1
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
2
|
Thaler J, Mitteregger C, Flemmich L, Micura R. A Universal Support for the Solid-Phase Synthesis of Peptidyl-tRNA Mimics. Chembiochem 2024:e202400717. [PMID: 39466664 DOI: 10.1002/cbic.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are often required for structural and functional studies of protein synthesis at the ribosome. These conjugates can be synthesized by solid-phase chemical synthesis, which allows maximum flexibility in both the peptide and RNA sequence. The commonly used strategy is based on (3'-N-aminoacyl)-3'-amino-3'-deoxyadenosine solid supports, which already contain the first C-terminal amino acid of the target peptidyl chain. This is a limitation in the sense that different individual supports must be synthesized for different C-terminal amino acids. In this study, we demonstrate a solution to this problem by introducing a novel universal support. The key is a free ribose 3'-NH2 group that can be coupled to any amino acid. This is made possible by a photocleavable ether moiety that links the ribose 2'-O to the support, thus avoiding the typical O-to-N migration that occurs when using 2'-O-acyl linked solid supports. Once assembled, the conjugate is readily cleaved by UV irradiation. The structural integrity of the obtained peptidyl-RNA conjugates was verified by mass spectrometry analysis. In conclusion, the new photocleavable solid support makes the synthesis of 3'-peptidyl tRNA mimics of different peptidyl chains significantly more efficient compared to the commonly used approaches.
Collapse
Affiliation(s)
- Julia Thaler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christoph Mitteregger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Laurin Flemmich
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Afandizada Y, Abeywansha T, Guerineau V, Zhang Y, Sargueil B, Ponchon L, Iannazzo L, Etheve-Quelquejeu M. Copper catalyzed cycloaddition for the synthesis of non isomerisable 2' and 3'-regioisomers of arg-tRNA arg. Methods 2024; 229:94-107. [PMID: 38834165 DOI: 10.1016/j.ymeth.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNAarg. Characterization of nucleoside and nucleotide compounds involved MS spectrometry, 1H, 13C and 31P NMR analysis. This strategy allows to obtain the pair of the two stable regioisomers of arg-tRNA analogs (2' and 3') which are instrumental to explore the regiospecificity of arginyl transferases enzyme. In our study, a first binding assay of the arg-tRNA micro helix with the Arginyl-tRNA-protein transferase 1 (ATE1) was performed by gel shift assays.
Collapse
Affiliation(s)
- Yusif Afandizada
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Thilini Abeywansha
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vincent Guerineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bruno Sargueil
- Université Paris Cité, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France
| | - Luc Ponchon
- Université Paris Cité, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France.
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France.
| | - Mélanie Etheve-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France.
| |
Collapse
|
4
|
Thaler J, Syroegin EA, Breuker K, Polikanov YS, Micura R. Practical Synthesis of N-Formylmethionylated Peptidyl-tRNA Mimics. ACS Chem Biol 2023; 18:2233-2239. [PMID: 37433044 PMCID: PMC10594587 DOI: 10.1021/acschembio.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic Nα-formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated Nα-formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained Nα-formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant Nα-formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.
Collapse
Affiliation(s)
- Julia Thaler
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Egor A. Syroegin
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Kathrin Breuker
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center
for Biomolecular Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Center
for Biomolecular Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Polikanov YS, Etheve-Quelquejeu M, Micura R. Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications. Acc Chem Res 2023; 56:2713-2725. [PMID: 37728742 PMCID: PMC10552525 DOI: 10.1021/acs.accounts.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.
