1
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
2
|
Wan Q, Bennett BC, Wymore T, Li Z, Wilson MA, Brooks CL, Langan P, Kovalevsky A, Dealwis CG. Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid-Base Catalysis. ACS Catal 2021; 11:5873-5884. [PMID: 34055457 PMCID: PMC8154319 DOI: 10.1021/acscatal.1c00417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Indexed: 02/04/2023]
Abstract
![]()
Acid–base
catalysis, which involves one or more proton transfer
reactions, is a chemical mechanism commonly employed by many enzymes.
The molecular basis for catalysis is often derived from structures
determined at the optimal pH for enzyme activity. However, direct
observation of protons from experimental structures is quite difficult;
thus, a complete mechanistic description for most enzymes remains
lacking. Dihydrofolate reductase (DHFR) exemplifies general acid–base
catalysis, requiring hydride transfer and protonation of its substrate,
DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and
neutron crystal structures coupled with theoretical calculations have
proposed that solvent mediates the protonation step. However, visualization
of a proton transfer has been elusive. Based on a 2.1 Å resolution
neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the
direct observation of the catalytic proton and its parent solvent
molecule. Comparison of X-ray and neutron structures elucidated at
acidic and neutral pH reveals dampened dynamics at acidic pH, even
for the regulatory Met20 loop. Guided by the structures and calculations,
we propose a mechanism where dynamics are crucial for solvent entry
and protonation of substrate. This mechanism invokes the release of
a sole proton from a hydronium (H3O+) ion, its
pathway through a narrow channel that sterically hinders the passage
of water, and the ultimate protonation of DHF at the N5 atom.
Collapse
Affiliation(s)
| | - Brad C. Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Troy Wymore
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
3
|
Saito K, Mandal M, Ishikita H. Energetics of Ionized Water Molecules in the H-Bond Network near the Ca2+ and Cl– Binding Sites in Photosystem II. Biochemistry 2020; 59:3216-3224. [DOI: 10.1021/acs.biochem.0c00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
5
|
Abstract
This chapter aims to give an overview of the process of interactive model building in macromolecular neutron crystallography for the researcher transitioning from X-ray crystallography alone. The two most popular programs for refinement and model building, phenix.refine and Coot, respectively, are used as examples, and familiarity with the programs is assumed. Some work-arounds currently required for proper communication between the programs are described. We also discuss the appearance of nuclear density maps and how this differs from that of electron density maps. Advice is given to facilitate deposition of jointly refined neutron/X-ray structures in the Protein Data Bank.
Collapse
|
6
|
Shibazaki C, Shimizu R, Kagotani Y, Ostermann A, Schrader TE, Adachi M. Direct Observation of the Protonation States in the Mutant Green Fluorescent Protein. J Phys Chem Lett 2020; 11:492-496. [PMID: 31880458 DOI: 10.1021/acs.jpclett.9b03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neutron crystallography has been used to elucidate the protonation states for the enhanced green fluorescent protein, which has revolutionized imaging technologies. The structure has a deprotonated hydroxyl group in the fluorescent chromophore. Also, the protonation states of His148 and Thr203, as well as the orientation of a critical water molecule in direct contact with the chromophore, could be determined. The results demonstrate that the deprotonated hydroxyl group in the chromophore and the nitrogen atom ND1 in His148 are charged negatively and positively, respectively, forming an ion pair. The position of the two deuterium atoms in the critical water molecule appears to be displaced slightly toward the acceptor oxygen atoms according to their omit maps. This displacement implies the formation of an intriguing electrostatic potential realized inside of the protein. Our findings provide new insights into future protein design strategies along with developments in quantum chemical calculations.
Collapse
Affiliation(s)
- Chie Shibazaki
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Yuji Kagotani
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstrasse 1 , 85748 Garching , Germany
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , 85748 Garching , Germany
| | - Motoyasu Adachi
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| |
Collapse
|
7
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
8
|
Koruza K, Mahon BP, Blakeley MP, Ostermann A, Schrader TE, McKenna R, Knecht W, Fisher SZ. Using neutron crystallography to elucidate the basis of selective inhibition of carbonic anhydrase by saccharin and a derivative. J Struct Biol 2019; 205:147-154. [DOI: 10.1016/j.jsb.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
|
9
|
Ashkar R, Bilheux HZ, Bordallo H, Briber R, Callaway DJE, Cheng X, Chu XQ, Curtis JE, Dadmun M, Fenimore P, Fushman D, Gabel F, Gupta K, Herberle F, Heinrich F, Hong L, Katsaras J, Kelman Z, Kharlampieva E, Kneller GR, Kovalevsky A, Krueger S, Langan P, Lieberman R, Liu Y, Losche M, Lyman E, Mao Y, Marino J, Mattos C, Meilleur F, Moody P, Nickels JD, O'Dell WB, O'Neill H, Perez-Salas U, Peters J, Petridis L, Sokolov AP, Stanley C, Wagner N, Weinrich M, Weiss K, Wymore T, Zhang Y, Smith JC. Neutron scattering in the biological sciences: progress and prospects. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1129-1168. [PMID: 30605130 DOI: 10.1107/s2059798318017503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.
