1
|
Fu Q, Gu Z, Shen S, Bai Y, Wang X, Xu M, Sun P, Chen J, Li D, Liu Z. Radiotherapy activates picolinium prodrugs in tumours. Nat Chem 2024; 16:1348-1356. [PMID: 38561425 DOI: 10.1038/s41557-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Radiotherapy-induced prodrug activation provides an ideal solution to reduce the systemic toxicity of chemotherapy in cancer therapy, but the scope of the radiation-activated protecting groups is limited. Here we present that the well-established photoinduced electron transfer chemistry may pave the way for developing versatile radiation-removable protecting groups. Using a functional reporter assay, N-alkyl-4-picolinium (NAP) was identified as a caging group that efficiently responds to radiation by releasing a client molecule. When evaluated in a competition experiment, the NAP moiety is more efficient than other radiation-removable protecting groups discovered so far. Leveraging this property, we developed a NAP-derived carbamate linker that releases fluorophores and toxins on radiation, which we incorporated into antibody-drug conjugates (ADCs). These designed ADCs were active in living cells and tumour-bearing mice, highlighting the potential to use such a radiation-removable protecting group for the development of next-generation ADCs with improved stability and therapeutic effects.
Collapse
Affiliation(s)
- Qunfeng Fu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongxuan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Changping Laboratory, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
2
|
Fu Q, Zhang S, Shen S, Gu Z, Chen J, Song D, Sun P, Wang C, Guo Z, Xiao Y, Gao YQ, Guo Z, Liu Z. Radiotherapy-triggered reduction of platinum-based chemotherapeutic prodrugs in tumours. Nat Biomed Eng 2024:10.1038/s41551-024-01239-x. [PMID: 39025943 DOI: 10.1038/s41551-024-01239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody-trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibin Guo
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yunlong Xiao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory of Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Administration Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
3
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024:e202400326. [PMID: 38993102 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Junyoung Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gabin Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jin Soo Chung
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science, Seoul, 03722, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
4
|
Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. J Am Chem Soc 2022; 144:1232-1242. [PMID: 35034454 DOI: 10.1021/jacs.1c10324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Native chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application. In contrast to traditional thiol protecting groups, photolabile protecting groups (PPGs), which are removed upon irradiation, simplify protein assembly and therefore provide minimal perturbation to the peptide scaffold. However, current PPG strategies are mainly limited to nitro-benzyl derivatives, which are incompatible with NCL-desulfurization. Herein, we present for the first time that quinoline-based PPG for cysteine can facilitate various ligation strategies, including iterative NCL and EPL-desulfurization methods. 7-(Piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ) caging of multiple cysteine residues within the protein sequence can be readily introduced via late-stage modification, while the traceless removal of PPZQ is highly efficient via photolysis in an aqueous buffer. In addition, the PPZQ group is compatible with radical desulfurization. The efficiency of this strategy has been highlighted by the synthesis of γ-synuclein and phosphorylated cystatin-S via one-pot iterative ligation and EPL-desulfurization methods. Besides, successful sextuple protection and deprotection of the expressed Interleukin-34 fragment demonstrate the great potential of this strategy in protein caging/uncaging investigations.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunxue Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bingcheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongneng Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Barosi A, Dunkel P, Guénin E, Lalatonne Y, Zeitoun P, Fitton I, Journé C, Bravin A, Maruani A, Dhimane H, Motte L, Dalko PI. Synthesis and activation of an iron oxide immobilized drug-mimicking reporter under conventional and pulsed X-ray irradiation conditions. RSC Adv 2020; 10:3366-3370. [PMID: 35497736 PMCID: PMC9048766 DOI: 10.1039/c9ra09828c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient nano-sized delivery system is presented here allowing the immobilized, picolinium-tethered organic ligand to be released by X-ray irradiation. A marked difference was observed in the fragmentation efficiency by using conventional Cs-137 vs. pulsed sources. The nano-sized delivery system allowed releasing complex organic ligands by X-ray irradiation. Marked difference was observed in the release efficiency by using conventional Cs-137 vs. pulsed sources.![]()
Collapse
|
6
|
Structure-based design and profiling of novel 17β-HSD14 inhibitors. Eur J Med Chem 2018; 155:61-76. [DOI: 10.1016/j.ejmech.2018.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 12/30/2022]
|
7
|
Dunkel P, Petit M, Dhimane H, Blanchard-Desce M, Ogden D, Dalko PI. Quinoline-Derived Two-Photon-Sensitive Octupolar Probes. ChemistryOpen 2017; 6:660-667. [PMID: 29046861 PMCID: PMC5641908 DOI: 10.1002/open.201700097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 01/05/2023] Open
Abstract
A systematic study on quinoline‐derived light sensitive probes, having third‐order rotational symmetry is presented. The electronically linked octupolar structures show considerably improved linear and nonlinear photophysical properties under one‐ and two‐photon irradiation conditions compared to the corresponding monomers. Photolysis of the three acetate derivatives shows strong structure dependency: whereas irradiation of the 6‐ and 7‐aminoquinoline derivatives resulted in fast intramolecular cyclization and only trace amounts of fragmentation products, the 8‐aminoquinoline derivative afforded clean and selective photolysis, with a sequential release of their acetate groups (δu[730]=0.67 GM).