Collapse
Affiliation(s)
- Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center for
Biomolecular Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Kitoun C, Saidjalolov S, Bouquet D, Djago F, Remaury QB, Sargueil B, Poinot P, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation to Access Stable Aminoacyl- or Peptidyl-Dinucleotide. ACS OMEGA 2023; 8:3850-3860. [PMID: 36743074 PMCID: PMC9893454 DOI: 10.1021/acsomega.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Aminoacyl- and peptidyl-tRNA are specific biomolecules involved in many biological processes, from ribosomal protein synthesis to the synthesis of peptidoglycan precursors. Here, we report a post-synthetic approach based on traceless Staudinger ligation for the synthesis of a stable amide bond to access aminoacyl- or peptidyl-di-nucleotide. A series of amino-acid and peptide ester phenyl phosphines were synthetized, and their reactivity was studied on a 2'-N3 di-nucleotide. The corresponding 2'-amide di-nucleotides were obtained and characterized by LC-HRMS, and mechanistic interpretations of the influence of the amino acid phenyl ester phosphine were proposed. We also demonstrated that enzymatic 5'-OH phosphorylation is compatible with the acylated di-nucleotide, allowing the possibility to access stable aminoacylated-tRNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Saidbakhrom Saidjalolov
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Delphine Bouquet
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Fabiola Djago
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Quentin Blancart Remaury
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Bruno Sargueil
- Université
Paris Cité, CNRS, UMR 8038/CiTCoM, Paris F-75006, France
| | - Pauline Poinot
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Laura Iannazzo
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| |
Collapse
|
7
|
Müggenburg F, Müller S. Azide-modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization. CHEM REC 2022; 22:e202100322. [PMID: 35189013 DOI: 10.1002/tcr.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Azide-modified nucleosides are important building blocks for RNA and DNA functionalization by click chemistry based on azide-alkyne cycloaddition. This has put demand on synthetic chemistry to develop approaches for the preparation of azide-modified nucleoside derivatives. We review here the available methods for the synthesis of various nucleosides decorated with azido groups at the sugar residue or nucleobase, their incorporation into oligonucleotides and cellular RNAs, and their application in azide-alkyne cycloadditions for labelling and functionalization.
Collapse
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
8
|
Syroegin EA, Flemmich L, Klepacki D, Vazquez-Laslop N, Micura R, Polikanov YS. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol 2022; 29:152-161. [PMID: 35165455 PMCID: PMC9071271 DOI: 10.1038/s41594-022-00720-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laurin Flemmich
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vazquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ronald Micura
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Del Piano A, Kecman T, Schmid M, Barbieri R, Brocchieri L, Tornaletti S, Firrito C, Minati L, Bernabo P, Signoria I, Lauria F, Gillingwater TH, Viero G, Clamer M. Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Res 2021; 50:e23. [PMID: 34850942 PMCID: PMC8887461 DOI: 10.1093/nar/gkab1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Most RNA footprinting approaches that require ribonuclease cleavage generate RNA fragments bearing a phosphate or cyclic phosphate group at their 3′ end. Unfortunately, current library preparation protocols rely only on a 3′ hydroxyl group for adaptor ligation or poly-A tailing. Here, we developed circAID-p-seq, a PCR-free library preparation for selective 3′ phospho-RNA sequencing. As a proof of concept, we applied circAID-p-seq to ribosome profiling, which is based on sequencing of RNA fragments protected by ribosomes after endonuclease digestion. CircAID-p-seq, combined with the dedicated computational pipeline circAidMe, facilitates accurate, fast and highly efficient sequencing of phospho-RNA fragments from eukaryotic cells and tissues. We used circAID-p-seq to portray ribosome occupancy in transcripts, providing a versatile and PCR-free strategy to possibly unravel any endogenous 3′-phospho RNA molecules.
