1
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
2
|
Zhu X, Yi Y, Fan Z, Liu R, Chu X, Wang M, Zhang J, Tretyakova E, Zhang Y, Zhang L, Zhou D, Xiao S. Novel mono- and multivalent N-acetylneuraminic acid glycoclusters as potential broad-spectrum entry inhibitors for influenza and coronavirus infection. Eur J Med Chem 2023; 260:115723. [PMID: 37595545 DOI: 10.1016/j.ejmech.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
N-acetylneuraminic acid (Neu5Ac) is a glycan receptor of viruses spread in many eukaryotic cells. The present work aimed to design, synthesis and biological evaluation of a panel of Neu5Ac derivatives based on a cyclodextrin (CD) scaffold for targeting influenza and coronavirus membrane proteins. The multivalent Neu5Ac glycoclusters efficiently inhibited chicken erythrocyte agglutination induced by intact influenza virus in a Neu5Ac density-dependent fashion. Compared with inhibition by Neu5Ac, the multivalent inhibitor with 21 Neu5Ac residues on the primary face of the β-CD scaffold afforded 1788-fold higher binding affinity inhibition for influenza virus hemagglutinin with a dissociation constant (KD) of 3.87 × 10-7 M. It showed moderate binding affinity to influenza virus neuraminidase, but with only about one-thirtieth the potency of that with the HA protein. It also exhibited strong binding affinity to the spike protein of three human coronaviruses (severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2), with KD values in the low micromolar range, which is about 10-time weaker than that of HA. Therefore, these multivalent sialylated CD derivatives have possible therapeutic application as broad-spectrum antiviral entry inhibitors for many viruses by targeting the Neu5Ac of host cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanliang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zibo Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruiwen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xindang Chu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Elena Tretyakova
- Ufa Institute of Chemistry UFRC RAS, Pr. Oktyabrya 71, 450054, Ufa, Russian Federation
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China.
| |
Collapse
|
3
|
Grosjean F, Cros‐Perrial E, Braka A, Uttaro J, Chaloin L, Jordheim LP, Peyrottes S, Mathé C. Synthesis and Studies of Potential Inhibitors of CD73 Based on a Triazole Scaffold. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Félix Grosjean
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1019, route de Mende 34293 Montpellier France
| | - Emeline Cros‐Perrial
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon France
| | - Abdenour Braka
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier 34293 Montpellier France
| | - Jean‐Pierre Uttaro
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1019, route de Mende 34293 Montpellier France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier 34293 Montpellier France
| | - Lars Petter Jordheim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1019, route de Mende 34293 Montpellier France
| | - Christophe Mathé
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1019, route de Mende 34293 Montpellier France
| |
Collapse
|
4
|
Hribernik N, Tamburrini A, Falletta E, Bernardi A. One pot synthesis of thio-glycosides via aziridine opening reactions. Org Biomol Chem 2021; 19:233-247. [DOI: 10.1039/d0ob01956a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
thio-Glycosides with a pseudo-disaccharide structure are synthesized via aziridine opening reactions starting from glycosyl thioacetates with a one-pot protocol, which affords glycomimetics equipped for easy and stable conjugation to aglycones.
Collapse
Affiliation(s)
- Nives Hribernik
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Alice Tamburrini
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Ermelinda Falletta
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Anna Bernardi
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| |
Collapse
|
5
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Bosc D, Camberlein V, Gealageas R, Castillo-Aguilera O, Deprez B, Deprez-Poulain R. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J Med Chem 2019; 63:3817-3833. [PMID: 31820982 DOI: 10.1021/acs.jmedchem.9b01183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.