Collapse
Affiliation(s)
- Rana Ashkar
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - Hassina Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Robert Briber
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - David J E Callaway
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Xiaolin Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| | - Xiang Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Paul Fenimore
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Frank Gabel
- Institut Laue-Langevin, Université Grenoble Alpes, CEA, CNRS, IBS, 38042 Grenoble, France
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick Herberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Frank Heinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Liang Hong
- Department of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - John Katsaras
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL 35294, USA
| | - Gerald R Kneller
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, Chateau de la Source, Avenue du Parc Floral, Orléans, France
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Paul Langan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yun Liu
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mathias Losche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, DE 19716, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Peter Moody
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, England
| | - Jonathan D Nickels
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Hugh O'Neill
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Ursula Perez-Salas
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Loukas Petridis
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Christopher Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Norman Wagner
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michael Weinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Kevin Weiss
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Troy Wymore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Yang Zhang
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Jeremy C Smith
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol 2018; 58:62-71. [PMID: 30502621 DOI: 10.1016/j.copbio.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other. However, like in most of biology, imperfections in the coupling mechanism exist and we argue that these are innocuous and may even be beneficial for the cell. We discuss the energetics and kinetics of alternating-access in secondary transport and focus on the mechanistic aspects of imperfect coupling that give rise to leak pathways. Additionally, inspection of available transporter structures gives valuable insight into coupling mechanics, and we review literature where proteins have been altered to change their coupling efficiency.
Collapse
Affiliation(s)
- Ryan K Henderson
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
11
|
Fatima T, Rani S, Fischer S, Efferth T, Kiani FA. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism. Biophys Chem 2018; 240:98-106. [PMID: 30014892 DOI: 10.1016/j.bpc.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorable mechanism, two water molecules participate in the hydrolysis reaction and the mechanism is sequential, i.e., activation of the attacking water molecule (OH bond breaking) precedes that of the cleavage of the CO bond of the C-O-C linkage. The rate-limiting energy barrier of this mechanism is comparable to the reported experimental free energy barrier. This mechanism has similarities with the mechanism of triphosphate hydrolysis and that of hydrolytic cleavage of DNA in EcoRV enzyme. This two-water sequential hydrolysis mechanism could be the unified mechanism required for the hydrolysis of other hydrolysable species in living cells.
Collapse
Affiliation(s)
- Tabeer Fatima
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Biotechnology, University of Sialkot, 51310 Sialkot, Pakistan
| | - Sadaf Rani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing, The University of Heidelberg, D-69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Farooq Ahmad Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, 02118 Boston, MA, United States.
| |
Collapse
|
12
|
Wu X, Brooks BR. Hydronium Ions Accompanying Buried Acidic Residues Lead to High Apparent Dielectric Constants in the Interior of Proteins. J Phys Chem B 2018; 122:6215-6223. [PMID: 29771522 DOI: 10.1021/acs.jpcb.8b04584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Internal ionizable groups are known to play important roles in protein functions. A mystery that has attracted decades of extensive experimental and theoretical studies is the apparent dielectric constants experienced by buried ionizable groups, which are much higher than values expected for protein interiors. Many interpretations have been proposed, such as water penetration, conformational relaxation, local unfolding, protein intrinsic backbone fluctuations, etc. However, these interpretations conflict with many experimental observations. The virtual mixture of multiple states (VMMS) simulation method developed in our lab provides a direct approach for studying the equilibrium of multiple chemical states and can monitor p Ka values along simulation trajectories. Through VMMS simulations of staphylococcal nuclease (SNase) variants with internal Asp or Glu residues, we discovered that cations were attracted to buried deprotonated acidic groups and the presence of the nearby cations were essential to reproduce experimentally measured p Ka values. This finding, combined with structural analysis and validation simulations, suggests that the proton released from a deprotonation process stays near the deprotonated group inside proteins, possibly in the form of a hydronium ion. The existence of a proton near a buried charge has many implications in our understanding of protein functions.
Collapse
Affiliation(s)
- Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
13
|
Neutron macromolecular crystallography. Emerg Top Life Sci 2018; 2:39-55. [DOI: 10.1042/etls20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.