Collapse
Affiliation(s)
- Alessia Del Piano
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tea Kecman
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | | | | | - Luciano Brocchieri
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | - Silvia Tornaletti
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | | | - Luca Minati
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Paola Bernabo
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Ilaria Signoria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Fabio Lauria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Gabriella Viero
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | | |
Collapse
|
10
|
Müggenburg F, Biallas A, Debiais M, Smietana M, Müller S. Azido Functionalized Nucleosides Linked to Controlled Pore Glass as Suitable Starting Materials for Oligonucleotide Synthesis by the Phosphoramidite Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Alexander Biallas
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Mégane Debiais
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Sabine Müller
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| |
Collapse
|
11
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
Katoh T, Suga H. Flexizyme-catalyzed synthesis of 3'-aminoacyl-NH-tRNAs. Nucleic Acids Res 2019; 47:e54. [PMID: 30843032 PMCID: PMC6511858 DOI: 10.1093/nar/gkz143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 11/15/2022] Open
Abstract
Structural analysis of ribosomes in complex with aminoacyl- and/or peptidyl-transfer RNA (tRNA) often suffers from rapid hydrolysis of the ester bond of aminoacyl-tRNAs. To avoid this issue, several methods to introduce an unhydrolyzable amide bond instead of the canonical ester bond have been developed to date. However, the existing methodologies require rather complex steps of synthesis and are often inapplicable to a variety of amino acids including those with noncanonical structures. Here, we report a new method to synthesize 3'-aminoacyl-NH-tRNAs by means of flexizymes-ribozymes capable of charging amino acids onto tRNAs. We show that two types of flexizymes, dFx and eFx, are able to charge various amino acids, including nonproteinogenic ones, onto tRNA or microhelix RNA bearing the 3'-deoxy-3'-amino-adenosine. Due to the versatility of the flexizymes toward any pair of nonproteinogenic amino acids and full-length or fragment tRNAs, this method provides researchers an opportunity to use a wide array of hydrolytically stable 3'-aminoacyl-NH-tRNAs and analogs for various studies.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res 2019; 47:2089-2100. [PMID: 30520988 PMCID: PMC6393236 DOI: 10.1093/nar/gky1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ronald Micura
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Warminski M, Kowalska J, Jemielity J. Synthesis of RNA 5'-Azides from 2'-O-Pivaloyloxymethyl-Protected RNAs and Their Reactivity in Azide-Alkyne Cycloaddition Reactions. Org Lett 2017. [PMID: 28636394 DOI: 10.1021/acs.orglett.7b01591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Commercially available 2'-O-pivaloyloxymethyl (PivOM) phosphoramidites were employed in an SPS protocol for RNA 5' azides. The utility of the N3-RNAs in CuAAC and SPAAC was demonstrated by RNA 5' labeling, chemical ligation including fragment joining and cyclization, and bioconjugation. As a result, several new RNA conjugates that may be valuable tools for studies on biological events such as innate immune response (cyclic dinucleotides), post-transcriptional gene regulation (circular RNAs), or mRNA turnover (m7G capped RNAs) were obtained.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw , Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Shivalingam A, Tyburn AES, El-Sagheer AH, Brown T. Molecular Requirements of High-Fidelity Replication-Competent DNA Backbones for Orthogonal Chemical Ligation. J Am Chem Soc 2017; 139:1575-1583. [PMID: 28097865 DOI: 10.1021/jacs.6b11530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular properties of the phosphodiester backbone that made it the evolutionary choice for the enzymatic replication of genetic information are not well understood. To address this, and to develop new chemical ligation strategies for assembly of biocompatible modified DNA, we have synthesized oligonucleotides containing several structurally and electronically varied artificial linkages. This has yielded a new highly promising ligation method based on amide backbone formation that is chemically orthogonal to CuAAC "click" ligation. A study of kinetics and fidelity of replication through these artificial linkages by primer extension, PCR, and deep sequencing reveals that a subtle interplay between backbone flexibility, steric factors, and ability to hydrogen bond to the polymerase modulates rapid and accurate information decoding. Even minor phosphorothioate modifications can impair the copying process, yet some radical triazole and amide DNA backbones perform surprisingly well, indicating that the phosphate group is not essential. These findings have implications in the field of synthetic biology.
Collapse
Affiliation(s)
- Arun Shivalingam
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Agnes E S Tyburn
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University , Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
16
|
Guo Y, Zhao X, Liu Q. Dispersion-corrected DFT study on the structural transformations and absorption properties of crystalline 3′-Amino-3′-deoxyadenosine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Melnikov S, Mailliot J, Rigger L, Neuner S, Shin BS, Yusupova G, Dever TE, Micura R, Yusupov M. Molecular insights into protein synthesis with proline residues. EMBO Rep 2016; 17:1776-1784. [PMID: 27827794 DOI: 10.15252/embr.201642943] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023] Open
Abstract
Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono- and diprolyl-tRNAs. These structures provide a high-resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.
