1
|
Moragues T, Giannakakis G, Ruiz-Ferrando A, Borca CN, Huthwelker T, Bugaev A, de Mello AJ, Pérez-Ramírez J, Mitchell S. Droplet-Based Microfluidics Reveals Insights into Cross-Coupling Mechanisms over Single-Atom Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401056. [PMID: 38472115 DOI: 10.1002/anie.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.
Collapse
Affiliation(s)
- Thomas Moragues
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, Tarragona, 43007, Spain
- University of Rovira i Virgili, Av. Catalunya 35, Tarragona, 43002, Spain
| | - Camelia N Borca
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Thomas Huthwelker
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Andrew J de Mello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Lee SW, Kim H, Park JY. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface. NANO LETTERS 2023; 23:5373-5380. [PMID: 36930862 DOI: 10.1021/acs.nanolett.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Excitation of hot electrons by energy dissipation under exothermic chemical reactions on metal catalyst surfaces occurs at both solid-gas and solid-liquid interfaces. Despite extensive studies, a comparative operando study directly comparing electronic excitation by electronically nonadiabatic interactions at solid-gas and solid-liquid interfaces has not been reported. Herein, on the basis of our in situ techniques for monitoring energy dissipation as a chemicurrent using a Pt/n-Si nanodiode sensor, we observed the generation of hot electrons in both gas and liquid phases during H2O2 decomposition. As a result of comparing the current signal and oxygen evolution rate in the two phases, surprisingly, the efficiency of reaction-induced excitation of hot electrons increased by ∼100 times at the solid-liquid interface compared to the solid-gas interface. The boost of hot electron excitation in the liquid phase is due to the presence of an ionic layer lowering the potential barrier at the junction for transferring hot electrons.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heeyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lee SW, Jeon B, Lee H, Park JY. Hot Electron Phenomena at Solid-Liquid Interfaces. J Phys Chem Lett 2022; 13:9435-9448. [PMID: 36194546 DOI: 10.1021/acs.jpclett.2c02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the role of energy dissipation and charge transfer under exothermic chemical reactions on metal catalyst surfaces is important for elucidating the fundamental phenomena at solid-gas and solid-liquid interfaces. Recently, many surface chemistry studies have been conducted on the solid-liquid interface, so correlating electronic excitation in the liquid-phase with the reaction mechanism plays a crucial role in heterogeneous catalysis. In this review, we introduce the detection principle of electron transfer at the solid-liquid interface by developing cutting-edge technologies with metal-semiconductor Schottky nanodiodes. The kinetics of hot electron excitation are well correlated with the reaction rates, demonstrating that the operando method for understanding nonadiabatic interactions is helpful in studying the reaction mechanism of surface molecular processes. In addition to the detection of hot electrons excited by a catalytic reaction, we highlight recent results on how the transfer of the hot electrons influences surface chemical and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk28173, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul04066, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| |
Collapse
|
4
|
Tsuji Y, Yoshida M, Kamachi T, Yoshizawa K. Oxidative Addition of Methane and Reductive Elimination of Ethane and Hydrogen on Surfaces: From Pure Metals to Single Atom Alloys. J Am Chem Soc 2022; 144:18650-18671. [PMID: 36153993 DOI: 10.1021/jacs.2c08787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative addition of CH4 to the catalyst surface produces CH3 and H. If the CH3 species generated on the surface couple with each other, reductive elimination of C2H6 may be achieved. Similarly, H's could couple to form H2. This is the outline of nonoxidative coupling of methane (NOCM). It is difficult to achieve this reaction on a typical Pt catalyst surface. This is because methane is overoxidized and coking occurs. In this study, the authors approach this problem from a molecular aspect, relying on organometallic or complex chemistry concepts. Diagrams obtained by extending the concepts of the Walsh diagram to surface reactions are used extensively. C-H bond activation, i.e., oxidative addition, and C-C and H-H bond formation, i.e., reductive elimination, on metal catalyst surfaces are thoroughly discussed from the point of view of orbital theory. The density functional theory method for structural optimization and accurate energy calculations and the extended Hückel method for detailed analysis of crystal orbital changes and interactions play complementary roles. Limitations of monometallic catalysts are noted. Therefore, a rational design of single atom alloy (SAA) catalysts is attempted. As a result, the effectiveness of the Pt1/Au(111) SAA catalyst for NOCM is theoretically proposed. On such an SAA surface, one would expect to find a single Pt monatomic site in a sea of inert Au atoms. This is desirable for both inhibiting overoxidation and promoting reductive elimination.