1
|
Kamileen MO, Nakamura Y, Luck K, Heinicke S, Hong B, Colinas M, Lichman BR, O'Connor SE. Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga. THE NEW PHYTOLOGIST 2024; 244:1437-1449. [PMID: 39285533 DOI: 10.1111/nph.20133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.
Collapse
Affiliation(s)
- Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- NMR and Natural Product Biosynthesis Group, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benke Hong
- Department of Chemistry, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, China
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| |
Collapse
|
2
|
Ma F, Li Y, Akkarasereenon K, Qiu H, Cheung YT, Guo Z, Tong R. Aza-Achmatowicz rearrangement coupled with intermolecular aza-Friedel-Crafts enables total syntheses of uleine and aspidosperma alkaloids. Chem Sci 2024; 15:5730-5737. [PMID: 38638226 PMCID: PMC11023026 DOI: 10.1039/d4sc00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Aspidosperma and uleine alkaloids belong to the large family of monoterpene indole alkaloids with diverse biological activities and thus have attracted extensive synthetic interest. Reported is the development of a new synthetic strategy that allows direct C3-C2' linkage of indoles with functionalized 2-hydroxypiperidines to construct the core common to all aspidoserma and uleine alkaloids. Such indole-piperidine linkage is enabled by coupling aza-Achmatowicz rearrangement (AAR) with indoles via an intermolecular aza-Friedel-Crafts (iAFC) reaction. This AAR-iAFC reaction proceeds under mild acidic conditions with wide tolerance of functional groups (33 examples). The synthetic application of the AAR-iAFC method was demonstrated with collective total syntheses of 3 uleine-type and 6 aspidosperma alkaloids: (+)-3-epi-N-nor-dasycarpidone, (+)-3-epi-dasycarpidone, (+)-3-epi-uleine, 1,2-didehydropseudoaspidospermidine, 1,2-dehydroaspidospermidine, vincadifformine, winchinine B, aspidospermidine, and N-acetylaspidospermidine. We expect that this AAR-iAFC strategy is applicable to other monoterpene indole alkaloids with the C3-C2' linkage of indoles and piperidines.
Collapse
Affiliation(s)
- Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yunlong Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Huiying Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| |
Collapse
|
3
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
4
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Kang J, Lewis TR, Gardner A, Andrade RB, Wang RE. Semi-syntheses and interrogation of indole-substituted Aspidosperma terpenoid alkaloids. Org Biomol Chem 2022; 20:3988-3997. [PMID: 35503511 DOI: 10.1039/d2ob00610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated here a series of Aspidosperma terpenoid alkaloids can be quickly prepared using semisynthesis from naturally sourced tabersonine, featuring multiple oxygen-based substituents on the indole ring such as hydroxy and methoxy groups. This panel of complex compounds enabled the exploration of indole modifications to optimize the indole alkaloids' anticancer activity, generating lead compounds (e.g., with C15-hydroxy, C16-methoxy, and/or C17-methoxy derivatizations) that potently inhibit cancer cell line growth in the single-digit micromolar range. These results can help guide the development of Aspidosperma terpenoid alkaloid therapeutics. Furthermore, this synthetic approach features late-stage facile derivatization on complex natural product molecules, providing a versatile path to indole derivatization of this family of alkaloids with diverse chemical functionalities for future medicinal chemistry and chemical biology discoveries.
Collapse
Affiliation(s)
- Jinfeng Kang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Todd R Lewis
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Alex Gardner
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Flynn KM, Myeong IS, Pinto T, Movassaghi M. Total Synthesis of (-)-Voacinol and (-)-Voacandimine C. J Am Chem Soc 2022; 144:9126-9131. [PMID: 35543738 DOI: 10.1021/jacs.2c03057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the first total synthesis of complex aspidosperma alkaloids (-)-voacinol and (-)-voacandimine C via a late-stage C7-methylenation strategy inspired by a biogenetic hypothesis. We envisioned rapid access to these natural alkaloids from a common, symmetrical precursor assembled by methylenation of a D-ring-oxidized variant of the structurally related natural product (-)-deoxoapodine. Chemoselective N9-oxidation of a pentacyclic deoxoapodine precursor enabled the synthesis of the corresponding hexacyclic C8-aminonitrile. Stereocontrolled methylenation of a C8-enamine derivative of deoxoapodine, accessed by ionization of the C8-aminonitrile, afforded a symmetrical dodecacyclic bisaminonitrile as a versatile precursor to these bisindole alkaloids. The final-stage, biosynthesis-inspired, controlled reductive opening of the oxolane substructures of this dodecacyclic intermediate provided a unified approach to (-)-voacinol and (-)-voacandimine C, while direct reduction of the same intermediate afforded the structurally related (-)-methylenebisdeoxoapodine.
