1
|
Asadzadeh F, Poursattar Marjani A. Revolutionizing acridine synthesis: novel core-shell magnetic nanoparticles and Co-Zn zeolitic imidazolate framework with 1-aza-18-crown-6-ether-Ni catalysts. Sci Rep 2024; 14:25739. [PMID: 39468209 PMCID: PMC11519366 DOI: 10.1038/s41598-024-75591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Nanoparticles have emerged as a critical catalyst substrate due to their exceptional features, such as catalytic efficiency, high stability, and easy recovery. In our research, we have developed an innovative and environmentally friendly magnetic mesoporous nanocatalyst. Using the co-precipitation method, we produced magnetic nanoparticles (Fe3O4) and coated them with Zeolitic imidazolate frameworks (ZIFs) to enhance their surface area and chemical stability. The resulting substrate was functionalized with 1-aza-18-crown-6-ether and nickel metal. Our prepared catalyst has been rigorously evaluated using advanced techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmet-Teller (BET), vibrating sample magnetometry (VSM), scanning electron microscopy and energy dispersive X-ray (SEM-EDS), inductively coupled plasma (ICP), elemental mapping analysis (EMA), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). By synthesizing acridine derivatives, we have demonstrated the exceptional efficiency of our catalyst in organic compound synthesis. Through optimization, we have established the ideal parameters for catalytic processes, including catalyst amount, temperature, time, and ultrasonic use. Our catalyst has been proven to exhibit remarkable physical and chemical properties, such as porosity, temperature resistance, and recyclability. Notably, our heterogeneous nanocatalyst has shown outstanding performance and can be recycled six times without any loss in efficiency, affirming its potential in acridine.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
2
|
Soliman AA, Aboul-Fetouh ME, Gomaa S, Aboul-Fotouh TM, Attia AM. Optimizing in-situ upgrading of heavy crude oil via catalytic aquathermolysis using a novel graphene oxide-copper zinc ferrite nanocomposite as a catalyst. Sci Rep 2024; 14:25845. [PMID: 39468084 PMCID: PMC11519547 DOI: 10.1038/s41598-024-73953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Unconventional resources, such as heavy oil, are increasingly being explored and exploited due to the declining availability of conventional petroleum resources. Heavy crude oil poses challenges in production, transportation, and refining, due to its high viscosity, low API gravity, and elevated sulfur and metal content. Improving the quality of heavy oil can be achieved through the application of steam injection, which lowers the oil's viscosity and enhances its flow. However, steam injection alone falls short of meeting the growing demand for higher-quality petroleum products. Catalytic upgrading is therefore being investigated as a viable solution to improve heavy oil quality. This study experimentally investigates the application of two novel catalysts, namely copper-substituted zinc ferrite (ZCFO) synthesized via the sol-gel combustion method and a graphene oxide-based nanocomposite (GO-ZCFO) with different ratios, for catalyzing aquathermolysis reactions in the steam injection process, with the aim of enhancing the in-situ upgrading of heavy oil. These catalysts underwent characterization using X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Transmission Electron Microscopy (TEM). Their catalytic performance was assessed utilizing a high-pressure/high-temperature reactor (300 ml), with a comprehensive analysis of the changes in the physical and chemical properties of the heavy oil before and after upgrading. This analysis included measurements of sulfur content, SARA fractions, viscosity, API gravity, and Gas Chromatography (GC) of saturated hydrocarbons and evolved gases. All upgrading experiments, including both catalytic and non-catalytic aquathermolysis processes, were conducted under a reaction time of 6 h, a reaction temperature of 320 °C, and high pressure (86-112 bar). The results indicated that the introduction of the proposed catalysts as additives into the upgrading system resulted in a significant reduction in sulfur content. This, in turn, led to a decrease in resin and asphaltene content, an increase in the content of saturated hydrocarbon, particularly low-molecular-weight alkanes, and ultimately, a reduction in viscosity along with higher API gravity of the crude oil. GO-ZCFO with a weight ratio (50:50) exhibited the best catalytic performance. The heavy crude oil, upgraded with this 50:50 ratio, exhibited significant enhancements, including a 29.26% reduction in sulfur content, a 21.27% decrease in resin content, a 37.60% decrease in asphaltene content, a 46.92% increase in saturated hydrocarbon content, a 66.48% reduction in viscosity, and a 25.49% increase in API gravity. In comparison, the oil upgraded through non-catalytic aquathermolysis showed only marginal improvements, with slight reductions in sulfur content by 5.41%, resin content by 3.60%, asphaltene content by 11.36%, viscosity by 17.89%, and inconsiderable increases in saturated hydrocarbon content by 9.9% and API gravity by 3.02%. The GO-ZCFO, with its high catalytic activity, stands as a promising catalyst that contributes to improving the in-situ upgrading and thermal conversion of heavy crude oil.
Collapse
Affiliation(s)
- Ahmed Ashraf Soliman
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Petroleum Engineering and Gas Technology Department, Faculty of Energy and Environmental Engineering, British University in Egypt (BUE), El Sherouk City, Cairo, Egypt.
| | - Mostafa E Aboul-Fetouh
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Sayed Gomaa
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Petroleum Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, 11835, Egypt
| | - Tarek M Aboul-Fotouh
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Petroleum Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, 11835, Egypt
- Chemical Engineering Department, Faculty of Engineering, British University in Egypt (BUE), El Sherouk City, Cairo, Egypt
| | - Attia Mahmoud Attia
- Petroleum Engineering and Gas Technology Department, Faculty of Energy and Environmental Engineering, British University in Egypt (BUE), El Sherouk City, Cairo, Egypt
| |
Collapse
|
3
|
Zhao LJ, Zhang S, Zhou Q, Zhou H, Zhao Y, Yang K, Su H, Sun L, Sun X, Xiao P, Qi C. Organometallic Iridium-Complex-Functionalized Nanographene Catalysts for Low-Temperature Hydrogenation of Carbonyl Derivatives. Inorg Chem 2024; 63:19047-19052. [PMID: 39360797 DOI: 10.1021/acs.inorgchem.4c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An organometallic iridium (Ir)-complex-functionalized nanographene catalyst Ir-PyPh-GC was prepared via a two-step strategy involving amide ligand modification and metal Ir coordination. Ir-PyPh-GC showed ultrahigh hydrogenation capability, good recyclability, and selectivity for carbonyl derivatives (ketones, aldehydes, and quinones) at a low temperature (40 °C). The as-prepared Ir-complex-based catalyst is less expensive, making it feasible for industrial application.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shixin Zhang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qing Zhou
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hangyu Zhou
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ke Yang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Libo Sun
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peng Xiao
- State Grid Jiangsu Electric Power Company, Ltd., Research Institute, Nanjing 211103, Jiangsu, P. R. China
| | - Caixia Qi
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Maseer MM, Kikhavani T, Tahmasbi B. A multidentate copper complex on magnetic biochar nanoparticles as a practical and recoverable nanocatalyst for the selective synthesis of tetrazole derivatives. NANOSCALE ADVANCES 2024; 6:3948-3960. [PMID: 39050945 PMCID: PMC11265574 DOI: 10.1039/d4na00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Waste recycling, novel and easy methods of recycling catalysts, use of green solvents, use of selective catalysts and preventing the production of by-products are the most important principles of green chemistry and modern technology. Therefore, in this work, biochar nanoparticles (B-NPs) were synthesized by the pyrolysis of chicken manure as a novel method for waste recycling. Subsequently, the B-NPs were magnetized by Fe(0) nanoparticles to improve the easy recovery of biochar. Then, the surface of biochar magnetic nanoparticles (FeB-MNPs) was modified by (3-chloropropyl)trimethoxysilane (3Cl-PTMS). Finally, a multidentate copper complex of 2,2'-(propane-1,3-diylbis(oxy))dianiline (P.bis(OA)) was immobilized on the surface of modified FeB-MNPs, which was labeled as Cu-P.bis(OA)@FeB-MNPs. Cu-P.bis(OA)@FeB-MNPs was investigated as a commercial, homoselective, practical, and recyclable nanocatalyst in the synthesis of 5-substituted-1H-tetrazole compounds through the [3 + 2] cycloaddition of sodium azide (NaN3) and organo-nitriles in polyethylene glycol 400 (PEG-400) as a green solvent. Cu-P.bis(OA)@FeB-MNPs was characterized using wavelength dispersive X-ray (WDX) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), atomic absorption spectroscopy (AAS) and N2 adsorption-desorption (Brunauer-Emmett-Teller (BET) method) techniques. Cu-P.bis(OA)@FeB-MNPs was recovered and reused for several runs in the synthesis of tetrazoles.