Collapse
Affiliation(s)
- Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Virgyl Camberlein
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Omar Castillo-Aguilera
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France.,Institut Universitaire de France, F- 75005 Paris, France
| |
Collapse
|
7
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
8
|
Thomas A, Lethuillier-Karl L, Nagarajan K, Vergauwe RMA, George J, Chervy T, Shalabney A, Devaux E, Genet C, Moran J, Ebbesen TW. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019; 363:615-619. [DOI: 10.1126/science.aau7742] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
Abstract
Many chemical methods have been developed to favor a particular product in transformations of compounds that have two or more reactive sites. We explored a different approach to site selectivity using vibrational strong coupling (VSC) between a reactant and the vacuum field of a microfluidic optical cavity. Specifically, we studied the reactivity of a compound bearing two possible silyl bond cleavage sites—Si–C and Si–O, respectively—as a function of VSC of three distinct vibrational modes in the dark. The results show that VSC can indeed tilt the reactivity landscape to favor one product over the other. Thermodynamic parameters reveal the presence of a large activation barrier and substantial changes to the activation entropy, confirming the modified chemical landscape under strong coupling.
Collapse
|
9
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
10
|
Aretz J, Anumala UR, Fuchsberger FF, Molavi N, Ziebart N, Zhang H, Nazaré M, Rademacher C. Allosteric Inhibition of a Mammalian Lectin. J Am Chem Soc 2018; 140:14915-14925. [DOI: 10.1021/jacs.8b08644] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jonas Aretz
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Upendra R. Anumala
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Felix F. Fuchsberger
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Narges Molavi
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Nandor Ziebart
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Hengxi Zhang
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Marc Nazaré
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Christoph Rademacher
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
11
|
Antti H, Sellstedt M. Cell-Based Kinetic Target-Guided Synthesis of an Enzyme Inhibitor. ACS Med Chem Lett 2018; 9:351-353. [PMID: 29670699 DOI: 10.1021/acsmedchemlett.7b00535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/04/2018] [Indexed: 12/22/2022] Open
Abstract
Finding a new drug candidate for a selected target is an expensive and time-consuming process. Target guided-synthesis, or in situ click chemistry, is a concept where the drug target is used to template the formation of its own inhibitors from reactive building blocks. This could simplify the identification of drug candidates. However, with the exception of one example of an RNA-target, target-guided synthesis has always employed purified targets. This limits the number of targets that can be screened by the method. By applying methods from the field of metabolomics, we demonstrate that target-guided synthesis with protein targets also can be performed directly in cell-based systems. These methods offer new possibilities to conduct screening for drug candidates of difficult protein targets in cellular environments.
Collapse
Affiliation(s)
- Henrik Antti
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
12
|
Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol'skii VA, Seeberger PH, Kaufmann DE, Rademacher C. Identifikation sekundärer Bindestellen auf DC-SIGN mithilfe eines Fragment-Screenings. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas Aretz
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Hannes Baukmann
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Elena Shanina
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Jonas Hanske
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Robert Wawrzinek
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Viktor A. Zapol'skii
- Institut für Organische Chemie; Technische Universität Clausthal; Leibnizstraße 6 38678 Clausthal-Zellerfeld Deutschland
| | - Peter H. Seeberger
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Dieter E. Kaufmann
- Institut für Organische Chemie; Technische Universität Clausthal; Leibnizstraße 6 38678 Clausthal-Zellerfeld Deutschland
| | - Christoph Rademacher
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
13
|
Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol'skii VA, Seeberger PH, Kaufmann DE, Rademacher C. Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN. Angew Chem Int Ed Engl 2017; 56:7292-7296. [PMID: 28523851 DOI: 10.1002/anie.201701943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/28/2017] [Indexed: 01/08/2023]
Abstract
DC-SIGN is a cell-surface receptor for several pathogenic threats, such as HIV, Ebola virus, or Mycobacterium tuberculosis. Multiple attempts to develop inhibitors of the underlying carbohydrate-protein interactions have been undertaken in the past fifteen years. Still, drug-like DC-SIGN ligands are sparse, which is most likely due to its hydrophilic, solvent-exposed carbohydrate-binding site. Herein, we report on a parallel fragment screening against DC-SIGN applying SPR and a reporter displacement assay, which complements previous screenings using 19 F NMR spectroscopy and chemical fragment microarrays. Hit validation by SPR and 1 H-15 N HSQC NMR spectroscopy revealed that although no fragment bound in the primary carbohydrate site, five secondary sites are available to harbor drug-like molecules. Building on key interactions of the reported fragment hits, these pockets will be targeted in future approaches to accelerate the development of DC-SIGN inhibitors.