Collapse
Affiliation(s)
- Kristen M Flynn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - In-Soo Myeong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Taylor Pinto
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Construction of Benzo‐Fused Heterocycles by Epoxide–Heteronucleophile Cyclization: Applications in the Synthesis of Natural Products and Designed Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Zhu Y, Zhao J, Luo L, Gao Y, Bao H, Li P, Zhang H. Research progress of indole compounds with potential antidiabetic activity. Eur J Med Chem 2021; 223:113665. [PMID: 34192642 DOI: 10.1016/j.ejmech.2021.113665] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/07/2023]
Abstract
New types of antidiabetic agents are continually needed with diabetes becoming the epidemic in the world. Indole alkaloids play an important role in natural products owing to their variable structures and versatile biological activities like anticonvulsant, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, which are a promising source of novel antidiabetic drugs discovery. The synthesized indole derivatives possess similar properties to natural indole alkaloids. In the last two decades, more and more indole derivatives have been designed and synthesized for searching their bioactivities. This present review describes comprehensive structures of indole compounds with the potential antidiabetic activity including natural indole alkaloids and the synthetic indole derivatives based on the structure classification, summarizes their approaches isolated from natural sources or by synthetic methods, and discusses the antidiabetic effects and the mechanisms of action. Furthermore, this review also provides briefly synthetic procedures of some important indole derivatives.
Collapse
Affiliation(s)
- Yuqian Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinran Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Longbiao Luo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - He Bao
- Department of Pharmacy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
11
|
Walia M, Teijaro CN, Gardner A, Tran T, Kang J, Zhao S, O'Connor SE, Courdavault V, Andrade RB. Synthesis of (-)-Melodinine K: A Case Study of Efficiency in Natural Product Synthesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:2425-2433. [PMID: 32786883 DOI: 10.1021/acs.jnatprod.0c00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficiency is a key organizing principle in modern natural product synthesis. Practical criteria include time, cost, and effort expended to synthesize the target, which tracks with step-count and scale. The execution of a natural product synthesis, that is, the sum and identity of each reaction employed therein, falls along a continuum of chemical (abiotic) synthesis on one extreme, followed by the hybrid chemoenzymatic approach, and ultimately biological (biosynthesis) on the other, acknowledging the first synthesis belongs to Nature. Starting materials also span a continuum of structural complexity approaching the target with constituent elements on one extreme, followed by petroleum-derived and "chiral pool" building blocks, and complex natural products (i.e., semisynthesis) on the other. Herein, we detail our approach toward realizing the first synthesis of (-)-melodinine K, a complex bis-indole alkaloid. The total syntheses of monomers (-)-tabersonine and (-)-16-methoxytabersonine employing our domino Michael/Mannich annulation is described. Isolation of (-)-tabersonine from Voacanga africana and strategic biotransformation with tabersonine 16-hydroxylase for site-specific C-H oxidation enabled a scalable route. The Polonovski-Potier reaction was employed in biomimetic fragment coupling. Subsequent manipulations delivered the target. We conclude with a discussion of efficiency in natural products synthesis and how chemical and biological technologies define the synthetic frontier.
Collapse
Affiliation(s)
- Manish Walia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alex Gardner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Thi Tran
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinfeng Kang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours 37200, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
12
|
Mao S, Wang H, Liu L, Wang X, Zhou M, Li L. Trifluoromethylation/Difluoromethylation‐Initiated Radical Cyclization of
o
‐Alkenyl Aromatic Isocyanides for Direct Construction of 4‐Cyano‐2‐Trifluoromethyl/Difluoromethyl‐Containing Quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shukuan Mao
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lu Liu
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lei Li
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| |
Collapse
|
13
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020; 59:7193-7197. [DOI: 10.1002/anie.202000226] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
14
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
15
|
Yang M, Meng XH, Wang Z, Gong Y, Zhao YL. Rhodium/copper-cocatalyzed coupling-cyclization of o-alkenyl arylisocyanides with vinyl azides: one-pot synthesis of α-carbolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00994f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel rhodium/copper-cocatalyzed coupling–cyclization reaction of o-alkenyl arylisocyanides with vinyl azides has been developed. The reaction provides a new route to α-carbolines by the formation of two C–C bonds, one C–N bond and two aromatic rings in a single step.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
16
|
Zhou XJ, Zhao JQ, Chen XM, Zhuo JR, Zhang YP, Chen YZ, Zhang XM, Xu XY, Yuan WC. Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. J Org Chem 2019; 84:4381-4391. [DOI: 10.1021/acs.joc.9b00401] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Jian Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Rui Zhuo
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
17
|
Vidyasagar A, Shi J, Kreitmeier P, Reiser O. Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Org Lett 2018; 20:6984-6989. [DOI: 10.1021/acs.orglett.8b02725] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adiyala Vidyasagar
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jinwei Shi
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Peter Kreitmeier
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
18
|
Wang Y, Xie F, Lin B, Cheng M, Liu Y. Synthetic Approaches to Tetracyclic Indolines as Versatile Building Blocks of Diverse Indole Alkaloids. Chemistry 2018; 24:14302-14315. [DOI: 10.1002/chem.201800775] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/29/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yanshi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| |
Collapse
|
19
|
Recent advances in the development of polycyclic skeletons via Ugi reaction cascades. Mol Divers 2018; 22:503-516. [DOI: 10.1007/s11030-017-9811-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
|
20
|
Wang Y, Lin J, Wang X, Wang G, Zhang X, Yao B, Zhao Y, Yu P, Lin B, Liu Y, Cheng M. Brønsted Acid-Catalyzed Tandem Cyclizations of Tryptamine-Ynamides Yielding 1H
-Pyrrolo[2,3-d
]carbazole Derivatives. Chemistry 2018; 24:4026-4032. [DOI: 10.1002/chem.201705189] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yanshi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Jingsheng Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Guanghui Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Bo Yao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Yuandong Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Pengfei Yu
- State Key Laboratory of Hollow-Fiber Membrane Materials, and Membrane Processes; School of Environmental and Chemical Engineering; Tianjin Polytechnic University; Tianjin 300387 P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| |
Collapse
|
21
|
Sato S, Hirayama A, Ueda H, Tokuyama H. Total Syntheses of (+)-T988 B and (+)-T988 C through the AgNTf2-Mediated Coupling of Bromopyrroloindoline with Indole. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soichiro Sato
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba 6-3, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Azusa Hirayama
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba 6-3, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba 6-3, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences; Tohoku University; Aoba 6-3, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
22
|
Tan PW, Seayad J, Dixon DJ. Expeditious and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates. Angew Chem Int Ed Engl 2016; 55:13436-13440. [DOI: 10.1002/anie.201605503] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Peng Wen Tan
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford UK
- Organic Chemistry; Institute of Chemical and Engineering Sciences; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Jayasree Seayad
- Organic Chemistry; Institute of Chemical and Engineering Sciences; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Darren J. Dixon
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford UK
| |
Collapse
|
23
|
Tan PW, Seayad J, Dixon DJ. Expeditious and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605503] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wen Tan
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford UK
- Organic Chemistry; Institute of Chemical and Engineering Sciences; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Jayasree Seayad
- Organic Chemistry; Institute of Chemical and Engineering Sciences; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Darren J. Dixon
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford UK
| |
Collapse
|
24
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Wyler B, Brucelle F, Renaud P. Preparation of the Core Structure of Aspidosperma and Strychnos Alkaloids from Aryl Azides by a Cascade Radical Cyclization. Org Lett 2016; 18:1370-3. [DOI: 10.1021/acs.orglett.6b00306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Benjamin Wyler
- Universität Bern, Departement für Chemie und Biochemie, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - François Brucelle
- Universität Bern, Departement für Chemie und Biochemie, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Philippe Renaud
- Universität Bern, Departement für Chemie und Biochemie, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
26
|
Han-ya Y, Inui T, Yokoshima S, Tokuyama H, Fukuyama T. Conversion of Vindoline into 11-Mesyloxytabersonine. Chem Pharm Bull (Tokyo) 2016; 64:800-4. [DOI: 10.1248/cpb.c16-00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Han-ya
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Tomohiko Inui
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | | | | | - Tohru Fukuyama
- Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
27
|
Li Z, Sharma N, Sharma UK, Jacobs J, Van Meervelt L, Van der Eycken EV. Ligand-controlled product selectivity in palladium-catalyzed domino post-Ugi construction of (spiro)polyheterocycles. Chem Commun (Camb) 2016; 52:5516-9. [DOI: 10.1039/c6cc00784h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Driven by a ligand: a phosphine ligand controlled regioselective divergence towards (spiro)polyheterocycles possessing two adjacent quaternary carbon stereocenters is described.
Collapse
Affiliation(s)
- Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| | - Nandini Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| | - Jeroen Jacobs
- Biomolecular Architecture
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- University of Leuven (KU Leuven)
- Leuven
- Belgium
| |
Collapse
|
28
|
Guo B, Ge L, Huang G, Zhao L, Chen J, Cao W, Wu X. Expedient Introduction of β-Methoxyacrylate Unit onto 3-Substituted Indoles and Application of the Resulting Indole-Dienes in Organocascade toward Indolino-Polycyclics. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Abstract
This chapter covers the literature on bisindole alkaloids consisting of monoterpenoid indoles, published up to June 2015. Bisindole alkaloids isolated from plants belonging to the families Apocynaceae and Loganiaceae, including Iboga-vobasine type, Aspidosperma-Aspidosperma type, eburnan-Aspidosperma type, Strychnos-Strychnos type, macroline-macroline type, and so on, are described. Some recent syntheses of monoterpenoid bisindole alkaloids are outlined as well.
Collapse
Affiliation(s)
- Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
30
|
|
31
|
Fang Y, Wang SY, Shen XB, Ji SJ. Base-promoted cascade reaction of isocyanides, selenium and amines: a practical approach to 2-aminobenzo[d][1,3]selenazines under metal-free conditions. Org Chem Front 2015. [DOI: 10.1039/c5qo00150a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the construction of 2-aminobenzo[d][1,3]selenazines under metal-free conditions was established.
Collapse
Affiliation(s)
- Yi Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Xiao-Bin Shen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
32
|
Yoshii Y, Otsu T, Hosokawa N, Takasu K, Okano K, Tokuyama H. Synthetic studies toward penitrem E: enantiocontrolled construction of B–E rings. Chem Commun (Camb) 2015; 51:1070-3. [DOI: 10.1039/c4cc08505a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enantiocontrolled construction of B–E rings of penitrem E was accomplished from 4-iodoindole through diastereoselective Tf2NH-catalyzed (2+2)-cycloaddition.
Collapse
Affiliation(s)
- Yu Yoshii
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Takanori Otsu
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Norihiko Hosokawa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kentaro Okano
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
33
|
Mewald M, Medley JW, Movassaghi M. Concise and enantioselective total synthesis of (-)-mehranine, (-)-methylenebismehranine, and related Aspidosperma alkaloids. Angew Chem Int Ed Engl 2014; 53:11634-9. [PMID: 25196158 PMCID: PMC4240000 DOI: 10.1002/anie.201405609] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 11/08/2022]
Abstract
We report an efficient and highly stereoselective strategy for the synthesis of Aspidosperma alkaloids based on the transannular cyclization of a chiral lactam precursor. Three new stereocenters are formed in this key step with excellent diastereoselectivity due to the conformational bias of the cyclization precursor, leading to a versatile pentacyclic intermediate. A subsequent stereoselective epoxidation followed by a mild formamide reduction enabled the first total synthesis of the Aspidosperma alkaloids (-)-mehranine and (+)-(6S,7S)-dihydroxy-N-methylaspidospermidine. A late-stage dimerization of (-)-mehranine mediated by scandium trifluoromethanesulfonate completed the first total synthesis of (-)-methylenebismehranine.
Collapse
Affiliation(s)
- Marius Mewald
- Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
| | | | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
| |
Collapse
|
34
|
Mewald M, Medley JW, Movassaghi M. Enantioselektive Totalsynthese von (−)-Mehranin, (−)-Methylenbismehranin und verwandtenAspidosperma-Alkaloiden. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Nge CE, Gan CY, Low YY, Thomas NF, Kam TS. Voatinggine and tabertinggine, pentacyclic indole alkaloids derived from an iboga precursor via a common cleavamine-type intermediate. Org Lett 2013; 15:4774-7. [PMID: 23991636 DOI: 10.1021/ol4021404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new indole alkaloids, voatinggine (1) and tabertinggine (2), which are characterized by previously unencountered natural product skeletons, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined using NMR and MS analysis, and X-ray diffraction analysis. A possible biogenetic pathway to these novel alkaloids from an iboga precursor, and via a common cleavamine-type intermediate, is presented.
Collapse
Affiliation(s)
- Choy-Eng Nge
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
36
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2013; 30:694-752. [DOI: 10.1039/c3np20118j] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Yeung KS, Peng XS, Wu J, Hou XL. Five-Membered Ring Systems: Furans and Benzofurans. PROGRESS IN HETEROCYCLIC CHEMISTRY 2012. [DOI: 10.1016/b978-0-08-096807-0.00007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Mizoguchi H, Oikawa H, Oguri H. Hg(OTf)2-catalyzed direct vinylation of tryptamines and versatile applications for tandem reactions. Org Biomol Chem 2012; 10:4236-42. [DOI: 10.1039/c2ob25236h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Lopchuk JM. Recent Advances in the Synthesis of Aspidosperma-Type Alkaloids. PROGRESS IN HETEROCYCLIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-08-096805-6.00001-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|