Collapse
Affiliation(s)
- Marwan Majeed Maseer
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
5
|
Rajabzadeh K, Sardarian AR. Well-defined nanomagnetic nitrilotriacetic acid complex of Cu(ii) supported on silica-coated nanosized magnetite: a new highly efficient and magnetically separable catalyst for C-N bond formation. RSC Adv 2024; 14:21954-21970. [PMID: 38993503 PMCID: PMC11237964 DOI: 10.1039/d4ra03675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A nitrilotriacetic acid (NTA) complex of Cu(ii) supported on silica-coated nanosized magnetite Fe3O4@SiO2-Pr-DEA-[NTA-Cu(ii)]2 was prepared as a new well-defined magnetically separable nanomaterial and fully characterized via IR, XRD, FESEM, TEM, TGA, DLS, BET, VSM, solid-state UV-vis spectroscopy, EDX, ICP-OES, and FESEM-EDX map analyses. Thereafter, it was successfully applied as a new easily magnetically separable and reusable heterogeneous nanocatalyst for the Buchwald-Hartwig C-N bond formation reaction in DMF at 110 °C. Using this method, various kinds of nitrogen heterocycles, such as imidazoles, 2-methyl-1H-imidazole, benzimidazole, indole, and 10H-phenothiazine as well as aliphatic secondary amines such as piperidine, piperazine, morpholine, dimethylamine, and diethylamine, were reacted with aryl halide compounds, and the desired products were obtained with good to excellent yields. In all cases, the applied catalyst could be recovered easily and rapidly using an external magnet and reused 7 times without significant loss of catalytic activity.
Collapse
|
6
|
Kumar L, Nandan B, Sarkar S, König TAF, Pohl D, Tsuda T, Zainuddin MSB, Humenik M, Scheibel T, Horechyy A. Enhanced photocatalytic performance of coaxially electrospun titania nanofibers comprising yolk-shell particles. J Colloid Interface Sci 2024; 674:560-575. [PMID: 38945024 DOI: 10.1016/j.jcis.2024.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.
Collapse
Affiliation(s)
- Labeesh Kumar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagato Sarkar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany; Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062 Dresden, Germany; Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Takuya Tsuda
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Muhammad S B Zainuddin
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Martin Humenik
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Andriy Horechyy
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| |
Collapse
|
7
|
Jahanbakhshi A, Farahi M. A novel magnetic FSM-16 supported ionic liquid/Pd complex as a high performance and recyclable catalyst for the synthesis of pyrano[3,2- c]chromenes. RSC Adv 2024; 14:16401-16410. [PMID: 38779385 PMCID: PMC11110022 DOI: 10.1039/d4ra01381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, Fe3O4@FSM-16/IL-Pd was successfully designed and synthesized via a new procedure of palladium(ii) complex immobilization onto magnetic FSM-16 using an ionic liquid, as a novel heterogeneous nanocatalyst. Multiple techniques were employed to characterize this magnetic nanocatalyst such as Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Vibrating Sample Magnetometry (VSM). After complete characterization of the catalyst, its catalytic activity was used for the synthesis of pyrano[3,2-c]chromene-3-carbonitriles via the reaction of 4-hydroxycoumarin, aldehyde, and malononitrile under solvent-free conditions. Also, it can be recovered and reused several times without a significant decrease in its catalytic activity or palladium leaching.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| |
Collapse
|
8
|
Mohseni E, Ghorbani-Choghamarani A, Tahmasbi B, Norouzi M. A new Schiff base 2-benzoylpyridine-based copper complex on boehmite nanoparticles as a recoverable nanocatalyst for the homoselective synthesis of 5-substituted tetrazoles. RSC Adv 2024; 14:16269-16277. [PMID: 38769959 PMCID: PMC11103565 DOI: 10.1039/d4ra03139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
In this study, boehmite nanoparticles (B-NPs) were prepared by a simple process and then their surface was modified by (3-aminopropyl)triethoxysilane (3-APTES). The modified B-NPs (3-APTES@B-NPs) were functionalized by 2-benzoylpyridine Schiff-base ligand toward the immobilization of the Schiff-base 2-benzoylpyridine ligand on the 3-APTES@B-NPs's surface (2BP-Schiff-base@B-NPs). Finally, copper ions were coordinated with the supported Schiff-base ligand on B-NPs toward the formation of the final catalyst (Cu-2BP-Schiff-base@B-NPs). The prepared Cu-2BP-Schiff-base@B-NPs were characterized using FT-IR spectroscopy, BET analysis, XRD, SEM, AAS, TGA, EDX and elemental mapping. Further, Cu-2BP-Schiff-base@B-NPs were applied as a homoselective and recyclable catalyst for the synthesis of a diverse range of 5-substituted tetrazoles in PEG-400 as a green solvent. The main benefits of this protocol are high homoselectivity attributes, short reaction times, high product yields and TOF values, and further addition to the catalyst ability to be recycled at least four times without significantly losing catalytic efficiency.