Collapse
Affiliation(s)
- Sergey Melnikov
- Institute of Genetics and Molecular and Cellular Biology CNRS UMR7104 INSERM UMR964, Illkirch, France.,Strasbourg University, Strasbourg, France
| | - Justine Mailliot
- Institute of Genetics and Molecular and Cellular Biology CNRS UMR7104 INSERM UMR964, Illkirch, France.,Strasbourg University, Strasbourg, France
| | - Lukas Rigger
- Institute of Organic Chemistry Leopold Franzens University, Innsbruck, Austria
| | - Sandro Neuner
- Institute of Organic Chemistry Leopold Franzens University, Innsbruck, Austria
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD, USA
| | - Gulnara Yusupova
- Institute of Genetics and Molecular and Cellular Biology CNRS UMR7104 INSERM UMR964, Illkirch, France.,Strasbourg University, Strasbourg, France
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD, USA
| | - Ronald Micura
- Institute of Organic Chemistry Leopold Franzens University, Innsbruck, Austria
| | - Marat Yusupov
- Institute of Genetics and Molecular and Cellular Biology CNRS UMR7104 INSERM UMR964, Illkirch, France .,Strasbourg University, Strasbourg, France
| |
Collapse
|
18
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Afaf El-Sagheer
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering; Suez Canal University; Suez 43721 Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Tom Brown
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| |
Collapse
|
19
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
20
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016; 55:13553-13557. [PMID: 27667506 DOI: 10.1002/anie.201606843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Indexed: 12/12/2022]
Abstract
RNA functionalization is challenging due to the instability of RNA and the limited range of available enzymatic reactions. We developed a strategy based on solid phase synthesis and post-functionalization to introduce an electrophilic site at the 3' end of tRNA analogues. The squarate diester used as an electrophile enabled sequential amidation and provided asymmetric squaramides with high selectivity. The squaramate-RNAs specifically reacted with the lysine of UDP-MurNAc-pentapeptide, a peptidoglycan precursor used by the aminoacyl-transferase FemXWv for synthesis of the bacterial cell wall. The peptidyl-RNA obtained with squaramate-RNA and unprotected UDP-MurNAc-pentapeptide efficiently inhibited FemXWv . The squaramate unit also promoted specific cross-linking of RNA to the catalytic Lys of FemXWv but not to related transferases recognizing different aminoacyl-tRNAs. Thus, squaramate-RNAs provide specificity for cross-linking with defined groups in complex biomolecules due to its unique reactivity.
Collapse
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Afaf El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721, Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France.
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France. .,CNRS UMR 8601, Paris, F-75006, France.
| |
Collapse
|
21
|
Krause A, Hertl A, Muttach F, Jäschke A. Phosphine-free Stille-Migita chemistry for the mild and orthogonal modification of DNA and RNA. Chemistry 2014; 20:16613-9. [PMID: 25322724 DOI: 10.1002/chem.201404843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/31/2022]
Abstract
An optimized catalyst system of [Pd2 (dba)3 ] and AsPh3 efficiently catalyzes the Stille reaction between a diverse set of functionalized stannanes and halogenated mono-, di- and oligonucleotides. The methodology allows for the facile conjugation of short and long nucleic acid molecules with moieties that are not compatible with conventional chemical or enzymatic synthesis, among them acid-, base-, or fluoride-labile protecting groups, fluorogenic and synthetically challenging moieties with good to near-quantitative yields. Notably, even azides can be directly introduced into oligonucleotides and (deoxy)nucleoside triphosphates, thereby giving direct access to "clickable" nucleic acids.
Collapse
Affiliation(s)
- André Krause
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg
| | | | | | | |
Collapse
|
22
|
Synthesis of aminoacylated N(6),N(6)-dimethyladenosine solid support for efficient access to hydrolysis-resistant 3'-charged tRNA mimics. Bioorg Med Chem 2014; 22:6989-95. [PMID: 25457127 PMCID: PMC4270447 DOI: 10.1016/j.bmc.2014.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 11/21/2022]
Abstract
RNA-amino acid and RNA-peptide conjugates that mimic charged tRNA 3'-ends are valuable substrates for structural and functional investigations of ribosomal complexes. To obtain such conjugates, most synthetic approaches that are found in the literature make use of puromycin. This well available aminonucleoside antibiotic contains a dimethylamino group at the nucleobase and a methylated tyrosine that is connected via an amide linkage to the ribose moiety. To increase structural diversity, we present the synthesis of a N(6),N(6)-dimethylated 3'-azido-3'-deoxyadenosine precursor that can be coupled to any amino acid. Further derivatization results in the solid support that is eligible for the preparation of stable 3'-aminoacyl- or 3'-peptidyl-tRNA termini with an amide instead of the natural ester linkage. The present work expands our previously established route that delivered a broad range of peptidyl-tRNA mimics to the corresponding counterparts with N(6),N(6)-dimethylation pattern of the terminal adenosine (A76). This aspect is of significance to modulate the binding preferences of the mimics for ribosomal A- versus P-site.
Collapse
|
23
|
Frommer J, Hieronymus R, Selvi Arunachalam T, Heeren S, Jenckel M, Strahl A, Appel B, Müller S. Preparation of modified long-mer RNAs and analysis of FMN binding to the ypaA aptamer from B. subtilis. RNA Biol 2014; 11:609-23. [PMID: 24755604 DOI: 10.4161/rna.28526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, RNA has been shown to fulfil a number of cellular functions. This has led to much interest in elucidation of the structure of functional RNA molecules, and thus, in the preparation of suitably functionalized RNAs. The chemical synthesis of RNAs allows for the site-specific modification; however, is limited to sequences of about 60-70 nucleotides in length. At the example of the flavine mononucleotide (FMN) responsive aptamer of the ypaA riboswitch from B. subtilis, we demonstrate the highly efficient preparation of site-specifically modified long-mer RNAs. Our strategy consists of the chemical synthesis of fragments followed by enzymatic or chemical ligation. Splint ligation with T4 RNA ligase turned out to be most successful among the enyzymatic protocols. Highly efficient chemical ligation was performed by azide-alkyne cycloaddition of suitably modified RNA fragments. Wild-type and 2-aminopurine (2-AP)-modified variants of the ypaA aptamer were prepared. FMN binding to all synthesized ypaA aptamer variants is demonstrated. However, dissociation of FMN from its binding site by reduction of the isoalloxazin unit as demonstrated before for a small-hairpin-derived aptazyme could not be shown. This implies that either FMN is less accessible to reduction when it is bound to its natural aptamer; that reduced FMN remains bound to the aptamer; or that FMN upon reduction indeed is released from its binding site, without the aptamer folding back in the natural ligand-free state. The results of this study are of general interest to the preparation of site-specifically modified RNAs for investigation into structure and function.
Collapse
Affiliation(s)
- Jennifer Frommer
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Robert Hieronymus
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Tamil Selvi Arunachalam
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; PG and Research Department of Chemistry; Thiagarajar College (Autonomous); Madurai, India
| | - Sabine Heeren
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; Hochschule Neubrandenburg; Fachbereich Agrarwirtschaft und Lebensmittelwissenschaften; AG Landwirtschaftliche Chemie; Neubrandenburg, Germany
| | - Maria Jenckel
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; Friedrich-Loeffler-Institut; Institut für Virusdiagnostik; Südufer 10; Riems, Germany
| | - Anne Strahl
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Bettina Appel
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Sabine Müller
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| |
Collapse
|
24
|
Santner T, Hartl M, Bister K, Micura R. Efficient access to 3'-terminal azide-modified RNA for inverse click-labeling patterns. Bioconjug Chem 2014; 25:188-95. [PMID: 24358989 PMCID: PMC3898571 DOI: 10.1021/bc400513z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/14/2013] [Indexed: 01/22/2023]
Abstract
Labeled RNA becomes increasingly important for molecular diagnostics and biophysical studies on RNA with its diverse interaction partners, which range from small metabolites to large macromolecular assemblies, such as the ribosome. Here, we introduce a fast synthesis path to 3'-terminal 2'-O-(2-azidoethyl) modified oligoribonucleotides for subsequent bioconjugation, as exemplified by fluorescent labeling via Click chemistry for an siRNA targeting the brain acid-soluble protein 1 gene (BASP1). Importantly, the functional group pattern is inverse to commonly encountered alkyne-functionalized "click"-able RNA and offers increased flexibility with respect to multiple and stepwise labeling of the same RNA molecule. Additionally, our route opens up a minimal step synthesis of 2'-O-(2-aminoethyl) modified pyrimidine nucleoside phosphoramidites which are of widespread use to generate amino-modified RNA for N-hydroxysuccinimide (NHS) ester-based conjugations.