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Masataka Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Choi JIJ, Kim TS, Kim D, Lee SW, Park JY. Operando Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS NANO 2020; 14:16392-16413. [PMID: 33210917 DOI: 10.1021/acsnano.0c07549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Modern surface science faces two major challenges, a materials gap and a pressure gap. While studies on single crystal surface in ultrahigh vacuum have uncovered the atomic and electronic structures of the surface, the materials and environmental conditions of commercial catalysis are much more complicated, both in the structure of the materials and in the accessible pressure range of analysis instruments. Model systems and operando surface techniques have been developed to bridge these gaps. In this Review, we highlight the current trends in the development of the surface characterization techniques and methodologies in more realistic environments, with emphasis on recent research efforts at the Korea Advanced Institute of Science and Technology. We show principles and applications of the microscopic and spectroscopic surface techniques at ambient pressure that were used for the characterization of atomic structure, electronic structure, charge transport, and the mechanical properties of catalytic and energy materials. Ambient pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy allow us to observe the surface restructuring that occurs during oxidation, reduction, and catalytic processes. In addition, we introduce the ambient pressure atomic force microscopy that revealed the morphological, mechanical, and charge transport properties that occur during the catalytic and energy conversion processes. Hot electron detection enables the monitoring of catalytic reactions and electronic excitations on the surface. Overall, the information on the nature of catalytic reactions obtained with operando spectroscopic and microscopic techniques may bring breakthroughs in some of the global energy and environmental problems the world is facing.
Collapse
Affiliation(s)
- Joong Il Jake Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Taek-Seung Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Si Woo Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
6
|
Beaumont SK. Soft XAS as an in situ technique for the study of heterogeneous catalysts. Phys Chem Chem Phys 2020; 22:18747-18756. [PMID: 32319477 DOI: 10.1039/d0cp00657b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soft X-ray absorption in situ studies of heterogeneous catalysts have been applied to areas such as copper methanol oxidation catalysts and cobalt Fischer-Tropsch type catalysts over a period of around two decades. The technique has the potential to offer several advantages for studying heterogeneous catalysts against hard X-ray XAS in: the systems that can be studied (includes elements such as C, N, O), the potential for surface sensitivity (crucial for catalysts, where reactions occur at surfaces) and the information content of the resulting spectra. Nevertheless, it is technically challenging and the necessary hardware has only been developed and evolved in a few specific groups worldwide. This perspective will introduce the technique in the context of other competing spectroscopies, summarise the development of hardware and the challenges that have been overcome in experimental terms, along with the outcome and impact on different fields within catalysis. Additionally, anticipated future trends and directions will be discussed.
Collapse
Affiliation(s)
- Simon K Beaumont
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
7
|
Negahdar L, Parlett CMA, Isaacs MA, Beale AM, Wilson K, Lee AF. Shining light on the solid–liquid interface: in situ/ operando monitoring of surface catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00555j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.
Collapse
Affiliation(s)
| | - Christopher M. A. Parlett
- Department of Chemical Engineering & Analytical Science
- The University of Manchester
- Manchester
- UK
- Diamond Light Source
| | | | | | - Karen Wilson
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Adam F. Lee
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
8
|
Guda AA, Guda SA, Lomachenko KA, Soldatov MA, Pankin IA, Soldatov AV, Braglia L, Bugaev AL, Martini A, Signorile M, Groppo E, Piovano A, Borfecchia E, Lamberti C. Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Wang YH, Wei J, Radjenovic P, Tian ZQ, Li JF. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:1675-1685. [PMID: 30629409 DOI: 10.1021/acs.analchem.8b05499] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry and heterogeneous catalysis continue to attract enormous interest. In situ surface analysis is a dynamic research field capable of elucidating the catalytic mechanisms of reaction processes. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) is a nondestructive technique that has been cumulatively used to probe and analyze catalytic-reaction processes, providing important spectral evidence about reaction intermediates produced on catalyst surfaces. In this perspective, we review recent electrochemical- and heterogeneous-catalysis studies using SHINERS, highlight its advantages, summarize the flaws and prospects for improving the SHINERS technique, and give insight into its future research directions.
Collapse
Affiliation(s)
- Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Petar Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,Shenzhen Research Institute of Xiamen University , Shenzhen 518000 , China
| |
Collapse
|
10
|
Yang D, Li Y, Liu X, Cao Y, Gao Y, Shen YR, Liu WT. Facet-specific interaction between methanol and TiO 2 probed by sum-frequency vibrational spectroscopy. Proc Natl Acad Sci U S A 2018; 115:E3888-E3894. [PMID: 29632204 PMCID: PMC5924933 DOI: 10.1073/pnas.1802741115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO2), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO2, including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are (i) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and (ii) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.
Collapse
Affiliation(s)
- Deheng Yang
- State Key Laboratory of Surface Physics, Physics Department, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
| | - Yadong Li
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - Xinyi Liu
- State Key Laboratory of Surface Physics, Physics Department, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
| | - Yue Cao
- State Key Laboratory of Surface Physics, Physics Department, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
| | - Yi Gao
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China;
| | - Y Ron Shen
- State Key Laboratory of Surface Physics, Physics Department, Fudan University, Shanghai 200433, China;
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
- Department of Physics, University of California, Berkeley, CA 94720
| | - Wei-Tao Liu
- State Key Laboratory of Surface Physics, Physics Department, Fudan University, Shanghai 200433, China;
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
11
|
|
12
|
Biswas S, Husek J, Baker LR. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chem Commun (Camb) 2018; 54:4216-4230. [DOI: 10.1039/c8cc01745j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time-resolved XUV reflection–absorption spectroscopy probes core-to-valence transitions to reveal state-specific electron dynamics at surfaces.
Collapse
|
13
|
In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Commun 2017; 8:15447. [PMID: 28537269 PMCID: PMC5458081 DOI: 10.1038/ncomms15447] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. Rational design of heterogeneous catalysts requires molecular understanding of catalytic processes. Here, the authors attach PtFe and Pd nanocatalysts to Raman signal-enhancing Au-silica nanoparticles, allowing them to spectroscopically observe the active species and bonds involved in CO oxidation in real time.
Collapse
|
14
|
Rondelli M, Zwaschka G, Krause M, Rötzer MD, Hedhili MN, Högerl MP, D’Elia V, Schweinberger FF, Basset JM, Heiz U. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Rondelli
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| | - Gregor Zwaschka
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| | - Maximilian Krause
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| | - Marian D. Rötzer
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| | - Mohamed N. Hedhili
- King Abdullah University of Science and Technology, Imaging and Characterization Core Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Manuel P. Högerl
- King Abdullah University of Science and Technology, Kaust Catalysis Center (KCC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Valerio D’Elia
- King Abdullah University of Science and Technology, Kaust Catalysis Center (KCC), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Vidyasirimedhi Institute of Science and Technology (VISTEC), School of Materials Science and Engineering, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Florian F. Schweinberger
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology, Kaust Catalysis Center (KCC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ueli Heiz
- Technical University of Munich, Catalysis Research
Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1
and Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
15
|
Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-805090-3.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferré D, Pérez-Ramírez J. Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2Promotion on a Commercial Methanol Synthesis Catalyst. Angew Chem Int Ed Engl 2016; 55:11031-6. [DOI: 10.1002/anie.201603204] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Oliver Martin
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Cecilia Mondelli
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | | | - Davide Ferri
- Paul Scherrer Institute; 5232 Villigen Switzerland
| | - Daniel Curulla-Ferré
- Total Research & Technology Feluy, Zone Industrielle Feluy C; 7181 Seneffe Belgium
| | - Javier Pérez-Ramírez
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
17
|
Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferré D, Pérez-Ramírez J. Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2Promotion on a Commercial Methanol Synthesis Catalyst. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oliver Martin
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Cecilia Mondelli
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | | | - Davide Ferri
- Paul Scherrer Institute; 5232 Villigen Switzerland
| | - Daniel Curulla-Ferré
- Total Research & Technology Feluy, Zone Industrielle Feluy C; 7181 Seneffe Belgium
| | - Javier Pérez-Ramírez
- ETH Zurich; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
18
|
Abellan P, Parent LR, Al Hasan N, Park C, Arslan I, Karim AM, Evans JE, Browning ND. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1468-77. [PMID: 26741639 DOI: 10.1021/acs.langmuir.5b04200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.
Collapse
Affiliation(s)
- Patricia Abellan
- SuperSTEM Laboratory, SciTech Daresbury Campus , Keckwick Lane, Daresbury WA4 4AD, United Kingdom
| | - Lucas R Parent
- Department of Chemistry & Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | | | - Chiwoo Park
- Department of Industrial and Manufacturing Engineering, Florida State University , Tallahassee, Florida 32306, United States
| | | | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| | | | | |
Collapse
|
19
|
Herbert JJ, Senecal P, Martin DJ, Bras W, Beaumont SK, Beale AM. X-ray spectroscopic and scattering methods applied to the characterisation of cobalt-based Fischer–Tropsch synthesis catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00581k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review aims to critically assess the use of X-ray techniques, both of a scattering (e.g. X-ray diffraction (XRD), pair distribution function (PDF)) and spectroscopic nature (X-ray absorption spectroscopy (XAFS)), in the study of cobalt-based Fisher–Tropsch synthesis (FTS) catalysts.
Collapse
Affiliation(s)
- Jennifer J. Herbert
- Department of Chemistry
- University College London
- London
- UK
- Research Complex at Harwell
| | - Pierre Senecal
- Department of Chemistry
- University College London
- London
- UK
- Research Complex at Harwell
| | - David J. Martin
- Department of Chemistry
- University College London
- London
- UK
- Research Complex at Harwell
| | - Wim Bras
- Netherlands Organisation for Scientific Research (NWO)
- DUBBLE CRG@ESRF
- Grenoble 38042
- France
| | | | - Andrew M. Beale
- Department of Chemistry
- University College London
- London
- UK
- Research Complex at Harwell
| |
Collapse
|
20
|
Han HL, Melaet G, Alayoglu S, Somorjai GA. In Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem 2015. [DOI: 10.1002/cctc.201500642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui-Ling Han
- Materials Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720 USA
| | - Gérôme Melaet
- Materials Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720 USA
| | - Selim Alayoglu
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720-8176 USA
| | - Gabor A. Somorjai
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720-8176 USA
- College of Chemistry; University of California at Berkeley; 420 Latimer Hall Berkeley CA 94720-1460 USA
| |
Collapse
|
21
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
22
|
Conquering Catalyst Complexity: Nanoparticle Synthesis and Instrument Development for Molecular and Atomistic Characterisation Under In Situ Conditions. Top Catal 2015. [DOI: 10.1007/s11244-015-0398-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C. DNA-Directed Assembly of Gold Nanohalo for Quantitative Plasmonic Imaging of Single-Particle Catalysis. J Am Chem Soc 2015; 137:4292-5. [DOI: 10.1021/jacs.5b00324] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kun Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Kun Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Weiwei Qin
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Suhui Deng
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Di Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- UCB Pharma, Slough, SL1 14EN Berkshire, U.K
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
24
|
Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies. Catal Letters 2014. [DOI: 10.1007/s10562-014-1399-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Baker LR, Jiang CM, Kelly ST, Lucas JM, Vura-Weis J, Gilles MK, Alivisatos AP, Leone SR. Charge carrier dynamics of photoexcited Co3O4 in methanol: extending high harmonic transient absorption spectroscopy to liquid environments. NANO LETTERS 2014; 14:5883-90. [PMID: 25222441 DOI: 10.1021/nl502817a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Charge carrier dynamics in Co3O4 thin films are observed using high harmonic generation transient absorption spectroscopy at the Co M2,3 edge. Results reveal that photoexcited Co3O4 decays to the ground state in 600 ± 40 ps in liquid methanol compared to 1.9 ± 0.3 ns in vacuum. Kinetic analysis suggests that surface-mediated relaxation of photoexcited Co3O4 may be the result of hole transfer from Co3O4 followed by carrier recombination at the Co3O4-methanol interface.
Collapse
Affiliation(s)
- L Robert Baker
- Department of Chemistry, ‡Department of Mechanical Engineering, and §Department of Physics, University of California , Berkeley, Berkeley, California 94720, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
An K, Zhang Q, Alayoglu S, Musselwhite N, Shin JY, Somorjai GA. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability. NANO LETTERS 2014; 14:4907-4912. [PMID: 25078630 DOI: 10.1021/nl502434m] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction, the Pt/TiO2 was turned out as the best catalyst with great thermal stability as well as high reaction rate and product selectivity in high-temperature reforming reaction.
Collapse
Affiliation(s)
- Kwangjin An
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | |
Collapse
|
27
|
Yoon JH, Yoon S. Probing interfacial interactions using core-satellite plasmon rulers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14772-14778. [PMID: 24236506 DOI: 10.1021/la403599p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Understanding molecular interactions at the interfaces of nanoparticles is fundamentally important because they determine the stability, affinity, functionality, and assembly of nanoparticles. However, probing the governing intermolecular forces at the interfaces, particularly for the nanoparticles dispersed in solution, remains challenging. Here, we demonstrate that the interfacial interactions between citrate-capped gold nanoparticles and various molecular functional groups can be probed using a plasmon ruler, based on a well-defined core-satellite nanoassembly structure. Different nature of the interactions causes a subtle change in the interparticle distance, and the change is sensitively measured as a shift in the plasmon coupling band of the core-satellite nanoassemblies. Molecular interactions including covalent bonding, hydrogen bonding, electrostatic interactions, and van der Waals interactions are explored.
Collapse
Affiliation(s)
- Jun Hee Yoon
- Department of Chemistry, Dankook University , 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi 448-701, Korea
| | | |
Collapse
|
28
|
An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. J Am Chem Soc 2013; 135:16689-96. [DOI: 10.1021/ja4088743] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kwangjin An
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Selim Alayoglu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nathan Musselwhite
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sheba Plamthottam
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gérôme Melaet
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Avery E. Lindeman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gabor A. Somorjai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2013; 31:50820. [PMID: 24482557 PMCID: PMC3869349 DOI: 10.1116/1.4818423] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/25/2013] [Indexed: 05/17/2023]
Abstract
This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.
Collapse
Affiliation(s)
- Donald R Baer
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Mark H Engelhard
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Grant E Johnson
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Julia Laskin
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Jinfeng Lai
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Karl Mueller
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Prabhakaran Munusamy
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | | | - Hongfei Wang
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Nancy Washton
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Brittany L Baisch
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Ajay Karakoti
- Battelle Science and Technology India, Pune, Maharashtra, India
| | | | - Daewon Moon
- Daegu Gyeongbuk Institute of Science and Technology, Daeju, Korea
| |
Collapse
|
30
|
|
31
|
Japan Prize: C. G. Willson and J. M. J. Fréchet / NAS Award for Initiatives in Research: T. Betley / NAS Award in Chemical Sciences: G. A. Somorjai. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201301725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Japan-Preis: C. G. Willson und J. M. J. Fréchet ausgezeichnet / NAS Award for Initiatives in Research: T. Betley / NAS Award in Chemical Sciences: G. A. Somorjai. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Somorjai GA. Concluding remarks. Faraday Discuss 2013; 162:395-401. [DOI: 10.1039/c3fd00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. NEW J CHEM 2013. [DOI: 10.1039/c3nj00650f] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
An K, Somorjai GA. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012. [DOI: 10.1002/cctc.201200229] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Lang SM, Bernhardt TM. Gas phase metal cluster model systems for heterogeneous catalysis. Phys Chem Chem Phys 2012; 14:9255-69. [DOI: 10.1039/c2cp40660h] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|