Collapse
Affiliation(s)
- Jonas Aretz
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Hannes Baukmann
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Elena Shanina
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jonas Hanske
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Robert Wawrzinek
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Viktor A Zapol'skii
- Institut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, 38678, Clausthal-Zellerfeld, Germany
| | - Peter H Seeberger
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Dieter E Kaufmann
- Institut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, 38678, Clausthal-Zellerfeld, Germany
| | - Christoph Rademacher
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
14
|
Prescher H, Schweizer A, Kuhfeldt E, Nitschke L, Brossmer R. New Human CD22/Siglec-2 Ligands with a Triazole Glycoside. Chembiochem 2017; 18:1216-1225. [PMID: 28374962 DOI: 10.1002/cbic.201600707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 12/15/2022]
Abstract
CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120, Heidelberg, Germany.,G3-BioTec, 69207, Sandhausen, Germany
| |
Collapse
|
15
|
|
16
|
De S, Misra S, Rigby JH. Formal Total Synthesis of Echinopines A and B via Cr(0)-Promoted [6π + 2π] Cycloaddition. Org Lett 2015; 17:3230-2. [DOI: 10.1021/acs.orglett.5b01326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saptarshi De
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shilpi Misra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James H. Rigby
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
18
|
Ng S, Lin E, Kitov PI, Tjhung KF, Gerlits OO, Deng L, Kasper B, Sood A, Paschal BM, Zhang P, Ling CC, Klassen JS, Noren CJ, Mahal LK, Woods RJ, Coates L, Derda R. Genetically encoded fragment-based discovery of glycopeptide ligands for carbohydrate-binding proteins. J Am Chem Soc 2015; 137:5248-51. [PMID: 25860443 PMCID: PMC5553193 DOI: 10.1021/ja511237n] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based discovery (GE-FBD) uses selection of phage-displayed glycopeptides to dock a glycan fragment at the CRD and guide selection of synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10(8) glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40-50-fold enhancement in affinity over methyl α-d-mannopyranoside (MeMan). Lectin array suggested specificity: Man-WYD derivative bound only to 3 out of 17 proteins—ConA, LcH, and PSA—that bind to Man. An X-ray structure of ConA:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking, but their extra-CRD binding modes are significantly different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.
Collapse
Affiliation(s)
- Simon Ng
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Edith Lin
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katrina F. Tjhung
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Oksana O. Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Lu Deng
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Brian Kasper
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Beth M. Paschal
- New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Ping Zhang
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chang-Chun Ling
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - John S. Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Lara K. Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Ratmir Derda
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
19
|
High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization. Handb Exp Pharmacol 2015; 232:73-89. [PMID: 26330259 DOI: 10.1007/164_2015_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small-molecule intervention of protein function is one central dogma of drug discovery. The generation of small-molecule libraries fuels the discovery pipeline at many stages and thereby resembles a key aspect of this endeavor. High-throughput synthesis is a major source for compound libraries utilized in academia and industry, seeking new chemical modulators of pharmacological targets. Here, we discuss the crucial factors of library design strategies from the perspective of synthetic chemistry, giving a brief historic background and a summary of current approaches. Simple measures of success of a high-throughput synthesis such as quantity or diversity have long been discarded and replaced by more integrated measures. Case studies are presented and put into context to highlight the cross-connectivity of the various stages of the drug discovery process.