Collapse
Affiliation(s)
- Tobias Santner
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Bister
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Rigger L, Schmidt RL, Holman KM, Simonović M, Micura R. The synthesis of methylated, phosphorylated, and phosphonated 3'-aminoacyl-tRNA(Sec) mimics. Chemistry 2013; 19:15872-8. [PMID: 24127424 DOI: 10.1002/chem.201302188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Indexed: 11/12/2022]
Abstract
The twenty first amino acid, selenocysteine (Sec), is the only amino acid that is synthesized on its cognate transfer RNA (tRNA(Sec)) in all domains of life. The multistep pathway involves O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS), an enzyme that catalyzes the terminal chemical reaction during which the phosphoseryl-tRNA(Sec) intermediate is converted into selenocysteinyl-tRNA(Sec). The SepSecS architecture and the mode of tRNA(Sec) recognition have been recently determined at atomic resolution. The crystal structure provided valuable insights that gave rise to mechanistic proposals that could not be validated because of the lack of appropriate molecular probes. To further improve our understanding of the mechanism of the biosynthesis of selenocysteine in general and the mechanism of SepSecS in particular, stable tRNA(Sec) substrates carrying aminoacyl moieties that mimic particular reaction intermediates are needed. Here, we report on the accurate synthesis of methylated, phosphorylated, and phosphonated serinyl-derived tRNA(Sec) mimics that contain a hydrolysis-resistant ribose 3'-amide linkage instead of the natural ester bond. The procedures introduced allow for efficient site-specific methylation and/or phosphorylation directly on the solid support utilized in the automated RNA synthesis. For the preparation of (S)-2-amino-4-phosphonobutyric acid-oligoribonucleotide conjugates, a separate solid support was generated. Furthermore, we developed a three-strand enzymatic ligation protocol to obtain the corresponding full-length tRNA(Sec) derivatives. Finally, we developed an electrophoretic mobility shift assay (EMSA) for rapid, qualitative characterization of the SepSecS-tRNA interactions. The novel tRNA(Sec) mimics are promising candidates for further elucidation of the biosynthesis of selenocysteine by X-ray crystallography and other biochemical approaches, and could be attractive for similar studies on other tRNA-dependent enzymes.
