• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612466)   Today's Articles (3953)   Subscriber (49383)
For: Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M. ortho-Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid. Angew Chem Int Ed Engl 2010;49:8993-6. [DOI: 10.1002/anie.201004621] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Number Cited by Other Article(s)
1
Mishra A, Srivastava D, Raj D, Patra N, Padhi SK. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies. Dalton Trans 2024;53:1209-1220. [PMID: 38108489 DOI: 10.1039/d3dt03023g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
2
Pandey B, Krause JA, Guan H. On the Demise of PPP-Ligated Iron Catalysts in the Formic Acid Dehydrogenation Reaction. Inorg Chem 2023;62:18714-18723. [PMID: 37907063 DOI: 10.1021/acs.inorgchem.3c03125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
3
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications. Catalysts 2023. [DOI: 10.3390/catal13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]  Open
4
Lülf S, Guo L, Parchomyk T, Harvey JN, Koszinowski K. Microscopic Reactivity of Phenylferrate Ions toward Organyl Halides. Chemistry 2022;28:e202202030. [PMID: 35948515 PMCID: PMC9826238 DOI: 10.1002/chem.202202030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/11/2023]
5
Guillamón E, Sorribes I, Safont VS, Algarra AG, Fernández-Trujillo MJ, Pedrajas E, Llusar R, Basallote MG. Base-Free Catalytic Hydrogen Production from Formic Acid Mediated by a Cubane-Type Mo3S4 Cluster Hydride. Inorg Chem 2022;61:16730-16739. [PMID: 36239439 DOI: 10.1021/acs.inorgchem.2c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Pandey B, Krause JA, Guan H. Iron Dihydride Complex Stabilized by an All-Phosphorus-Based Pincer Ligand and Carbon Monoxide. Inorg Chem 2022;61:11143-11155. [PMID: 35816559 DOI: 10.1021/acs.inorgchem.2c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Akai T, Kondo M, Saga Y, Masaoka S. Photochemical hydrogen production based on the HCOOH/CO2 cycle promoted by a pentanuclear cobalt complex. Chem Commun (Camb) 2022;58:3755-3758. [PMID: 35029619 DOI: 10.1039/d1cc06445b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
8
Onishi N, Kanega R, Kawanami H, Himeda Y. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Molecules 2022;27:455. [PMID: 35056770 PMCID: PMC8781907 DOI: 10.3390/molecules27020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]  Open
9
Xu F, Liu X. “On–Off” Control for On-Demand Hydrogen Production from the Dehydrogenation of Formic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
10
Akça A, Karaman O. Electrocatalytic Decomposition of Formic Acid Catalyzed by M-Embedded Graphene (M = Ni and Cu): A DFT Study. Top Catal 2021. [DOI: 10.1007/s11244-021-01499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
11
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
12
Lentz N, Aloisi A, Thuéry P, Nicolas E, Cantat T. Additive-Free Formic Acid Dehydrogenation Catalyzed by a Cobalt Complex. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
13
Anchoring Pd-nanoparticles on dithiocarbamate- functionalized SBA-15 for hydrogen generation from formic acid. Sci Rep 2020;10:18188. [PMID: 33097804 PMCID: PMC7584604 DOI: 10.1038/s41598-020-75369-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/11/2020] [Indexed: 11/09/2022]  Open
14
Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nat Commun 2020;11:4251. [PMID: 32843636 PMCID: PMC7447762 DOI: 10.1038/s41467-020-18091-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022]  Open
15
Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020. [DOI: 10.3390/catal10070773] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
16
Sofue Y, Nomura K, Inagaki A. On-demand hydrogen production from formic acid by light-active dinuclear iridium catalysts. Chem Commun (Camb) 2020;56:4519-4522. [PMID: 32219239 DOI: 10.1039/d0cc00704h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
17
Guan C, Pan Y, Zhang T, Ajitha MJ, Huang K. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chem Asian J 2020;15:937-946. [DOI: 10.1002/asia.201901676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 01/03/2023]
18
Léval A, Junge H, Beller M. Formic Acid Dehydrogenation by a Cyclometalated κ 3 ‐CNN Ruthenium Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
19
Budweg S, Junge K, Beller M. Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00699h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Quantum chemical calculations of 31P NMR chemical shifts of P-donor ligands in platinum(II) complexes. J Mol Model 2019;25:329. [PMID: 31656972 DOI: 10.1007/s00894-019-4222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
21
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018;119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
22
Zell T, Langer R. CO2-based hydrogen storage – formic acid dehydrogenation. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
23
Yang Y, Xu H, Cao D, Zeng XC, Cheng D. Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03485] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
24
Esteruelas MA, García-Yebra C, Martín J, Oñate E. Dehydrogenation of Formic Acid Promoted by a Trihydride-Hydroxo-Osmium(IV) Complex: Kinetics and Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02370] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
25
Iglesias M, Oro LA. Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800159] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
26
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
27