Collapse
Affiliation(s)
- Elham Mohseni
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | | | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Masoomeh Norouzi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
9
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024:10.1007/s11030-023-10801-9. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
10
|
Jia H, Cheng M, Zhao R, Zheng P, Ren F, Nan Y, Huang M, Li Y. Excellent Pd-Loaded Magnetic Nanocatalyst on Multicarboxyl and Boronic Acid Biligands. ACS OMEGA 2024; 9:17817-17831. [PMID: 38680317 PMCID: PMC11044249 DOI: 10.1021/acsomega.3c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
An effective palladium nanocatalyst (Fe3O4@SiO2-FPBA-DTPA-Pd) was proposed and prepared, which was immobilized on magnetic silica with ethylenediamine pentaacetic acid and formylphenylboronic acid as biligands. A series of characterizations showed that Fe3O4@SiO2-FPBA-DTPA-Pd was 5-15 nm and contained 1.44 mmol/g Pd2+/Pd0. It was stable below 232.7 °C, and its saturation magnetization value was 21.17 emu/g which was easily recycled by a magnet. Its catalytic ability was evaluated through 7 Suzuki reactions and 15 Heck reactions. Results showed that the yields of 14 reactions catalyzed by Fe3O4@SiO2-FPBA-DTPA-Pd were more than 90%, while were better than those of the other two immobilized Pd catalysts on a single diethyltriamine pentaacetic acid (DTPA) group or boronic acid group. Moreover, Fe3O4@SiO2-FPBA-DTPA-Pd showed good reusability in both Suzuki and Heck reactions. In two model Suzuki and Heck reactions, after seven cycles, its yields were still above 95% without significant loss, which exceeded those of many reported catalysts; therefore, it has great potential in future large-scale industrial production.
Collapse
Affiliation(s)
- Haijiao Jia
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengting Huang
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Kamali E, Dreekvandy F, Mohammadkhani A, Heydari A. Modified nano magnetic Fe 2O 3-MgO as a high active multifunctional heterogeneous catalyst for environmentally beneficial carbon-carbon synthesis. BMC Chem 2024; 18:78. [PMID: 38643240 PMCID: PMC11032600 DOI: 10.1186/s13065-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
In this study, novel nanomagnetic catalysts, namely Fe2O3-MgO@choline formate (Ch. F.) and Fe2O3-MgO@choline cyanide (Ch. CN), were synthesized through immobilizing choline-based ion liquids to magnetic support via a simple and cost-effective methodology. FT-IR, TGA, FE-SEM, VSM, EDS, BET, and XRD techniques were employed to assess and characterize these organic-inorganic compounds. Following the successful preparation of nanoparticles, the catalysts were utilized in Knoevenagel and benzoin condensations. Fe2O3-MgO@Ch.F. exhibited exceptional activity in Knoevenagel condensation under solvent-free conditions at room temperature, achieving high yields (91-98%) in a short timeframe. Similarly, Fe2O3-MgO@Ch.CN demonstrated remarkable activity in benzoin condensation under environmentally friendly solvent conditions, yielding higher isolated yields (76-88%). Furthermore, these magnetically recyclable multifunctional catalysts displayed the ability to be reused up to five times without a significant loss in efficiency. Additionally, the heterogeneity of this nanocatalyst was investigated using the hot filtration technique. The findings indicated that the reaction primarily occurs via a heterogeneous pathway.
Collapse
Affiliation(s)
- Ehsan Kamali
- Chemistry Department, Tarbiat Modares University, PO Box: 14155-4838, Tehran, Iran
| | - Fahim Dreekvandy
- Chemistry Department, Tarbiat Modares University, PO Box: 14155-4838, Tehran, Iran
| | | | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University, PO Box: 14155-4838, Tehran, Iran.
| |
Collapse
|
12
|
Bodaghifard MA, Allahbakhshi H, Ahangarani-Farahani R. Efficient synthesis of benzoacridines and indenoquinolines catalyzed by acidic magnetic dendrimer. Sci Rep 2024; 14:8736. [PMID: 38627463 PMCID: PMC11021454 DOI: 10.1038/s41598-024-59212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
A novel solid acid catalyst with recoverability, named as Fe3O4@SiO2@TAD-G2-SO3H, was successfully synthesized by immobilizing sulfonic acid groups on triazine dendrimer-modified magnetic nanoparticles. This nanomaterial structure and composition were thoroughly characterized using various analytical techniques, including thermogravimetric analysis (TGA), elemental analysis, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, acid-base titration, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The acid-decorated magnetic dendrimer was served as a highly effective catalyst for the synthesis of tetrahydrobenzo[c]acridin-8(9H)-one and benzo[h]indeno[1,2-b]quinoline-8-one derivatives. The reaction proceeded smoothly under mild conditions through the one-pot condensation of aromatic aldehydes, 1-naphthylamine, and either dimedone or 1,3-indanedione, affording the desired products in high yields ranging from 90 to 96%. The catalyst was easily separated from the reaction mixture by employing a magnetic field, allowing for its recycling up to five times with slight loss in its activity (only 10%). Nearly, quantitative recovery of catalyst (up to 95%) could be obtained from each run. So, this catalyst facilitates the reaction progress and simplifies the purification process. Other remarkable features of this method are operational simplicity, excellent yields, mild condition, and a wide range of substrate applicability.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, 384817758, Arak, Iran.
| | - Hanieh Allahbakhshi
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran
| | | |
Collapse
|
13
|
Mashhadi E, Safaei-Ghomi J. Sulfonated magnetic spirulina nanobiomaterial as a novel and environmentally friendly catalyst for the synthesis of dihydroquinazolin-4(1H)-ones in aqueous medium. Sci Rep 2024; 14:2296. [PMID: 38280917 PMCID: PMC10821933 DOI: 10.1038/s41598-024-52749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Spirulina algae is an excellent candidate for catalyst preparation due to its reactive functional groups, cost-effectiveness, widespread commercial accessibility, and biodegradability. In this study, magnetized Spirulina was used for the synthesis of dihydroquinazolin-4(1H)-ones (DHQZs) as catalyst. Magnetized Spirulina was produced by CoFe2O4 and sulfonation method using chlorosulfonic acid to create the catalyst [CoFe2O4-Sp-SO3H]. It was affirmed by various techniques, including Fourier transform infrared (FT-IR), Vibrating sample magnetometry (VSM), Powder X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), and elemental mapping techniques. DHQZs synthesis was accomplished through a concise one-pot, three-component reaction involving a range of diverse aldehydes, isatoic anhydride, and primary aromatic amine, within an aqueous medium. The method offers several advantages, including using green conditions, the generation of several new 2-furan-quinazolinone derivatives, chromatography-free purification, short reaction times, appropriate yield of product (75-96%), and catalyst recyclability. The proposed catalyst and water as solvent demonstrated a strong synergistic effect, leading to the prosperous synthesis of various novel dihydroquinazolinones at 60 °C. These numerous benefits make our approach highly attractive for academic research and industrial applications.
Collapse
Affiliation(s)
- Elahe Mashhadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Jiang S. Palladium complex supported on the surface of magnetic Fe 3O 4 nanoparticles: an ecofriendly catalyst for carbonylative Suzuki-coupling reactions. RSC Adv 2023; 13:34273-34290. [PMID: 38047105 PMCID: PMC10690082 DOI: 10.1039/d3ra06533b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Diaryl ketone derivatives include well-known compounds with important physiological and biological properties. In order to prepare diaryl ketone derivatives, we constructed a pallidum (0) complex immobilized on Fe3O4 nanoparticles modified with aminobenzoic acid and phenanthroline [Fe3O4@ABA/Phen-DCA-Pd(0)], and evaluated its catalytic performance for carbonylative Suzuki-coupling reactions of aryl iodides with aryl boronic acid in the presence of Mo(CO)6 as the CO source under mild conditions. FT-IR, SEM, TEM, EDX, VSM, TGA, XRD, ICP-OES and Elemental mapping techniques were employed to identify the structure of the Fe3O4@ABA/Phen-DCA-Pd(0) nanocatalyst. Different derivatives of aryl iodides and aryl boronic acids containing withdrawing and donating functional groups were studied for the preparation of diaryl ketones. Also, various derivatives of heteroaryl iodides and boronic acids were used and the desired products were prepared with high yields. The Fe3O4@ABA/Phen-DCA-Pd(0) nanocatalyst was separated magnetically and reused 7 consecutive times without reducing its catalytic activity. VSM, TEM and ICP-OES spectroscopic techniques confirmed that the synthesized Fe3O4@ABA/Phen-DCA-Pd(0) catalyst was still stable and maintained its structure despite repeated reuse.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Chemistry and Chemical Engineering, Lvliang University Lvliang Shanxi 033000 PR China
| |
Collapse
|
15
|
Kaur G, Taggar MS, Kalia A. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111627-111647. [PMID: 37280490 DOI: 10.1007/s11356-023-27919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Devising and consolidating cost-effective and greener technologies for sustainable energy production pertain to some of the most pressing needs of the present times. Bioconversion of abundantly available lignocellulosic materials into fermentable sugars to produce biofuels involves the cost-extensive requirement of hydrolytic enzymes called cellulases. Cellulases are highly selective and eco-friendly biocatalysts responsible for deconstruction of complex polysaccharides into simple sugars. Currently, immobilization of cellulases is being carried out on magnetic nanoparticles functionalized with suitable biopolymers such as chitosan. Chitosan, a biocompatible polymer, exhibits high surface area, chemical/thermal stability, functionality, and reusability. The chitosan-functionalized magnetic nanocomposites (Ch-MNCs) present a nanobiocatalytic system that enables easy retrieval, separation, and recycling of cellulases, thereby offering a cost-effective and sustainable approach for biomass hydrolysis. These functional nanostructures show enormous potential owing to certain physicochemical and structural features that have been discussed in a comprehensive manner in this review. It provides an insight into the synthesis, immobilization, and application of cellulase immobilized Ch-MNCs for biomass hydrolysis. This review aims to bridge the gap between sustainable utilization and economic viability of employing replenishable agro-residues for cellulosic ethanol production by incorporating the recently emerging nanocomposite immobilization approach.
Collapse
Affiliation(s)
- Gurkanwal Kaur
- Department of Biochemistry, College of Basic Sciences & Humanities, Punjab Agricultural University, Ludhiana-141004, Punjab, India.
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, College of Agricultural Engineering & Technology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| |
Collapse
|
16
|
Jahanbakhshi A, Farahi M. Ionic liquid immobilized on modified magnetic FSM-16: an efficient and magnetically recoverable nanocatalyst. RSC Adv 2023; 13:31252-31262. [PMID: 37886020 PMCID: PMC10599354 DOI: 10.1039/d3ra04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
In the present article, a nanocomposite was prepared by immobilizing ionic liquid on the magnetic mesoporous FSM-16 with a core-shell structure (Fe3O4@FSM-16-SO3/IL). Subsequently, the structural properties of the synthesized nanocatalyst were characterized and analyzed by various techniques such as XRD, FT-IR, TEM, FE-SEM, BET, VSM, TGA, and EDS. Fe3O4@FSM-16-SO3/IL was used as a recoverable and efficient nanocatalyst for the synthesis of polyhydroquinoline derivatives. The magnetic nanocatalyst showed remarkable stability and reusability and was reused six consecutive times without considerable loss of its activity.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-7412242167e
| |
Collapse
|
17
|
Kalita B, Iraqui S, Borgohain X, Rashid MH. Ultrasonic irradiation-assisted MnFe 2O 4 nanoparticles catalyzed solvent-free selective oxidation of benzyl alcohol to benzaldehyde at room temperature. RSC Adv 2023; 13:30855-30868. [PMID: 37869381 PMCID: PMC10587744 DOI: 10.1039/d3ra03797e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Magnetic nanoparticles (NPs) play a vital role in heterogeneous catalysis because of their easy separation, and effective recyclability. Herein, we report the synthesis of MnFe2O4 NPs for use as catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. The MnFe2O4 NPs have been synthesized by precipitation method followed by hydrothermal ageing at 180 °C for 4.0 h. We have investigated the effect of chitosan and carboxymethyl cellulose on the size or morphology of the formed MnFe2O4 NPs. The X-ray diffraction study confirms the formation of pure and crystalline MnFe2O4 with varying average crystallite sizes ranging from 18 to 28 nm based on the type of additive used. The electron microscopy study reveals that the additive plays a significant role in controlling the morphology of the formed MnFe2O4 NPs. These MnFe2O4 NPs exhibit superparamagnetic behaviour at room temperature and can effectively catalyze the solvent-free selective oxidation of benzyl alcohol to benzaldehyde in the presence of tert-butyl hydroperoxide at room temperature under ultrasonic irradiation. The developed protocol can be extended to various substituted benzyl alcohols having both the electron withdrawing and electron donating groups to afford moderate to excellent yield of the products. The catalyst is magnetically retrievable, highly stable, and can be reused up to the sixth run without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Babul Kalita
- Department of Chemistry, Rajiv Gandhi University Rono Hills, Doimukh 791 112 Arunachal Pradesh India
| | - Saddam Iraqui
- Department of Chemistry, Rajiv Gandhi University Rono Hills, Doimukh 791 112 Arunachal Pradesh India
| | - Xavy Borgohain
- Department of Chemistry, Rajiv Gandhi University Rono Hills, Doimukh 791 112 Arunachal Pradesh India
| | - Md Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University Rono Hills, Doimukh 791 112 Arunachal Pradesh India
| |
Collapse
|
18
|
Li W, Yan J, Xu W, Zhang LY. Magnetic nanoparticles modified with a copper(i) complex as a novel and efficient reusable catalyst for A 3 coupling leading to C-N bond formation. RSC Adv 2023; 13:28964-28974. [PMID: 37795047 PMCID: PMC10545981 DOI: 10.1039/d3ra04871c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Propargylamines are an important and valuable family of nitrogen-containing compounds with many applications in the fields of medical, industrial, and chemical processes. One-pot multicomponent A3 coupling reactions of aldehydes, amines, and alkynes in the presence of transition metals as catalysts is an efficient strategy for preparing propargylamines. In this study, we fabricated a novel magnetically reusable copper nanocatalyst [Fe3O4-BIm-Pyrim-CuI] through the immobilization of the copper(i) complex on the surface of the magnetic nanoparticles modified with benzimidazole-pyrimidine ligand and evaluated its catalytic activity in the preparation of propargylamines through one-pot multicomponent A3 coupling reactions of aldehydes, amines, and alkynes. Under this catalytic system, aryl substrates with both electron-donating and electron-withdrawing substituents also gave the desired products in excellent yields under standardized conditions. The Fe3O4-BIm-Pyrim-CuI catalyst was easily separated using an external magnet, and the recovered catalyst was reused in 8 cycles without significant loss of activity.