Collapse
|
14
|
Muthuraman G, Balaji S, Moon IS. Scalable and simultaneous generation of homogeneous acid Co(III) and base Co(I) electrocatalysts using a divided electrolyzer. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ikeda T, Saito K, Hasegawa R, Ishikita H. The Existence of an Isolated Hydronium Ion in the Interior of Proteins. Angew Chem Int Ed Engl 2017; 56:9151-9154. [PMID: 28613440 PMCID: PMC5575531 DOI: 10.1002/anie.201705512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022]
Abstract
Neutron diffraction analysis studies reported an isolated hydronium ion (H3O+) in the interior of d‐xylose isomerase (XI) and phycocyanobilin‐ferredoxin oxidoreductase (PcyA). H3O+ forms hydrogen bonds (H‐bonds) with two histidine side‐chains and a backbone carbonyl group in PcyA, whereas H3O+ forms H‐bonds with three acidic residues in XI. Using a quantum mechanical/molecular mechanical (QM/MM) approach, we analyzed stabilization of H3O+ by the protein environment. QM/MM calculations indicated that H3O+ was unstable in the PcyA crystal structure, releasing a proton to an H‐bond partner His88, producing H2O and protonated His88. On the other hand, H3O+ was stable in the XI crystal structure. H‐bond partners of isolated H3O+ would be practically limited to acidic residues such as aspartic and glutamic acids in the protein environment.
Collapse
Affiliation(s)
- Takuya Ikeda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Ryo Hasegawa
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
16
|
Ikeda T, Saito K, Hasegawa R, Ishikita H. The Existence of an Isolated Hydronium Ion in the Interior of Proteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Ikeda
- Department of Applied Chemistry The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Keisuke Saito
- Department of Applied Chemistry The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Ryo Hasegawa
- Department of Applied Chemistry The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
17
|
Oksanen E, Chen JCH, Fisher SZ. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Molecules 2017; 22:molecules22040596. [PMID: 28387738 PMCID: PMC6154725 DOI: 10.3390/molecules22040596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.
Collapse
Affiliation(s)
- Esko Oksanen
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39, 22362 Lund, Sweden.
| | - Julian C-H Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Suzanne Zoë Fisher
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
18
|
Molčanov K, Jelsch C, Wenger E, Stare J, Madsen AØ, Kojić-Prodić B. Experimental evidence of a 3-centre, 2-electron covalent bond character of the central O–H–O fragment on the Zundel cation in crystals of Zundel nitranilate tetrahydrate. CrystEngComm 2017. [DOI: 10.1039/c7ce00501f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Charge density of the Zundel cation in the solid state reveals a covalent nature of its central O–H–O fragment.
Collapse
Affiliation(s)
| | - Christian Jelsch
- Cristallographie
- Résonance Magnétique et Modélisations CNRS
- UMR 7036
- Institut Jean Barriol
- CNRS and Université de Lorraine BP 70239
| | - Emmanuel Wenger
- Cristallographie
- Résonance Magnétique et Modélisations CNRS
- UMR 7036
- Institut Jean Barriol
- CNRS and Université de Lorraine BP 70239
| | - Jernej Stare
- National Institute of Chemistry
- Hajdrihova 19
- SI-1000 Ljubljana
- Slovenia
| | - Anders Ø. Madsen
- Department of Pharmacy
- University of Copenhagen
- 2100 København
- Denmark
| | | |
Collapse
|
19
|
Chen JCH, Unkefer CJ. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography. IUCRJ 2017; 4:72-86. [PMID: 28250943 PMCID: PMC5331467 DOI: 10.1107/s205225251601664x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Clifford J. Unkefer
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
20
|
Biological Structures. NEUTRON SCATTERING - APPLICATIONS IN BIOLOGY, CHEMISTRY, AND MATERIALS SCIENCE 2017. [DOI: 10.1016/b978-0-12-805324-9.00001-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states. Proc Natl Acad Sci U S A 2016; 113:13756-13761. [PMID: 27856757 DOI: 10.1073/pnas.1609718113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.
Collapse
|
22
|
Cuypers MG, Mason SA, Mossou E, Haertlein M, Forsyth VT, Mitchell EP. Macromolecular structure phasing by neutron anomalous diffraction. Sci Rep 2016; 6:31487. [PMID: 27511806 PMCID: PMC4980602 DOI: 10.1038/srep31487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/20/2016] [Indexed: 01/07/2023] Open
Abstract
In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions - all of which are of central importance to a wide range of fundamental and applied areas in the biosciences.
Collapse
Affiliation(s)
- Maxime G. Cuypers
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Sax A. Mason
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Estelle Mossou
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | | | - V. Trevor Forsyth
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Edward P. Mitchell
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ESRF, 71 avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
23
|
The use of neutron scattering to determine the functional structure of glycoside hydrolase. Curr Opin Struct Biol 2016; 40:54-61. [PMID: 27494120 DOI: 10.1016/j.sbi.2016.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022]
Abstract
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples.