Collapse
Affiliation(s)
- Lukas Rigger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria), Fax: (+43) 512 507 57799
| | | | | | | | | |
Collapse
|
26
|
Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNAAla. Org Biomol Chem 2013; 11:6161-9. [DOI: 10.1039/c3ob41206g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
El-Sagheer AH, Brown T. Click Chemistry – a Versatile Method for Nucleic Acid Labelling, Cyclisation and Ligation. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The copper-catalysed [3+2] alkyne azide cycloaddition reaction (the CuAAC reaction) is the classic example of ‘click’ chemistry, a relatively new concept that has been influential in many areas of science. It is used in the nucleic acid field for DNA cross-linking, oligonucleotide ligation and cyclisation, DNA and RNA labelling, attaching DNA to surfaces, producing modified nucleobases and backbones, synthesising ribozymes and monitoring nucleic acid biosynthesis. More recently a related click reaction, the ring strain-promoted azide–alkyne [3+2] cycloaddition (SPAAC) reaction has been used successfully in DNA strand ligation and labelling. This does not require copper catalysis, and therefore has many potential uses in vivo. In this review we discuss recent developments in nucleic acid click chemistry and their applications in biology, biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Afaf H. El-Sagheer
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
- Chemistry Branch Dept. of Science and Mathematics Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721 Egypt
| | - Tom Brown
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
| |
Collapse
|
28
|
Geiermann AS, Micura R. Selective desulfurization significantly expands sequence variety of 3'-peptidyl-tRNA mimics obtained by native chemical ligation. Chembiochem 2012; 13:1742-5. [PMID: 22786696 PMCID: PMC3430856 DOI: 10.1002/cbic.201200368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry, CCB: Center for Chemistry and Biomedicine, University of Innsbruck6020 Innsbruck (Austria) E-mail:
| | - Ronald Micura
- Institute of Organic Chemistry, CCB: Center for Chemistry and Biomedicine, University of Innsbruck6020 Innsbruck (Austria) E-mail:
| |
Collapse
|
29
|
Fauster K, Hartl M, Santner T, Aigner M, Kreutz C, Bister K, Ennifar E, Micura R. 2'-Azido RNA, a versatile tool for chemical biology: synthesis, X-ray structure, siRNA applications, click labeling. ACS Chem Biol 2012; 7:581-9. [PMID: 22273279 PMCID: PMC3307367 DOI: 10.1021/cb200510k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Chemical modification can significantly enrich the structural
and
functional repertoire of ribonucleic acids and endow them with new
outstanding properties. Here, we report the syntheses of novel 2′-azido
cytidine and 2′-azido guanosine building blocks and demonstrate
their efficient site-specific incorporation into RNA by mastering
the synthetic challenge of using phosphoramidite chemistry in the
presence of azido groups. Our study includes the detailed characterization
of 2′-azido nucleoside containing RNA using UV-melting profile
analysis and CD and NMR spectroscopy. Importantly, the X-ray crystallographic
analysis of 2′-azido uridine and 2′-azido adenosine
modified RNAs reveals crucial structural details of this modification
within an A-form double helical environment. The 2′-azido group
supports the C3′-endo ribose conformation
and shows distinct water-bridged hydrogen bonding patterns in the
minor groove. Additionally, siRNA induced silencing of the brain acid
soluble protein (BASP1) encoding gene in chicken fibroblasts demonstrated
that 2′-azido modifications are well tolerated in the guide
strand, even directly at the cleavage site. Furthermore, the 2′-azido
modifications are compatible with 2′-fluoro and/or 2′-O-methyl modifications to achieve siRNAs of rich modification
patterns and tunable properties, such as increased nuclease resistance
or additional chemical reactivity. The latter was demonstrated by
the utilization of the 2′-azido groups for bioorthogonal Click
reactions that allows efficient fluorescent labeling of the RNA. In
summary, the present comprehensive investigation on site-specifically
modified 2′-azido RNA including all four nucleosides provides
a basic rationale behind the physico- and biochemical properties of
this flexible and thus far neglected type of RNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Ennifar
- Architecture et Réactivité
de l′ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg, 67084 Strasbourg,
France
| | | |
Collapse
|
30
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
31
|
Efficient reverse click labeling of azide oligonucleotides with multiple alkynyl Cy-Dyes applied to the synthesis of HyBeacon probes for genetic analysis. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Graber D, Trappl K, Steger J, Geiermann AS, Rigger L, Moroder H, Polacek N, Micura R. Deoxyribozyme-based, semisynthetic access to stable peptidyl-tRNAs exemplified by tRNAVal carrying a macrolide antibiotic resistance peptide. Methods Mol Biol 2012; 848:201-213. [PMID: 22315071 DOI: 10.1007/978-1-61779-545-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a protocol for the reliable synthesis of non-hydrolyzable 3'-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. The approach is exemplified by tRNA(Val)-3'-NH-VFLVM-NH(2) and relies on commercially available Escherichia coli tRNA(Val). This tRNA was cleaved site-specifically within the TΨC loop using a 10-23 type DNA enzyme to obtain a 58 nt tRNA 5'-fragment which contained the modifications. After cleavage of the 2',3'-cyclophosphate moiety from the 5'-fragment, it was ligated to the 18 nt RNA-pentapeptide conjugate which had been chemically synthesized. By this methodology, tRNA(Val)-3'-NH-VFLVM-NH(2) is accessible in efficient manner. Furthermore, we point out that the approach is applicable to other types of tRNA.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- DNA, Catalytic/metabolism
- Drug Resistance, Bacterial
- Escherichia coli
- Macrolides/pharmacology
- Mass Spectrometry
- Models, Molecular
- Nucleic Acid Conformation
- Peptides
- Phenol/chemistry
- Phosphorylation
- RNA Stability
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemical synthesis
- RNA, Transfer, Val/chemical synthesis
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/isolation & purification
- RNA, Transfer, Val/metabolism
Collapse
Affiliation(s)
- Dagmar Graber
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Geiermann AS, Polacek N, Micura R. Native Chemical Ligation of Hydrolysis-Resistant 3′-Peptidyl–tRNA Mimics. J Am Chem Soc 2011; 133:19068-71. [DOI: 10.1021/ja209053b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - Norbert Polacek
- Innsbruck Biocenter, Division of Genomics and RNomics, Medical University of Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
34
|
Steger J, Micura R. Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Bioorg Med Chem 2011; 19:5167-74. [PMID: 21807524 PMCID: PMC3162138 DOI: 10.1016/j.bmc.2011.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 12/20/2022]
Abstract
RNA-peptide conjugates that mimic amino acid-charged tRNAs and peptidyl-tRNAs are of high importance for structural and functional investigations of ribosomal complexes. Here, we present the synthesis of glycyl-, alanyl-, and isoleucyladenosine modified solid supports that are eligible for the synthesis of stable 3′-aminoacyl- and 3′-peptidyl-tRNA termini with an amide instead of the natural ester linkage. The present work significantly expands the range of accessible peptidyl-tRNA mimics for ribosomal studies.
Collapse
Affiliation(s)
- Jessica Steger
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
35
|
Chemama M, Fonvielle M, Lecerf M, Mellal D, Fief H, Arthur M, Etheve-Quelquejeu M. Synthesis of stable aminoacyl-tRNA analogs. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2011; Chapter 4:Unit 4.44. [PMID: 21400704 DOI: 10.1002/0471142700.nc0444s44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aminoacyl-tRNAs have important roles in a variety of biological processes. Here, we describe the synthesis of stable aminoacyl-tRNA analogs containing 1,4-substituted 1,2,3-triazole rings. The procedure involves (i) copper-catalyzed cycloadditions of 3'-or 2'-azido-adenosine and alkynes, (ii) coupling between the resulting triazole-deoxyadenosine derivatives and a deoxycytidine phosphoramidite, and (iii) the enzymatic ligation of the 2'- or 3'-triazole-dinucleotides with a 22-nt RNA microhelix that mimics the acceptor arm of tRNA. Each nucleoside and nucleotide intermediate was characterized by MS spectrometry and (1)H, (31)P, and (13)C NMR spectroscopy, and the tRNA-analogs were assayed for inhibition of FemXWv, an alanyl-transferase essential for the formation of the peptidoglycan network of Gram-positive bacterial pathogens. The low IC(50) values obtained (2 to 4 µM) indicate that the five-membered triazole rings acted as an isosteres of esters and can be used for the design of stable aminoacyl-tRNA analogs.
Collapse
Affiliation(s)
- Maryline Chemama
- Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Aigner M, Hartl M, Fauster K, Steger J, Bister K, Micura R. Chemical synthesis of site-specifically 2'-azido-modified RNA and potential applications for bioconjugation and RNA interference. Chembiochem 2011; 12:47-51. [PMID: 21171007 PMCID: PMC3193913 DOI: 10.1002/cbic.201000646] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/01/2010] [Indexed: 01/13/2023]
Affiliation(s)
- Michaela Aigner
- Institute of Organic Chemistry, Center for Molecular Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|