Zhan Y, Shen Y, Du Y, Yue B, Zhou X. Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen. KINETICS AND CATALYSIS 2017. [DOI: 10.1134/s002315841705024x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
28
Du Y, Shen YB, Zhan YL, Ning FD, Yan LM, Zhou XC. Highly active iridium catalyst for hydrogen production from formic acid. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
29
Matsunami A, Kuwata S, Kayaki Y. A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
30
Exploring Promising Catalysts for Chemical Hydrogen Storage in Ammonia Borane: A Density Functional Theory Study. Catalysts 2017. [DOI: 10.3390/catal7050140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
31
Kawanami H, Himeda Y, Laurenczy G. Formic Acid as a Hydrogen Carrier for Fuel Cells Toward a Sustainable Energy System. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
32
Balaraman E, Nandakumar A, Jaiswal G, Sahoo MK. Iron-catalyzed dehydrogenation reactions and their applications in sustainable energy and catalysis. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00879a] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Montandon-Clerc M, Dalebrook AF, Laurenczy G. Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2015.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
34
Wang L, Sun H, Zuo Z, Li X, Xu W, Langer R, Fuhr O, Fenske D. Activation of CO2, CS2, and Dehydrogenation of Formic Acid Catalyzed by Iron(II) Hydride Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
35
Tondreau AM, Boncella JM. 1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2-Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00274] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Lang GM, Shima T, Wang L, Cluff KJ, Skopek K, Hampel F, Blümel J, Gladysz JA. Gyroscope-Like Complexes Based on Dibridgehead Diphosphine Cages That Are Accessed by Three-Fold Intramolecular Ring Closing Metatheses and Encase Fe(CO)3, Fe(CO)2(NO)+, and Fe(CO)3(H)+Rotators. J Am Chem Soc 2016;138:7649-63. [DOI: 10.1021/jacs.6b03178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
37
Zell T, Langer R. Iron-catalyzed hydrogenation and dehydrogenation reactions with relevance to reversible hydrogen storage applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/recat-2015-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
38
Fink C, Katsyuba S, Laurenczy G. Calorimetric and spectroscopic studies on solvation energetics for H2storage in the CO2/HCOOH system. Phys Chem Chem Phys 2016;18:10764-73. [DOI: 10.1039/c5cp06996c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
39
Gowda RR, Chen EYX. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. CHEMSUSCHEM 2016;9:181-185. [PMID: 26735911 DOI: 10.1002/cssc.201501402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Indexed: 06/05/2023]
40
Mellmann D, Sponholz P, Junge H, Beller M. Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev 2016;45:3954-88. [DOI: 10.1039/c5cs00618j] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
41
Jiang S, Quintero-Duque S, Roisnel T, Dorcet V, Grellier M, Sabo-Etienne S, Darcel C, Sortais JB. Direct synthesis of dicarbonyl PCP-iron hydride complexes and catalytic dehydrogenative borylation of styrene. Dalton Trans 2016;45:11101-8. [DOI: 10.1039/c6dt01149g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Mellone I, Bertini F, Peruzzini M, Gonsalvi L. An active, stable and recyclable Ru(ii) tetraphosphine-based catalytic system for hydrogen production by selective formic acid dehydrogenation. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01219a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
43
Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem Rev 2015;115:12936-73. [DOI: 10.1021/acs.chemrev.5b00197] [Citation(s) in RCA: 1023] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
44
Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation. Chemistry 2015;21:13513-7. [DOI: 10.1002/chem.201502412] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/07/2022]
45
Bertini F, Mellone I, Ienco A, Peruzzini M, Gonsalvi L. Iron(II) Complexes of the Linear rac-Tetraphos-1 Ligand as Efficient Homogeneous Catalysts for Sodium Bicarbonate Hydrogenation and Formic Acid Dehydrogenation. ACS Catal 2015. [DOI: 10.1021/cs501998t] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
46
Feng C, Hao Y, Zhang L, Shang N, Gao S, Wang Z, Wang C. AgPd nanoparticles supported on zeolitic imidazolate framework derived N-doped porous carbon as an efficient catalyst for formic acid dehydrogenation. RSC Adv 2015. [DOI: 10.1039/c5ra04157k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
47
Zhang YN, Li XH, Cai YY, Gong LH, Wang KX, Chen JS. Bio-inspired noble metal-free reduction of nitroarenes using NiS2+x/g-C3N4. RSC Adv 2014. [DOI: 10.1039/c4ra10127h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
48
Thevenon A, Frost-Pennington E, Weijia G, Dalebrook AF, Laurenczy G. Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle. ChemCatChem 2014. [DOI: 10.1002/cctc.201402410] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
49
Mellmann D, Barsch E, Bauer M, Grabow K, Boddien A, Kammer A, Sponholz P, Bentrup U, Jackstell R, Junge H, Laurenczy G, Ludwig R, Beller M. Base‐Free Non‐Noble‐Metal‐Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights. Chemistry 2014;20:13589-602. [DOI: 10.1002/chem.201403602] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 11/07/2022]
50
Yu WY, Mullen GM, Flaherty DW, Mullins CB. Selective Hydrogen Production from Formic Acid Decomposition on Pd–Au Bimetallic Surfaces. J Am Chem Soc 2014;136:11070-8. [DOI: 10.1021/ja505192v] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA