggests that the C4-alkoxide
(enol form of uracil) facilitates coupling by participation in the
intramolecular processes of hydrogen abstraction from arenes. TBAF-promoted
arylation was extended into the other enolizable heterocyclic systems
such as 3-bromo-2-pyridone. The π-excessive heteroarenes also
coupled with 5-halouracils in the presence of Pd(OAc)2/Cs2CO3/PivOH combination in DMF (100 °C, 2 h)
to yield 5-arylated uracils.
Collapse
Affiliation(s)
- Yong Liang
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | |
Collapse
|
44
|
Electrochemical behaviour of 2,4-dinitrophenylhydrazi(o)ne as multi-redox centre DNA label at mercury meniscus modified silver solid amalgam electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.09.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Hervé G, Sartori G, Enderlin G, Mackenzie G, Len C. Palladium-catalyzed Suzuki reaction in aqueous solvents applied to unprotected nucleosides and nucleotides. RSC Adv 2014. [DOI: 10.1039/c3ra47911k] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleoside analogues have attracted much attention due to their potential biological activities.
Collapse
Affiliation(s)
- Gwénaëlle Hervé
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Guillaume Sartori
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Gérald Enderlin
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | | | - Christophe Len
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| |
Collapse
|
46
|
Lercher L, McGouran JF, Kessler BM, Schofield CJ, Davis BG. DNA modification under mild conditions by Suzuki-Miyaura cross-coupling for the generation of functional probes. Angew Chem Int Ed Engl 2013; 52:10553-8. [PMID: 23943570 PMCID: PMC3823066 DOI: 10.1002/anie.201304038] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/26/2013] [Indexed: 12/23/2022]
Abstract
Quick and clean: A method for Pd-catalyzed Suzuki-Miyaura cross-coupling to iododeoxyuridine (IdU) in DNA is described. Key to the reactivity is the choice of the ligand and the buffer. A covalent [Pd]-DNA intermediate was isolated and characterized. Photocrosslinking probes were generated to trap proteins that bind to epigenetic DNA modifications.
Collapse
Affiliation(s)
- Lukas Lercher
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryMansfield Road, Oxford OX1 3TA (UK)
| | - Joanna F McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Henry Wellcome Building for Molecular PhysiologyRoosevelt Drive, Oxford OX3 7FZ (UK)
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Henry Wellcome Building for Molecular PhysiologyRoosevelt Drive, Oxford OX3 7FZ (UK)
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryMansfield Road, Oxford OX1 3TA (UK)
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryMansfield Road, Oxford OX1 3TA (UK)
| |
Collapse
|
47
|
Dadová J, Vidláková P, Pohl R, Havran L, Fojta M, Hocek M. Aqueous Heck cross-coupling preparation of acrylate-modified nucleotides and nucleoside triphosphates for polymerase synthesis of acrylate-labeled DNA. J Org Chem 2013; 78:9627-37. [PMID: 23992435 DOI: 10.1021/jo4011574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aqueous-phase Heck coupling methodology was developed for direct attachment of butyl acrylate to 5-iodoracil, 5-iodocytosine, 7-iodo-7-deazaadenine, and 7-iodo-7-deazaguanine 2'-deoxyribonucleoside 5'-O-monophosphates (dNMPs) and 5'-O-triphosphates (dNTPs) and compared with the classical approach of phosphorylation of the corresponding modified nucleosides. The 7-substituted 7-deazapurine nucleotides (dA(BA)MP, dA(BA)TP, dG(BA)MP, and dG(BA)TP) were prepared by the direct Heck coupling of nucleotides in good yields (35-55%), whereas the pyrimidine nucleotides reacted poorly and the corresponding BA-modified dNTPs were prepared by triphosphorylation of the modified nucleosides. The acrylate-modified dN(BA)TPs (N = A, C, and U) were good substrates for DNA polymerases and were used for enzymatic synthesis of acrylate-modified DNA by primer extension, whereas dG(BA)TP was an inhibitor of polymerases. The butyl acrylate group was found to be a useful redox label giving a strong reduction peak at -1.3 to -1.4 V in cyclic voltammetry.
Collapse
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
48
|
Lercher L, McGouran JF, Kessler BM, Schofield CJ, Davis BG. DNA Modification under Mild Conditions by Suzuki-Miyaura Cross-Coupling for the Generation of Functional Probes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Dadová J, Orság P, Pohl R, Brázdová M, Fojta M, Hocek M. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins. Angew Chem Int Ed Engl 2013; 52:10515-8. [DOI: 10.1002/anie.201303577] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Indexed: 12/15/2022]
|
50
|
Dadová J, Orság P, Pohl R, Brázdová M, Fojta M, Hocek M. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|