Collapse
Affiliation(s)
- Wei Li
- College of Science and Engineering, Jiaozuo Normal College Jiaozuo Henan 454000 China
| | - Jinlong Yan
- College of Science and Engineering, Jiaozuo Normal College Jiaozuo Henan 454000 China
| | - Wenjing Xu
- College of Science and Engineering, Jiaozuo Normal College Jiaozuo Henan 454000 China
| | | |
Collapse
|
19
|
Veisi H, Pirhayati M, Mohammadi P, Tamoradi T, Hemmati S, Karmakar B. Recent advances in the application of magnetic nanocatalysts in multicomponent reactions. RSC Adv 2023; 13:20530-20556. [PMID: 37435379 PMCID: PMC10331794 DOI: 10.1039/d3ra01208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Recently, the preparation and applications of magnetic nanostructures have attracted increasing attention in nanocatalysis studies, and magnetic nanoparticle (MNP) functionalized catalysts have been applied in important reactions such as Suzuki-Miyaura and Heck couplings. The modified nanocomposites demonstrate significant catalytic efficiency and excellent benefits in the context of catalyst recovery methods. This review discusses the recent modified magnetic nanocomposites in the field of catalytic applications along with the synthetic processes that are usually employed.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University Malayer Iran
| | | | | | - Saba Hemmati
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College 24-Parganas (North) India
| |
Collapse
|
20
|
Zhang Y, Yang X, Li L, Hu Y, Wang S. One-step assembly of a MacMillan catalyst-based phenolic-type polymer. Org Biomol Chem 2023; 21:4465-4472. [PMID: 37191132 DOI: 10.1039/d3ob00624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report herein a "bottom-up" approach for the one-step assembly of a MacMillan catalyst-based phenolic-type polymer (Mac-CP). The resulting self-supported polymeric organocatalyst possesses homogeneously distributed and highly concentrated catalytic sites. Furthermore, Mac-CP is soluble in CH3CN but insoluble in hexane. This unique property can be used to employ the polymer as an efficient catalyst in homogeneous organocatalysis and heterogeneous recycling. As a result, Mac-CP possesses comparable catalytic activity and enantioselectivity to its homogeneous counterpart in the asymmetric Diels-Alder reaction (95% yield, 93% enantiomeric excess (ee) for endo and 92% ee for exo).
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Xiaorong Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Liqi Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
21
|
Dharmendra D, Chundawat P, Vyas Y, Chaubisa P, Ameta C. Greener design and characterization of biochar/Fe 3O 4@SiO 2-Ag magnetic nanocomposite as efficient catalyst for synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Adv 2023; 13:14594-14613. [PMID: 37188256 PMCID: PMC10177991 DOI: 10.1039/d3ra00869j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
The study aimed to develop an efficient catalyst, biochar/Fe3O4@SiO2-Ag magnetic nanocomposite, to synthesize bioactive benzylpyrazolyl coumarin derivatives through a one-pot multicomponent reaction. The catalyst was prepared using Ag nanoparticles synthesized with Lawsonia inermis leaf extract and carbon-based biochar obtained through pyrolysis of Eucalyptus globulus bark. The nanocomposite contained a silica-based interlayer, highly dispersed Ag nanoparticles, and a central magnetite core, which responded well to external fields. The biochar/Fe3O4@SiO2-Ag nanocomposite showed excellent catalytic activity and could be easily recovered using an external magnet and reused five times without significant loss of performance. The resulting products were tested for antimicrobial activity and showed significant activity against various microorganisms.
Collapse
Affiliation(s)
| | - Priyanka Chundawat
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Yogeshwari Vyas
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Purnima Chaubisa
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Chetna Ameta
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
22
|
Nezhad SM, Pourmousavi SA, Zare EN, Heidari G, Hosseini S, Peyvandtalab M. Magnetic poly(1,8-diaminonaphthalene)-nickel nanocatalyst for the synthesis of antioxidant and antibacterial isoxazole-5(4 H)-ones derivatives. Heliyon 2023; 9:e15886. [PMID: 37206030 PMCID: PMC10189505 DOI: 10.1016/j.heliyon.2023.e15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
A magnetic poly (1,8-diaminonaphthalene)-nickel (PDAN-Ni@Fe3O4) composite as a multifunctional nanocatalyst was prepared in several steps including (I) synthesis of poly (1,8-diaminonaphthalene) (PDAN), (II) modification of PDAN with NiSO4 (PDAN-Ni) and (III) preparation of magnetic nanocatalyst by iron (I and II) salts in the existence of PDAN-Ni complex (PDAN-Ni@Fe3O4). Fourier-transform infrared spectroscopy (FTIR), elemental analysis (CHNSO), vibrating-sample magnetometer (VSM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), field emission scanning electron microscope (FESEM), ultraviolet-visible (UV-vis), and thermogravimetric analysis (TGA) were applied to characterize the prepared nanocatalyst. The PDAN-Ni@Fe3O4 was applied as an environmentally friendly nanocatalyst for the isoxazole-5(4H)-ones synthesis via a one-pot reaction between aryl/heteroaryl aldehyde, hydroxylamine hydrochloride, and β-ketoester. The nanocomposite was also used for the synthesis of some new alkylene bridging bis 4-benzylidene-3-methyl isoxazole-5(4H)-ones. The catalyst's reusability, and the antioxidant and antibacterial activities of both catalyst and products, were studied. Results showed that the nanocatalyst and isoxazole-5(4H)-ones have antioxidant activity of 75% and 92%, respectively. In addition, the antibacterial test showed that the nanocatalyst and isoxazole-5(4H)-ones have highly active versus Staphylococcus aureus and Escherichia coli bacteria. The reusability and stability of the nanocatalyst, a medium to higher product yield and conversion, a faster reaction time, and the use of green solvents were a few benefits of this study.