Collapse
|
24
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
25
|
Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail. J Mol Biol 2016; 428:1776-89. [DOI: 10.1016/j.jmb.2016.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
|
26
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016; 55:4924-7. [PMID: 26958828 DOI: 10.1002/anie.201509989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Indexed: 11/11/2022]
Abstract
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amit Das
- Solid State Physics Division, BARC, Trombay, Mumbai, 400085, India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin, 71 avenue des Martyrs - CS 20156, 38042, Grenoble Cedex 9, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
27
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Amit Das
- Solid State Physics Division; BARC; Trombay Mumbai 400085 India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - David A. Keen
- ISIS Facility; Rutherford Appleton Laboratory; Harwell Oxford Didcot OX11 0QX UK
| | - Matthew P. Blakeley
- Large-Scale Structures Group; Institut Laue Langevin; 71 avenue des Martyrs - CS 20156 38042 Grenoble Cedex 9 France
| | - John M. Louis
- Laboratory of Chemical Physics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health, DHHS; Bethesda MD 20892-0520 USA
| | - Paul Langan
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Irene T. Weber
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| |
Collapse
|
28
|
Haertlein M, Moulin M, Devos JM, Laux V, Dunne O, Trevor Forsyth V. Biomolecular Deuteration for Neutron Structural Biology and Dynamics. Methods Enzymol 2016; 566:113-57. [DOI: 10.1016/bs.mie.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Edlich-Muth C, Artero JB, Callow P, Przewloka MR, Watson AA, Zhang W, Glover DM, Debski J, Dadlez M, Round AR, Forsyth VT, Laue ED. The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. J Mol Biol 2015; 427:1949-63. [PMID: 25813344 PMCID: PMC4414354 DOI: 10.1016/j.jmb.2015.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/28/2022]
Abstract
Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.
Collapse
Affiliation(s)
- Christian Edlich-Muth
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Jean-Baptiste Artero
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Phil Callow
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Marcin R Przewloka
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH Cambridge, United Kingdom
| | - Aleksandra A Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH Cambridge, United Kingdom
| | - Janusz Debski
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106 Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106 Warsaw, Poland
| | - Adam R Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; Unit for Virus Host-Cell Interactions, University Grenoble Alpes-European Molecular Biology Laboratory-CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom.
| |
Collapse
|
30
|
Unno M, Ishikawa-Suto K, Kusaka K, Tamada T, Hagiwara Y, Sugishima M, Wada K, Yamada T, Tomoyori K, Hosoya T, Tanaka I, Niimura N, Kuroki R, Inaka K, Ishihara M, Fukuyama K. Insights into the Proton Transfer Mechanism of a Bilin Reductase PcyA Following Neutron Crystallography. J Am Chem Soc 2015; 137:5452-60. [PMID: 25872660 DOI: 10.1021/jacs.5b00645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phycocyanobilin, a light-harvesting and photoreceptor pigment in higher plants, algae, and cyanobacteria, is synthesized from biliverdin IXα (BV) by phycocyanobilin:ferredoxin oxidoreductase (PcyA) via two steps of two-proton-coupled two-electron reduction. We determined the neutron structure of PcyA from cyanobacteria complexed with BV, revealing the exact location of the hydrogen atoms involved in catalysis. Notably, approximately half of the BV bound to PcyA was BVH(+), a state in which all four pyrrole nitrogen atoms were protonated. The protonation states of BV complemented the protonation of adjacent Asp105. The "axial" water molecule that interacts with the neutral pyrrole nitrogen of the A-ring was identified. His88 Nδ was protonated to form a hydrogen bond with the lactam O atom of the BV A-ring. His88 and His74 were linked by hydrogen bonds via H3O(+). These results imply that Asp105, His88, and the axial water molecule contribute to proton transfer during PcyA catalysis.