Collapse
|
20
|
Oueis E, Sabot C, Renard PY. New insights into the kinetic target-guided synthesis of protein ligands. Chem Commun (Camb) 2015; 51:12158-69. [DOI: 10.1039/c5cc04183j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review describes the recent applications of the kinetic target guided synthesis and highlights the new advances of this strategy.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Council
- University of St. Andrews
- St. Andrews KY16 9ST
- UK
| | - Cyrille Sabot
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| | - Pierre-Yves Renard
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| |
Collapse
|
21
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
22
|
|
23
|
Prescher H, Schweizer A, Kuhfeldt E, Nitschke L, Brossmer R. Discovery of multifold modified sialosides as human CD22/Siglec-2 ligands with nanomolar activity on B-cells. ACS Chem Biol 2014; 9:1444-50. [PMID: 24807582 DOI: 10.1021/cb400952v] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sialic acids are abundant in higher domains of life and lectins recognizing sialosaccharides are heavily involved in the regulation of the human immune system. Modified sialosides are useful tools to explore the functions of those lectins, especially members of the Siglec (sialic acid binding immunoglobulin like lectin) family. Here we report design, synthesis, and affinity evaluation of novel sialoside classes with combined modification at positions 2, 4, and 9 or 2, 3, 4, and 9 of the sialic acid scaffold as human CD22 (human Siglec-2) ligands. They display up to 7.5 × 10(5)-fold increased affinity over αMe Neu5Ac (the minimal Siglec ligand). CD22 is a negative regulating coreceptor of the B-cell receptor (BCR). In vitro experiments with a human B-lymphocyte cell line showed functional blocking of CD22 upon B-cell receptor (BCR) stimulation in the presence of nanomolar concentrations of the novel ligands. The observed increased Ca(2+) response corresponds to enhanced cell activation, providing an opportunity to therapeutically modulate B-lymphocyte responses, e.g., in immune deficiencies and infections.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Chair
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen,Germany
| | | | - Lars Nitschke
- Chair
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen,Germany
| | - Reinhard Brossmer
- Biochemistry
Center, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Hashimoto M, Murai Y. Synthesis of Photoreactive Aromatic ^|^alpha;-Amino Acids and Effective Hydrogen-Deuterium Exchange for Aromatic ^|^alpha;-Amino Acids. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Titz A. Carbohydrate-Based Anti-Virulence Compounds Against Chronic Pseudomonas aeruginosa Infections with a Focus on Small Molecules. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Kuo TY, Chien LA, Chang YC, Liou SY, Chang CC. Synthetic mimics of carbohydrate-based anticancer vaccines: preparation of carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands by controlled living radical polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra04907a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Under the conditions of nitroxide-mediated polymerizations, novel carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands could be achieved through a living radical process.
Collapse
Affiliation(s)
- Teng-Yuan Kuo
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Li-An Chien
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Ya-Chi Chang
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Shuang-Yu Liou
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Che-Chien Chang
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| |
Collapse
|
27
|
Rillahan CD, Schwartz E, Rademacher C, McBride R, Rangarajan J, Fokin VV, Paulson JC. On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chem Biol 2013; 8:1417-22. [PMID: 23597400 DOI: 10.1021/cb400125w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Siglec family of sialic acid-binding proteins are differentially expressed on white blood cells of the immune system and represent an attractive class of targets for cell-directed therapy. Nanoparticles decorated with high-affinity Siglec ligands show promise for delivering cargo to Siglec-bearing cells, but this approach has been limited by a lack of ligands with suitable affinity and selectivity. Building on previous work employing solution-phase sialoside library synthesis and subsequent microarray screening, we herein report a more streamlined 'on-chip' synthetic approach. By printing a small library of alkyne sialosides and subjecting these to 'on-chip' click reactions, the largest sialoside analogue library to date was generated. Siglec-screening identified a selective Siglec-7 ligand, which when displayed on liposomal nanoparticles, allows for targeting of Siglec-7(+) cells in peripheral human blood. In silico docking to the crystal structure of Siglec-7 provides a rationale for the affinity gains observed for this novel sialic acid analogue.