Collapse
|
23
|
Ahmad A, Roy PG, Zhou S, Irfan A, Kanwal F, Begum R, Farooqi ZH. Fabrication of silver nanoparticles within chitosan based microgels for catalysis. Int J Biol Macromol 2023; 240:124401. [PMID: 37044327 DOI: 10.1016/j.ijbiomac.2023.124401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Chitosan based monodisperse poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CNA)] microgels were produced via precipitation polymerization. Resulting crosslinked P(CNA) micro particles were used as micro-reactors to prepare silver nanoparticles within the polymeric network by chemical reduction of Ag+ ions with sodium borohydride. Various techniques including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-vis) spectroscopy were used to analyze P(CNA) microgels and Ag-P(CNA) hybrid microgels. Catalytic potential of Ag-P(CNA) hybrid system towards individual and simultaneous reduction of various nitroarenes like p-nitrophenol (pNP), o-nitrophenol (oNP), p-nitroaniline (pNA) and o-nitroaniline (oNA) into corresponding aminoarenes using sodium borohydride as a reductant in aqueous medium was evaluated. The catalytic activity of Ag-P(CNA) system towards both the individual and simultaneous reduction of nitroarenes was examined at various concentrations of catalyst. The values of pseudo first order rate constant (k1) for reduction of individual nitroarene and multiple nitroarenes were determined for comparison. The Ag-P(CNA) hybrid microgel system was found to be stable, economical and efficient catalyst for rapid individual and simultaneous reduction of nitroarenes.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
24
|
Synthesis, identification and application of Fe3O4@THAM-Mercaptopyrimidine nanoparticles as a novel and highly recyclable nanocatalyst in one-pot multicomponent synthesis of 1,8-dioxo-octahydroxanthenes and polyhydroquinolines. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
25
|
Yang H, Wang X, Liu Q, Huang A, Zhang X, Yu Y, Zhuang Z, Li G, Li Y, Peng Q, Chen X, Xiao H, Chen C. Heterogeneous Iridium Single-Atom Molecular-like Catalysis for Epoxidation of Ethylene. J Am Chem Soc 2023; 145:6658-6670. [PMID: 36802612 DOI: 10.1021/jacs.2c11380] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Developing efficient and simple catalysts to reveal the key scientific issues in the epoxidation of ethylene has been a long-standing goal for chemists, whereas a heterogenized molecular-like catalyst is desirable which combines the best aspects of homogeneous and heterogeneous catalysts. Single-atom catalysts can effectively mimic molecular catalysts on account of their well-defined atomic structures and coordination environments. Herein, we report a strategy for selective epoxidation of ethylene, which exploits a heterogeneous catalyst comprising iridium single atoms to interact with the reactant molecules that act analogously to ligands, resulting in molecular-like catalysis. This catalytic protocol features a near-unity selectivity (99%) to produce value-added ethylene oxide. We investigated the origin of the improvement of selectivity for ethylene oxide for this iridium single-atom catalyst and attributed the improvement to the π-coordination between the iridium metal center with a higher oxidation state and ethylene or molecular oxygen. The molecular oxygen adsorbed on the iridium single-atom site not only helps to strengthen the adsorption of ethylene molecule by iridium but also alters its electronic structure, allowing iridium to donate electrons into the double bond π* orbitals of ethylene. This catalytic strategy facilitates the formation of five-membered oxametallacycle intermediates, leading to the exceptionally high selectivity for ethylene oxide. Our model of single-atom catalysts featuring remarkable molecular-like catalysis can be utilized as an effective strategy for inhibiting the overoxidation of the desired product. Implementing the concepts of homogeneous catalysis into heterogeneous catalysis would provide new perspectives for the design of new advanced catalysts.
Collapse
Affiliation(s)
- Hongling Yang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | | | - Qinggang Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Zewen Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Li
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Qing Peng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Xiao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Mukundan S, Xuan J, Dann SE, Wagner JL. Highly active and magnetically recoverable heterogeneous catalyst for hydrothermal liquefaction of biomass into high quality bio-oil. BIORESOURCE TECHNOLOGY 2023; 369:128479. [PMID: 36513305 DOI: 10.1016/j.biortech.2022.128479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
This article reports a safe, low-cost, and industrially applicable magnetite supported on activated carbon catalyst that can be magnetically retrieved from the solid and reused multiple times without the need of a regeneration step. The FeOx/C catalyst improved the bio-oil yield by 19.7 ± 0.96 % when compared to the uncatalysed reaction at 320 °C for the HTL of draff (brewer's spent grains). The use of homogeneous Na2CO3 base as a catalyst and co-catalyst, improved carbon extraction into the aqueous phase. The exceptional catalytic activity can be attributed to the Fe3O4 phase which can produce in-situ H2 that improves the biomass decomposition and oil property with an energy recovery of ∼84 %. The FeOx/C catalyst was separated using magnetic retrieval and maintained its catalytic activity even up to 5 reaction cycles showing potential as a cheap catalyst for HTL reactions and can be scaled-up for industrial applications.
Collapse
Affiliation(s)
- Swathi Mukundan
- UKRI National Interdisciplinary Centre for Circular Chemical Economy, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Jin Xuan
- UKRI National Interdisciplinary Centre for Circular Chemical Economy, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sandra E Dann
- Department of Chemistry, School of Science, Loughborough University, Loughborough LE11 3TU, UK
| | - Jonathan L Wagner
- UKRI National Interdisciplinary Centre for Circular Chemical Economy, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
27
|
Kommula D, Chintakunta PK, Garikapati K, Murty MSR. Nano-CuFe 2O 3-catalyzed green synthesis of novel quinazolinone-tetrazole hybrids as anti-cancer agents. Mol Divers 2023; 27:425-441. [PMID: 35503155 DOI: 10.1007/s11030-022-10432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
A novel green protocol has been developed for the synthesis of quinazolinone-tetrazole conjugates (7a-g, 8a-g and 9a-g) using recyclable nano-CuFe2O3 catalyst in water. Initially, 2-mercapto-3-substituted phenethylquinazolin-4(3H)-one (5a-c) was prepared by using nano-CuFe2O3 catalyst in water. Then, compounds (5a-c) were reacted with 1-bromo-3-chloropropane under nano-CuFe2O3 catalyst in water solvent to give S-alkylated quinazolinone core intermediate (6a-c), which was subsequently reacted with 1-substituted-1H-tetrazole-5-thiol (2a-g) by employing the similar reaction conditions to afford the final target compounds. The regioselective formation of C-S bond was unambiguously confirmed by single-crystal X-ray diffraction. The anti-cancer activity of the derivatives on various cancer cell lines such as SIHA, MD-AMB-231 and HepG2 was evaluated. Remarkably, compounds, 7f, 8f, 9a, 9d and 9f, showed potent activity in MD-AMB-231 cancer cell line (IC50: 9.13-10.3 µM), while the same derivatives showed significant potent activity in SiHa and HepG2 cancer cell lines (IC50: 17.46-27.0 µM). Most significantly, compound 7o (IC50: 8.15 µM) showed potent activity, compared to the drug etoposide (IC50: 18.11 µM) against MD-AMB-231 cell line. Flow cytometry analysis revealed that compounds 7f, 8f, 9a, 9d and 9f arrested the cell growth in the G1 phase in MD-AMB-231 cell line.
Collapse
Affiliation(s)
- Dileep Kommula
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - Praveen Kumar Chintakunta
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - M S R Murty
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
28
|
Sanap D, Avhad L, Ghotekar S, Gaikwad ND. Green synthesis and characterization of mixed-phase Fe2O3 nanorods as a novel magnetically recoverable heterogeneous catalyst for Biginelli synthesis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
29
|
Designing a new ligand based on pyridine for immobilization of gold nanoparticles on reduced magnetic graphene oxide: a new catalyst for the reduction of nitro compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Heteropoly acid-based ionic liquid grafted on hybrid nanomaterial for deep oxidative desulfurization of diesel fuel. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Zhang Y, Li W, Wang J, Jin J, Zhang Y, Cheng J, Zhang Q. Advancement in utilization of magnetic catalysts for production of sustainable biofuels. Front Chem 2023; 10:1106426. [PMID: 36704618 PMCID: PMC9871569 DOI: 10.3389/fchem.2022.1106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we summarize recent advances in the synthesis of magnetic catalysts utilized for biodiesel production, particularly focusing on the physicochemical properties, activity, and reusability of magnetic mixed metal oxides, supported magnetic catalysts, ionic acid-functionalized magnetic catalysts, heteropolyacid-based magnetic catalysts, and metal-organic framework-based magnetic catalysts. The prevailing reaction conditions in the production of biodiesel are also discussed. Lastly, the current limitations and challenges for future research needs in the magnetic catalyst field are presented.