Collapse
Affiliation(s)
- Masaki Unno
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan.,‡Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
| | - Kumiko Ishikawa-Suto
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan.,‡Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan.,§Quantum Beam Science Center, Japan Atomic Energy Agency, Naka 319-1195, Japan
| | - Katsuhiro Kusaka
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan
| | - Taro Tamada
- §Quantum Beam Science Center, Japan Atomic Energy Agency, Naka 319-1195, Japan
| | - Yoshinori Hagiwara
- ∥Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.,⊥Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, Kurume 830-8555, Japan
| | - Masakazu Sugishima
- #Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei Wada
- ∇Organization for Promotion of Tenure Track, University of Miyazaki, Kiyotake 889-1692, Japan
| | - Taro Yamada
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan
| | - Katsuaki Tomoyori
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan.,§Quantum Beam Science Center, Japan Atomic Energy Agency, Naka 319-1195, Japan
| | - Takaaki Hosoya
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan.,‡Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
| | - Ichiro Tanaka
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan.,‡Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
| | - Nobuo Niimura
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan
| | - Ryota Kuroki
- §Quantum Beam Science Center, Japan Atomic Energy Agency, Naka 319-1195, Japan
| | - Koji Inaka
- ○MARUWA Foods and Biosciences Inc., Yamatokoriyama 639-1123, Japan
| | - Makiko Ishihara
- †Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka 319-1106, Japan
| | - Keiichi Fukuyama
- ∥Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.,◆Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
31
|
Hussain MA, Mahadevi AS, Sastry GN. Estimating the binding ability of onium ions with CO2 and π systems: a computational investigation. Phys Chem Chem Phys 2015; 17:1763-75. [DOI: 10.1039/c4cp03434a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The impact of increasing methyl substitution on onium ions in their complexes with CO2 and aromatic systems has been analyzed using DFT calculations.
Collapse
Affiliation(s)
- M. Althaf Hussain
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - A. Subha Mahadevi
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| | - G. Narahari Sastry
- Center for Molecular Modeling
- Indian Institute of Chemical Technology
- Hyderabad 500607
- India
| |
Collapse
|
32
|
Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proc Natl Acad Sci U S A 2014; 111:18225-30. [PMID: 25453083 DOI: 10.1073/pnas.1415856111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP(+). The neutron data were collected to 2.0-Å resolution using a 3.6-mm(3) crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed.
Collapse
|
33
|
Fisher SJ, Blakeley MP, Howard EI, Petit-Haertlein I, Haertlein M, Mitschler A, Cousido-Siah A, Salvay AG, Popov A, Muller-Dieckmann C, Petrova T, Podjarny A. Perdeuteration: improved visualization of solvent structure in neutron macromolecular crystallography. ACTA ACUST UNITED AC 2014; 70:3266-72. [DOI: 10.1107/s1399004714021610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022]
Abstract
The 1.8 Å resolution neutron structure of deuterated type III antifreeze protein in which the methyl groups of leucine and valine residues are selectively protonated is presented. Comparison between this and the 1.85 Å resolution neutron structure of perdeuterated type III antifreeze protein indicates that perdeuteration improves the visibility of solvent molecules located in close vicinity to hydrophobic residues, as cancellation effects between H atoms of the methyl groups and nearby heavy-water molecules (D2O) are avoided.
Collapse
|
34
|
Haupt M, Blakeley MP, Fisher SJ, Mason SA, Cooper JB, Mitchell EP, Forsyth VT. Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein. IUCRJ 2014; 1:429-38. [PMID: 25485123 PMCID: PMC4224461 DOI: 10.1107/s2052252514021113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/22/2014] [Indexed: 05/12/2023]
Abstract
Human transthyretin has an intrinsic tendency to form amyloid fibrils and is heavily implicated in senile systemic amyloidosis. Here, detailed neutron structural studies of perdeuterated transthyretin are described. The analyses, which fully exploit the enhanced visibility of isotopically replaced hydrogen atoms, yield new information on the stability of the protein and the possible mechanisms of amyloid formation. Residue Ser117 may play a pivotal role in that a single water molecule is closely associated with the γ-hydrogen atoms in one of the binding pockets, and could be important in determining which of the two sites is available to the substrate. The hydrogen-bond network at the monomer-monomer interface is more extensive than that at the dimer-dimer interface. Additionally, the edge strands of the primary dimer are seen to be favourable for continuation of the β-sheet and the formation of an extended cross-β structure through sequential dimer couplings. It is argued that the precursor to fibril formation is the dimeric form of the protein.
Collapse
Affiliation(s)
- Melina Haupt
- Facility of Natural Sciences, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
- Institut Laue-Langevin, 71, avenue des Martyrs, Grenoble, CS 20156, France
- Partnership for Structural Biology, 71, avenue des Martyrs, Grenoble, CS 20156, France
| | - Matthew P. Blakeley
- Institut Laue-Langevin, 71, avenue des Martyrs, Grenoble, CS 20156, France
- Partnership for Structural Biology, 71, avenue des Martyrs, Grenoble, CS 20156, France
| | - Stuart J. Fisher
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Sax A. Mason
- Institut Laue-Langevin, 71, avenue des Martyrs, Grenoble, CS 20156, France
| | - Jon B. Cooper
- Division of Medicine (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Edward P. Mitchell
- Facility of Natural Sciences, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
- Partnership for Structural Biology, 71, avenue des Martyrs, Grenoble, CS 20156, France
- Business Development Office, European Synchrotron Radiation Facility, Grenoble, 38042, France
| | - V. Trevor Forsyth
- Facility of Natural Sciences, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
- Institut Laue-Langevin, 71, avenue des Martyrs, Grenoble, CS 20156, France
- Partnership for Structural Biology, 71, avenue des Martyrs, Grenoble, CS 20156, France
| |
Collapse
|
35
|
L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. Structure 2014; 22:1287-1300. [DOI: 10.1016/j.str.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
|
36
|
Catalytic strategy used by the myosin motor to hydrolyze ATP. Proc Natl Acad Sci U S A 2014; 111:E2947-56. [PMID: 25006262 DOI: 10.1073/pnas.1401862111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.