Collapse
Affiliation(s)
| | | | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am
Mühlenberg 1, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
28
|
Egger J, Weckerle C, Cutting B, Schwardt O, Rabbani S, Lemme K, Ernst B. Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J Am Chem Soc 2013; 135:9820-8. [PMID: 23742188 DOI: 10.1021/ja4029582] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectins, a family of C-type lectins, play a key role in inflammatory diseases (e.g., asthma and arthritis). However, the only millimolar affinity of sialyl Lewis(x) (sLe(x)), which is the common tetrasaccharide epitope of all physiological selectin ligands, has been a major obstacle to the development of selectin antagonists for therapeutic applications. In a fragment-based approach guided by NMR, ligands binding to a second site in close proximity to a sLe(x) mimic were identified. A library of antagonists obtained by connecting the sLe(x) mimic to the best second-site ligand via triazole linkers of different lengths was evaluated by surface plasmon resonance. Detailed analysis of the five most promising candidates revealed antagonists with K(D) values ranging from 30 to 89 nM. In contrast to carbohydrate-lectin complexes with typical half-lives (t(1/2)) in the range of one second or even less, these fragment-based selectin antagonists show t1/2 of several minutes. They exhibit a promising starting point for the development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jonas Egger
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Elduque X, Sánchez A, Sharma K, Pedroso E, Grandas A. Protected maleimide building blocks for the decoration of peptides, peptoids, and peptide nucleic acids. Bioconjug Chem 2013; 24:832-9. [PMID: 23582188 DOI: 10.1021/bc4000614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monomers allowing for the introduction of [2,5-dimethylfuran]-protected maleimides into polyamides such as peptides, peptide nucleic acids, and peptoids were prepared, as well as the corresponding oligomers. Suitable maleimide deprotection conditions were established in each case. The stability of the adducts generated by Michael-type maleimide-thiol reaction and Diels-Alder cycloaddition to maleimide deprotection conditions was exploited to prepare a variety of conjugates from peptide and PNA scaffolds incorporating one free and one protected maleimide. The target molecules were synthesized by using two subsequent maleimide-involving click reactions separated by a maleimide deprotection step. Carrying out maleimide deprotection and conjugation simultaneously gave better results than performing the two reactions subsequently.
Collapse
Affiliation(s)
- Xavier Elduque
- Departament de Química Orgànica and IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4 modified sialosides enhance binding to Siglec-2 (CD22): towards potent Siglec inhibitors for immunoglycotherapy. Angew Chem Int Ed Engl 2013; 52:3616-20. [PMID: 23440868 DOI: 10.1002/anie.201207267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/26/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4-Modifikation von Sialosiden verstärkt die Bindung an Siglec-2 (CD22) - auf dem Weg zu potenten Siglec-Inhibitoren für eine Immunglykotherapie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Peruzzotti C, Borrelli S, Ventura M, Pantano R, Fumagalli G, Christodoulou MS, Monticelli D, Luzzani M, Fallacara AL, Tintori C, Botta M, Passarella D. Probing the binding site of abl tyrosine kinase using in situ click chemistry. ACS Med Chem Lett 2013; 4:274-7. [PMID: 24900659 DOI: 10.1021/ml300394w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023] Open
Abstract
Modern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites. This report allows medicinal chemists to use protein-directed in situ click chemistry for exploring the conformational space of a ligand-binding pocket and the ability of the protein to guide its inhibitor. This approach can be a novel, valuable tool to guide drug design synthesis in the field of tyrosine kinases.
Collapse
Affiliation(s)
- Cristina Peruzzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Stella Borrelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Micol Ventura
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Rebecca Pantano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| | | | - Damiano Monticelli
- Dipartimento di Scienze Alta
Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | | | - Anna Lucia Fallacara
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Cristina Tintori
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico
Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi 2, I-53100, Siena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi
19, 20133 Milano, Italy
| |
Collapse
|
33
|
Schwardt O, Kelm S, Ernst B. SIGLEC-4 (MAG) Antagonists: From the Natural Carbohydrate Epitope to Glycomimetics. Top Curr Chem (Cham) 2013; 367:151-200. [DOI: 10.1007/128_2013_498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Tieu W, Soares da Costa TP, Yap MY, Keeling KL, Wilce MCJ, Wallace JC, Booker GW, Polyak SW, Abell AD. Optimising in situ click chemistry: the screening and identification of biotin protein ligase inhibitors. Chem Sci 2013. [DOI: 10.1039/c3sc51127h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Krainer G, Broecker J, Vargas C, Fanghänel J, Keller S. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem 2012; 84:10715-22. [PMID: 23130786 DOI: 10.1021/ac3025575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.