Collapse
Affiliation(s)
- Yutao Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China,School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China,College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China,*Correspondence: Yutao Zhang, ; Qiuyun Zhang,
| | - Weihua Li
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China
| | - Jialu Wang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China
| | - Jiaxing Jin
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China
| | - Yixi Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China
| | - Qiuyun Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China,School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China,College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China,*Correspondence: Yutao Zhang, ; Qiuyun Zhang,
| |
Collapse
|
32
|
Kohli S, Rathee G, Hooda S, Chandra R. An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1 H)-ones using a magnetic EDTA coated copper based nanocomposite. RSC Adv 2023; 13:1923-1932. [PMID: 36712626 PMCID: PMC9832363 DOI: 10.1039/d2ra07496f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
2,3-Dihydroquinazolinone derivatives are known for antiviral, antimicrobial, analgesic, anti-inflammatory, and anticancer activities. However, recent approaches used for their synthesis suffer from various drawbacks. Therefore, we have fabricated a highly efficient magnetic EDTA-coated catalyst, Fe3O4@EDTA/CuI via a simple approach. The ethylenediamine tetraacetic acid (EDTA) plays a crucial role by strongly trapping the catalytic sites of CuI nanoparticles on the surface of the Fe3O4 core. The designed nanocatalyst demonstrates its potential for the catalytic synthesis of 2,3-dihydroquinazolinones using 2-aminobenzamide with aldehydes as the reaction partners. The nanocatalyst was thoroughly characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma analysis (ICP). The physiochemically characterized nanocatalyst was tested for synthesis of 2,3-dihydroquinazolinones and higher yields of derivatives were obtained with less time duration. Moreover, the catalytic synthesis is easy to operate without the use of any kind of additives/bases. Furthermore, the catalyst was magnetically recoverable after the completion of the reaction and displayed reusability for six successive rounds without any loss in its catalytic efficiency (confirmed by XRD, SEM, and TEM of the recycled material) along with very low leaching of copper (2.12 ppm) and iron (0.06 ppm) ions. Also, the green metrics were found in correlation with the ideal values (such as E factor (0.10), process mass intensity (1.10), carbon efficiency (96%) and reaction mass efficiency (90.62%)).
Collapse
Affiliation(s)
- Sahil Kohli
- Drug Discovery & Development Laboratory, Department of Chemistry, University of DelhiDelhi-110007India
| | - Garima Rathee
- Drug Discovery & Development Laboratory, Department of Chemistry, University of DelhiDelhi-110007India
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of DelhiDelhi-110019India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of DelhiDelhi-110007India,Dr B.R. Ambedkar Center for Biomedical Research (ACBR), University of DelhiDelhi-110007India,Institute of Nanomedical Science (INMS), University of DelhiDelhi-110007India
| |
Collapse
|
33
|
Dee G, Shayoub H, McNeill H, Lozano IS, Rafferty A, Gun'ko YK. MnFe 2O 4@SiO 2@CeO 2 core–shell nanostructures for applications in water remediation †. RSC Adv 2023; 13:10513-10522. [PMID: 37021101 PMCID: PMC10069623 DOI: 10.1039/d3ra01112g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Removal of dye pollutants from wastewater is among the most important emerging needs in environmental science and engineering. The main objective of our work is to develop new magnetic core–shell nanostructures and explore their use for potential removal of pollutants from water using an external magnetic field. Herein, we have prepared magnetic core–shell nanoparticles that demonstrated excellent dye pollutant adsorbent properties. These nanoparticles are composed of a manganese ferrite magnetic core coated with silica, to protect the core and enable further functionalisation, then finally coated with ceria, which is shown to be an effective adsorbent. The magnetic core–shell nanostructures have been synthesized by a modification of solvothermal synthesis. The nanoparticles were fully characterised at each stage of the synthesis by powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). These particles were found to be effective in removing methylene blue (MB) dye from water, which was validated by UV-visible (UV-vis) spectroscopy. These particles can be quickly removed from solution using a permanent magnet and then can be recycled after being placed in the furnace at 400 °C to burn off any organic residues. The particles were found to retain their ability to adsorb the pollutant after several cycles and TEM images of the particles after several cycles showed no change in the morphology. This research demonstrated the capacity of magnetic core–shell nanostructures to be used for water remediation. Magnetic core–shell nanoparticles have been synthesised, characterised and used for methylene blue dye removal from water. They can be magnetically extracted and show no reduction in efficiency after several cycles.![]()
Collapse
Affiliation(s)
- Garret Dee
- School of Chemistry, University of Dublin, Trinity CollegeDublin 2Ireland
| | - Hend Shayoub
- School of Chemistry, University of Dublin, Trinity CollegeDublin 2Ireland
| | - Helen McNeill
- School of Chemistry, University of Dublin, Trinity CollegeDublin 2Ireland
| | | | - Aran Rafferty
- School of Chemistry, University of Dublin, Trinity CollegeDublin 2Ireland
| | - Yurii K. Gun'ko
- School of Chemistry, University of Dublin, Trinity CollegeDublin 2Ireland
| |
Collapse
|
34
|
Khodakarami H, Habibi D. An amino-triethoxysilylpropyl-tetrazole-carboxamide-based Mn-complex as a capable nanocatalyst for the synthesis of tetrahydrobenzopyrans. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
35
|
Magnetic Fe3O4 nanoparticles in melamine-based ternary deep eutectic solvent as a novel eco-compatible system for green synthesis of pyrido[2,3-d]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Anizadeh MR, Torabi M, Zolfigol MA, Yarie M. Catalytic application Fe3O4@SiO2@(CH2)3-urea-dithiocarbamic acid for the synthesis of triazole-linked pyridone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Sharma J, Kumar P, Sillanpaa M, Kumar D, Nemiwal M. Immobilized ionic liquids on Fe3O4 nanoparticles: A potential catalyst for organic synthesis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Dashteh M, Baghery S, Zolfigol MA, Khazaei A, Khajevand M. Application of New Magnetic Graphene Oxide‐Porphyrin Nanoparticles for Synthesis of Pyridines and Pyrimidines
via
Anomeric‐Based Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Dashteh
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Saeed Baghery
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Masuood Khajevand
- Department of Physical Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
39
|
Jarrahi M, Maleki B, Tayebee R. Magnetic nanoparticle-supported eosin Y salt [SB-DABCO@eosin] as an efficient heterogeneous photocatalyst for the multi-component synthesis of chromeno[4,3- b]chromene in the presence of visible light. RSC Adv 2022; 12:28886-28901. [PMID: 36320743 PMCID: PMC9552193 DOI: 10.1039/d2ra05122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022] Open
Abstract
Heterogeneous photocatalysts present a favourable procedure to realize green and eco-friendly organic reactions. We have demonstrated an SB-DABCO@eosin catalyst in a green one-pot multi-component protocol for the production of various chromeno[4,3-b]chromenes via condensation of aromatic aldehydes and dimedone under the photo-redox catalyst bearing eosin Y using visible light. The synthesized nanocatalyst was characterized using various physicochemical techniques such as FT-IR, XRD, EDX, UV-vis, SEM, TGA and DRS. The significant advantages of the present methodology include excellent yield, cost-effectiveness, easy work-up, 100% atom economy, broad substrate scope, easy separation and efficient recycling. Furthermore, the evidence showed that the investigated condensation reaction proceeds via a radical mechanism, which proved the need for reactive species such as OH˙ and ˙O2 - in the photocatalytic process. In addition to the improved handling and process control, the yield of products and the rate of reactions have increased considerably in the present strategy. Reproducibility studies also guarantee good reusability and stability of the nanocatalyst for at least five runs.