Collapse
|
37
|
Prabhu P, Doan TNT, Tiwari M, Singh R, Kim SC, Hong MK, Kang YC, Kang LW, Lee JK. Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS J 2014; 281:3446-59. [PMID: 24925069 DOI: 10.1111/febs.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Two-metal-dependent sugar isomerases are important in the synthesis of rare sugars. Many of their properties, specifically their metal dependency, have not been sufficiently explored. Here we used X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and electron paramagnetic resonance spectroscopy to investigate the molecular determinants of the metal-binding affinity of l-rhamnose isomerase, a two-Mn(2+) -dependent isomerase from Bacillus halodurans (BHRI). The crystal structure of BHRI confirmed the presence of two metal ion-binding sites: a structural metal ion-binding site for substrate binding, and a catalytic metal ion-binding site that catalyzes a hydride shift. One conserved amino acid, W38, in wild-type BHRI was identified as a critical residue for structural Mn(2+) binding and thus the catalytic efficiency of BHRI. This function of W38 was explored by replacing it with other amino acids. Substitution by Phe, His, Lys, Ile or Ala caused complete loss of catalytic activity. The role of W38 was further examined by analyzing the crystal structure of wild-type BHRI and two inactive mutants of BHRI (W38F and W38A) in complex with Mn(2+) . A structural comparison of the mutants and the wild-type revealed differences in their coordination of Mn(2+) , including changes in metal-ligand bond length and affinity for Mn(2+) . The role of W38 was further confirmed in another two-metal-dependent enzyme: xylose isomerase from Bacillus licheniformis. These data suggest that W38 stabilizes protein-metal complexes and in turn assists ligand binding during catalysis in two-metal-dependent isomerases. STRUCTURED DIGITAL ABSTRACT BHRI and BHRI bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Ponnandy Prabhu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sippel KH, Bacik J, Quiocho FA, Fisher SZ. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station. Acta Crystallogr F Struct Biol Commun 2014; 70:819-22. [PMID: 24915101 PMCID: PMC4051545 DOI: 10.1107/s2053230x14009704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.
Collapse
Affiliation(s)
- K. H. Sippel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - J. Bacik
- Bioscience Division B-11, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - F. A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Z. Fisher
- Scientific Activities Division, European Spallation Source, 221 00 Lund, Sweden
| |
Collapse
|
39
|
Waltman MJ, Yang ZK, Langan P, Graham DE, Kovalevsky A. Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design. Protein Eng Des Sel 2014; 27:59-64. [PMID: 24402330 DOI: 10.1093/protein/gzt062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To maximize bioethanol production from lignocellulosic biomass, all sugars must be utilized. Yeast fermentation can be improved by introducing the d-xylose isomerase enzyme to convert the pentose sugar d-xylose, which cannot be fermented by Saccharomyces cerevisiae, into the fermentable ketose d-xylulose. The low activity of d-xylose isomerase, especially at the low pH required for optimal fermentation, limits its use. A rational enzyme engineering approach was undertaken, and seven amino acid positions were replaced to improve the activity of Streptomyces rubiginosus d-xylose isomerase towards its physiological substrate at pH values below 6. The active-site design was guided by mechanistic insights and the knowledge of amino acid protonation states at low pH obtained from previous joint X-ray/neutron crystallographic experiments. Tagging the enzyme with 6 or 12 histidine residues at the N-terminus resulted in a significant increase in the active-site affinity towards substrate at pH 5.8. Substituting an asparagine at position 215, which hydrogen bonded to the metal-bound Glu181 and Asp245, with an aspartate gave a variant with almost an order of magnitude lower KM than measured for the native enzyme, with a 4-fold increase in activity. Other studied variants showed similar (Asp57Asn, Glu186Gln/Asn215Asp), lower (Asp57His, Asn247Asp, Lys289His, Lys289Glu) or no (Gln256Asp, Asp287Asn, ΔAsp287) activity in acidic conditions relative to the native enzyme.
Collapse
Affiliation(s)
- Mary Jo Waltman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
40
|
Golden EA, Vrielink A. Looking for Hydrogen Atoms: Neutron Crystallography Provides Novel Insights Into Protein Structure and Function. Aust J Chem 2014. [DOI: 10.1071/ch14337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutron crystallography allows direct localization of hydrogen positions in biological macromolecules. Within enzymes, hydrogen atoms play a pivotal role in catalysis. Recent advances in instrumentation and sample preparation have helped to overcome the difficulties of performing neutron diffraction experiments on protein crystals. The application of neutron macromolecular crystallography to a growing number of proteins has yielded novel structural insights. The ability to accurately position water molecules, hydronium ions, and hydrogen atoms within protein structures has helped in the study of low-barrier hydrogen bonds and hydrogen-bonding networks. The determination of protonation states of protein side chains, substrates, and inhibitors in the context of the macromolecule has provided important insights into enzyme chemistry and ligand binding affinities, which can assist in the design of potent therapeutic agents. In this review, we give an overview of the method and highlight advances in knowledge attained through the application of neutron protein crystallography.
Collapse
|
41
|
Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. Structure-based mechanism for Na(+)/melibiose symport by MelB. Nat Commun 2014; 5:3009. [PMID: 24389923 PMCID: PMC4026327 DOI: 10.1038/ncomms4009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/22/2013] [Indexed: 12/12/2022] Open
Abstract
The bacterial melibiose permease (MelB) belongs to the glycoside-pentoside-hexuronide:cation symporter family, a part of the major facilitator superfamily (MFS). Structural information regarding glycoside-pentoside-hexuronide:cation symporter family transporters and other Na(+)-coupled permeases within MFS has been lacking, although a wealth of biochemical and biophysical data are available. Here we present the three-dimensional crystal structures of Salmonella typhimurium MelBSt in two conformations, representing an outward partially occluded and an outward inactive state of MelBSt. MelB adopts a typical MFS fold and contains a previously unidentified cation-binding motif. Three conserved acidic residues form a pyramidal-shaped cation-binding site for Na(+), Li(+) or H(+), which is in close proximity to the sugar-binding site. Both cosubstrate-binding sites are mainly contributed by the residues from the amino-terminal domain. These two structures and the functional data presented here provide mechanistic insights into Na(+)/melibiose symport. We also postulate a structural foundation for the conformational cycling necessary for transport catalysed by MFS permeases in general.
Collapse
Affiliation(s)
- Abdul S. Ethayathulla
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Mohammad S. Yousef
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
- Present address: Department of Physics, College of Arts and Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1654, USA (on leave from: Biophysics Department, Faculty of Science, Cairo University, Egypt)
| | - Anowarul Amin
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Gérard Leblanc
- Department of Physiology, University of California, Los Angeles, California 90095, USA
- Present address: CEA-DSV-Fontenay aux Roses, Cross Division of Toxicology, 92 265 Fontenay aux Roses BP 6, France
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, California 90095, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| |
Collapse
|
42
|
Molčanov K, Stare J, Vener MV, Kojić-Prodić B, Mali G, Grdadolnik J, Mohaček-Grošev V. Nitranilic acid hexahydrate, a novel benchmark system of the Zundel cation in an intrinsically asymmetric environment: spectroscopic features and hydrogen bond dynamics characterised by experimental and theoretical methods. Phys Chem Chem Phys 2013; 16:998-1007. [PMID: 24281720 DOI: 10.1039/c3cp54026j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitranilic acid (2,5-dihydroxy-3,6-dinitro-2,5-cyclohexadiene-1,4-dione) as a strong dibasic acid in acidic aqueous media creates the Zundel cation, H5O2(+). The structural unit in a crystal comprises (H5O2)2(+) (2,5-dihydroxy-3,6-dinitro-1,4-benzoquinonate)(2-) dihydrate where the Zundel cation reveals no symmetry, being an ideal case for studying proton dynamics and its stability. The Zundel cation and proton transfer dynamics are studied by variable-temperature X-ray diffraction, IR and solid-state NMR spectroscopy, and various quantum chemical methods, including periodic DFT calculations, ab initio molecular dynamics simulation, and quantization of nuclear motion along three fully coupled internal coordinates. The Zundel cation features a short H-bond with the O···O distance of 2.433(2) Å with an asymmetric placement of hydrogen. The proton potential is of a single well type and, due to the non-symmetric surroundings, of asymmetric shape. The formation of the Zundel cation is facilitated by the electronegative NO2 groups. The employed spectroscopic techniques supported by calculations confirm the presence of a short H-bond with a complex proton dynamics.