Collapse
Affiliation(s)
- Georg Krainer
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
36
|
Murai Y, Masuda K, Sakihama Y, Hashidoko Y, Hatanaka Y, Hashimoto M. Comprehensive synthesis of photoreactive (3-trifluoromethyl)diazirinyl indole derivatives from 5- and 6- trifluoroacetylindoles for photoaffinity labeling. J Org Chem 2012; 77:8581-7. [PMID: 22970820 DOI: 10.1021/jo301552m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5- and 6-trifluoromethyldiazirinyl indoles were synthesized from corresponding bromoindole derivatives for the first time. They acted as mother skeletons for the comprehensive synthesis of various bioactive indole metabolites. These can be used in biological functional analysis as diazirine-based photoaffinity labels.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Ariga K, Ito H, Hill JP, Tsukube H. Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev 2012; 41:5800-35. [PMID: 22773130 DOI: 10.1039/c2cs35162e] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the 25 years since its Nobel Prize in chemistry, supramolecular chemistry based on molecular recognition has been paid much attention in scientific and technological fields. Nanotechnology and the related areas seek breakthrough methods of nanofabrication based on rational organization through assembly of constituent molecules. Advanced biochemistry, medical applications, and environmental and energy technologies also depend on the importance of specific interactions between molecules. In those current fields, molecular recognition is now being re-evaluated. In this review, we re-examine current trends in molecular recognition from the viewpoint of the surrounding media, that is (i) the solution phase for development of basic science and molecular design advances; (ii) at nano/materials interfaces for emerging technologies and applications. The first section of this review includes molecular recognition frontiers, receptor design based on combinatorial approaches, organic capsule receptors, metallo-capsule receptors, helical receptors, dendrimer receptors, and the future design of receptor architectures. The following section summarizes topics related to molecular recognition at interfaces including fundamentals of molecular recognition, sensing and detection, structure formation, molecular machines, molecular recognition involving polymers and related materials, and molecular recognition processes in nanostructured materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Go-bancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | | | | | | |
Collapse
|
38
|
Bini D, Gregori M, Cosentino U, Moro G, Canales A, Capitoli A, Jiménez-Barbero J, Cipolla L. Synthesis and characterization of a paramagnetic sialic acid conjugate as probe for magnetic resonance applications. Carbohydr Res 2012; 354:21-31. [DOI: 10.1016/j.carres.2012.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
|
39
|
Badrinarayan P, Sastry GN. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach. J Mol Graph Model 2012; 34:89-100. [PMID: 22306417 DOI: 10.1016/j.jmgm.2011.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/19/2011] [Accepted: 12/27/2011] [Indexed: 02/02/2023]
Abstract
In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds.
Collapse
Affiliation(s)
- Preethi Badrinarayan
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | | |
Collapse
|
40
|
Zeng Y, Rademacher C, Nycholat CM, Futakawa S, Lemme K, Ernst B, Paulson JC. High affinity sialoside ligands of myelin associated glycoprotein. Bioorg Med Chem Lett 2011; 21:5045-9. [PMID: 21561770 DOI: 10.1016/j.bmcl.2011.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2-6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a K(d) of 15nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Physiological Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Yuan H, Lu T, Ran T, Liu H, Lu S, Tai W, Leng Y, Zhang W, Wang J, Chen Y. Novel Strategy for Three-Dimensional Fragment-Based Lead Discovery. J Chem Inf Model 2011; 51:959-74. [DOI: 10.1021/ci200003c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haoliang Yuan
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ting Ran
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenting Tai
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Leng
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Weiwei Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jian Wang
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
42
|
De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G. Structure-Based Discovery of Inhibitors of Microsomal Prostaglandin E2 Synthase−1, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein: Promising Hits for the Development of New Anti-inflammatory Agents. J Med Chem 2011; 54:1565-75. [DOI: 10.1021/jm101238d] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rosa De Simone
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | - Maria Giovanna Chini
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | - Ines Bruno
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | - Raffaele Riccio
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | - Daniela Mueller
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Oliver Werz
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Giuseppe Bifulco
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| |
Collapse
|