Collapse
Affiliation(s)
- Mahbube Jarrahi
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Behrooz Maleki
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| |
Collapse
|
40
|
Kikhavani T, Moradi P, Mashari‐Karir M, Naji J. A new copper Schiff‐base complex of 3,4‐diaminobenzophenone stabilized on magnetic MCM‐41 as a homoselective and reusable catalyst in the synthesis of tetrazoles and pyranopyrazoles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering Ilam University Ilam Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Jalil Naji
- Department of Physics, Faculty of science Ilam University Ilam Iran
| |
Collapse
|
41
|
Patra I, H. Mohammed F, Obaid Aldulaimi AK, Abbas khudhair D, Fakri Mustafa Y. A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis(ethanol)-Cu] for Pd-free Sonogashira coupling reaction. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Indrajit Patra
- Department of Chemistry, West Bengal University, Kolkata, India
| | - Faris H. Mohammed
- Department of Chemistry, West Bengal University, Kolkata, India
- College of Science, University of Babylon, Babylon, Iraq
| | - Ahmed Kareem Obaid Aldulaimi
- Department of Chemistry, West Bengal University, Kolkata, India
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Dunia Abbas khudhair
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
42
|
Novel Magnetically-Recoverable Solid Acid Catalysts with a Hydrophobic Layer in Protecting the Active Sites from Water Poisoning. Processes (Basel) 2022. [DOI: 10.3390/pr10091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three novel magnetically-recoverable solid acid catalysts (hydrophobic catalysts Fe3O4@SiO2-Me&PrSO3H, Fe3O4@SiO2-Oc&PrSO3H and hydrophilic catalyst Fe3O4@SiO2-PrSO3H) were synthesized by introducing organic propylsulfonic acid and alkyl groups to Fe3O4@SiO2 nanocomposites. We characterized these catalysts by FT-IR, EDS, XRD, VSM and SEM, and found that they had excellent core-shell structure and magnetic responsiveness. We also explored the impact of surface hydrophobicity on activity and stability of catalysts in ethyl acetate (EAC) synthesis reaction. The results indicated that: for reactivity and reusability, Fe3O4@SiO2-Oc&PrSO3H > Fe3O4@SiO2-Me&PrSO3H > Fe3O4@SiO2-PrSO3H. This was because octyl and methyl groups could build a hydrophobic layer on the surfaces of Fe3O4@SiO2-Oc&PrSO3H and Fe3O4@SiO2-Me&PrSO3H, and this could effectively prevent water molecules from poisoning active sites; the hydrophobicity of octyl was stronger than methyl. Fe3O4@SiO2-Oc&PrSO3H also showed higher catalytic activity in the external aqueous reaction system, which indicated that it had good water toleration. Moreover, we could easily separate Fe3O4@SiO2-Oc&PrSO3H from the reaction mixture with an external magnetic field, in the meanwhile, its reactivity could still remain above 80% after reusing 6 times.
Collapse
|
43
|
Nayamadi Mahmoodabadi M, Akhlaghinia B. A green methodology for C–S cross-coupling reaction over Cu II attached to magnetic natural talc (γ-Fe 2O 3/talc/Cu II NPs) as a heterogeneous and ligand-free catalyst. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Batool Akhlaghinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
44
|
Alsboul M, Ghazali MSM, Gomaa MR, Albani A. Experimental and Theoretical Investigation of the Thermophysical Properties of Cobalt Oxide (Co 3O 4) in Distilled Water (DW), Ethylene Glycol (EG), and DW-EG Mixture Nanofluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2779. [PMID: 36014644 PMCID: PMC9413882 DOI: 10.3390/nano12162779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Solid particles scattered in a base fluid for a standard no larger than 100 nm, constituting a nanofluid, can be used to improve thermophysical characteristics compared to the base fluid. In this study, theoretical and experimental investigations were carried out to estimate the density, viscosity, and effective thermal conductivity of Co3O4 in distilled water (DW), ethylene glycol (EG), and DW-EG mixture nanofluids. Co3O4 nanoparticles with diameters of 50 nm were dispersed in different base fluids (i.e., EG, DW, 60EG:40DW, 40EG:60DW, 20EG:80DW) with varying concentrations of 0.025-0.4 vol.%. Thermal conductivity was estimated by the hot-wire technique, and viscosity was determined using a viscometer apparatus. According to the measurements, the viscosity of Co3O4 nanofluids decreased with increasing temperature, and increased with increasing volume fraction. The results revealed that the thermal conductivity of Co3O4 nanofluids increased with increasing temperature and volume concentrations. Moreover, the measurements found that the maximum thermal conductivity of 10.8% and the maximum viscosity of 10.3% prevailed at 60 °C in the volume fraction of 0.4%. The obtained viscosity and thermal conductivity results of the present experiments on Co3O4 nanofluids were compared with previous results. The results showed good agreement with theoretically proposed models to predict nanofluids' viscosity and thermal conductivity. Thus, the thermal conductivity results of Co3O4 nanofluids are promising with respect to the use of nanofluids in solar thermal applications.
Collapse
Affiliation(s)
- Monther Alsboul
- Physics Department, College of Science, Al Hussein Bin Talal University, Maan 71111, Jordan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Mohd Sabri Mohd Ghazali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Mohamed R. Gomaa
- Mechanical Engineering Department, Faculty of Engineering, Al Hussein Bin Talal University, Maan 71111, Jordan
- Mechanical Engineering Department, Benha Faculty of Engineering, Benha University, Benha 13512, Egypt
| | - Aliashim Albani
- Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy (ECRE), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| |
Collapse
|
45
|
Kalhor S, Yarie M, Torabi M, Zolfigol MA, Rezaeivala M, Gu Y. Synthesis of 2-Amino-6-(1 H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1887296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Mohmmad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Majid Rezaeivala
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Shokri F, Behbahani FK. Synthesis of Fe 3O 4@ L-proline@SO 3H as a novel and reusable acidic magnetic nanocatalyst and its application for the synthesis of N-substituted pyrroles at room temperature under ultrasonic irradiation and without solvent. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.1963278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Shokri
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
47
|
Bahadur Singh K, Gautam N, Upadhyay DD, Abbas G, Rizvi M, Pandey G. Morphology Controlled Biogenic Fabrication Of Metal/Metal Oxide Nanostructures Using Plant Extract And Their Application In Organic Transformations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
49
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
50
|
Yadav J, Chaudhary RP. A review on advances in synthetic methodology and biological profile of spirothiazolidin‐4‐ones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| | - Ram Pal Chaudhary
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| |
Collapse
|