Collapse
|
43
|
Abstract
New developments in macromolecular neutron crystallography have led to an increasing number of structures published over the last decade. Hydrogen atoms, normally invisible in most X-ray crystal structures, become visible with neutrons. Using X-rays allows one to see structure, while neutrons allow one to reveal the chemistry inherent in these macromolecular structures. A number of surprising and sometimes controversial results have emerged; because it is difficult to see or predict hydrogen atoms in X-ray structures, when they are seen by neutrons they can be in unexpected locations with important chemical and biological consequences. Here we describe examples of chemistry seen with neutrons for the first time in biological macromolecules over the past few years.
Collapse
Affiliation(s)
- Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
44
|
Bryan T, González JM, Bacik JP, DeNunzio NJ, Unkefer CJ, Schrader TE, Ostermann A, Dunaway-Mariano D, Allen KN, Fisher SZ. Neutron diffraction studies towards deciphering the protonation state of catalytic residues in the bacterial KDN9P phosphatase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1015-9. [PMID: 23989152 PMCID: PMC3758152 DOI: 10.1107/s1744309113021386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 11/11/2022]
Abstract
The enzyme 2-keto-3-deoxy-9-O-phosphonononic acid phosphatase (KDN9P phosphatase) functions in the pathway for the production of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, a sialic acid that is important for the survival of commensal bacteria in the human intestine. The enzyme is a member of the haloalkanoate dehalogenase superfamily and represents a good model for the active-site protonation state of family members. Crystals of approximate dimensions 1.5 × 1.0 × 1.0 mm were obtained in space group P2(1)2(1)2, with unit-cell parameters a = 83.1, b = 108.9, c = 75.7 Å. A complete neutron data set was collected from a medium-sized H/D-exchanged crystal at BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany in 18 d. Initial refinement to 2.3 Å resolution using only neutron data showed significant density for catalytically important residues.
Collapse
Affiliation(s)
- Tyrel Bryan
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Javier M. González
- BioScience Division B-11, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - John P. Bacik
- BioScience Division B-11, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Nicholas J. DeNunzio
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02115, USA
| | - Clifford J. Unkefer
- BioScience Division B-11, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02115, USA
| | - S. Zoë Fisher
- BioScience Division B-11, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| |
Collapse
|
45
|
Cuypers MG, Mason SA, Blakeley MP, Mitchell EP, Haertlein M, Forsyth VT. Near-atomic resolution neutron crystallography on perdeuterated Pyrococcus furiosus rubredoxin: implication of hydronium ions and protonation state equilibria in redox changes. Angew Chem Int Ed Engl 2012; 52:1022-5. [PMID: 23225503 DOI: 10.1002/anie.201207071] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 11/09/2022]
Affiliation(s)
- M G Cuypers
- EPSAM/ISTM, Keele University, Staffordshire, ST5 5BG, UK
| | | | | | | | | | | |
Collapse
|
46
|
Cuypers MG, Mason SA, Blakeley MP, Mitchell EP, Haertlein M, Forsyth VT. Near-Atomic Resolution Neutron Crystallography on PerdeuteratedPyrococcus furiosusRubredoxin: Implication of Hydronium Ions and Protonation State Equilibria in Redox Changes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography. Proc Natl Acad Sci U S A 2012; 109:15301-6. [PMID: 22949690 DOI: 10.1073/pnas.1208341109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.
Collapse
|
48
|
Fisher SZ, Aggarwal M, Kovalevsky AY, Silverman DN, McKenna R. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. J Am Chem Soc 2012; 134:14726-9. [PMID: 22928733 DOI: 10.1021/ja3068098] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbonic anhydrases (CAs) catalyze the hydration of CO(2) forming HCO(3)(-) and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM or the hydrogen atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end, the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target.
Collapse
Affiliation(s)
- S Zoë Fisher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
49
|
Kovalevsky A, Hanson BL, Mason SA, Forsyth VT, Fisher Z, Mustyakimov M, Blakeley MP, Keen DA, Langan P. Inhibition of D-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1201-6. [PMID: 22948921 PMCID: PMC3489103 DOI: 10.1107/s0907444912024808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022]
Abstract
D-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni(2+) cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg(2+) ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni(2+) ions occupying the catalytic metal site (M2) were found at two locations, while Mg(2+) in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Langan P, Evans BR, Foston M, Heller WT, O'Neill H, Petridis L, Pingali SV, Ragauskas AJ, Smith JC, Urban VS, Davison BH. Neutron Technologies for Bioenergy Research. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Barbara R. Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Marcus Foston
- Institute of Paper Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - William T. Heller
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Loukas Petridis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Arthur J. Ragauskas
- Institute of Paper Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Jeremy C. Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Volker S. Urban
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Brian H. Davison
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN
| |
Collapse
|