Collapse
Affiliation(s)
- Petra Dunkel
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Descartes 45, rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Morgane Petit
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Descartes 45, rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Hamid Dhimane
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Descartes 45, rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Mireille Blanchard-Desce
- Université de Bordeaux ISM (CNRS UMR5255) Bâtiment A12, 351, Cours de la Libération 33405 Talence Cedex France
| | - David Ogden
- Laboratoire de Physiologie Cérébrale Université Paris Descartes 45, rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Peter I Dalko
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Descartes 45, rue des Saints-Pères 75270 Paris Cedex 06 France
| |
Collapse
|
8
|
Unger I, Seidel R, Thürmer S, Pohl MN, Aziz EF, Cederbaum LS, Muchová E, Slavíček P, Winter B, Kryzhevoi NV. Observation of electron-transfer-mediated decay in aqueous solution. Nat Chem 2017. [DOI: 10.1038/nchem.2727] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|
10
|
Tran C, Gallavardin T, Petit M, Slimi R, Dhimane H, Blanchard-Desce M, Acher FC, Ogden D, Dalko PI. Two-photon "caging" groups: effect of position isomery on the photorelease properties of aminoquinoline-derived photolabile protecting groups. Org Lett 2015; 17:402-5. [PMID: 25625881 DOI: 10.1021/ol5035035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High two-photon photolysis cross sections and water solubility of probes are important to avoid toxicity in biomedical applications of photolysis. Systematic variation of the position of a carboxyl electron-withdrawing group (EWG) on photolysis of 8-dimethylaminoquinoline protecting groups identified the C5-substituted isomer as a privileged dipole. The 5-benzoyl-8-DMAQ substitution yields a caging group with an enhanced two-photon uncaging cross section (δu = 2.0 GM) and good water solubility (c ≤ 50 mM, pH 7.4).
Collapse
Affiliation(s)
- Christine Tran
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601-CNRS, Université Paris Descartes , 45, rue des Saints-Pères, 75270, Paris Cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Atilgan A, Tanriverdi Eçik E, Guliyev R, Uyar TB, Erbas-Cakmak S, Akkaya EU. Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A Novel Strategy for Caged Ions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Atilgan A, Tanriverdi Eçik E, Guliyev R, Uyar TB, Erbas-Cakmak S, Akkaya EU. Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A Novel Strategy for Caged Ions. Angew Chem Int Ed Engl 2014; 53:10678-81. [DOI: 10.1002/anie.201405462] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/30/2014] [Indexed: 12/19/2022]
|
13
|
How to control proteins with light in living systems. Nat Chem Biol 2014; 10:533-41. [DOI: 10.1038/nchembio.1534] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
|
14
|
Dunkel P, Tran C, Gallavardin T, Dhimane H, Ogden D, Dalko PI. Quinoline-derived two-photon sensitive quadrupolar probes. Org Biomol Chem 2014; 12:9899-908. [DOI: 10.1039/c4ob01551g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quadrupolar 8-dimethylaminoquinoline-derived photosensitive probes underwent photolysis under UV (365 nm) and NIR (730 nm two-photon (TP)) irradiation conditions.
Collapse
Affiliation(s)
- Petra Dunkel
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université Paris Descartes
- 75270 Paris, France
| | - Christine Tran
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université Paris Descartes
- 75270 Paris, France
| | - Thibault Gallavardin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université Paris Descartes
- 75270 Paris, France
| | - Hamid Dhimane
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université Paris Descartes
- 75270 Paris, France
| | - David Ogden
- Laboratoire de Physiologie Cérébrale
- CNRS UMR 8118
- Université Paris Descartes
- 75270 Paris Cedex 06, France
| | - Peter I. Dalko
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université Paris Descartes
- 75270 Paris, France
| |
Collapse
|
15
|
Feng Z, Zhang W, Xu J, Gauron C, Ducos B, Vriz S, Volovitch M, Jullien L, Weiss S, Bensimon D. Optical control and study of biological processes at the single-cell level in a live organism. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:072601. [PMID: 23764902 PMCID: PMC3736146 DOI: 10.1088/0034-4885/76/7/072601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on 'single-cell physiology' (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 2013; 113:119-91. [PMID: 23256727 PMCID: PMC3557858 DOI: 10.1021/cr300177k] [Citation(s) in RCA: 1253] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Petit M, Tran C, Roger T, Gallavardin T, Dhimane H, Palma-Cerda F, Blanchard-Desce M, Acher FC, Ogden D, Dalko PI. Substitution effect on the one- and two-photon sensitivity of DMAQ "caging" groups. Org Lett 2012; 14:6366-9. [PMID: 23214948 DOI: 10.1021/ol3031704] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The systematic SAR study of a "caging" group showed a strong influence of the position of the donor dimethylamino group on the efficiency of photolysis of the DMAQ (2-hydroxymethylene-(N,N-dimethylamino)quinoline) caged acetate under one-photon near-UV or two-photon near-IR excitation. Photorelease of l-glutamate by the most efficient 8-DMAQ derivative strongly and efficiently activated glutamate receptors, generating large, fast rising responses similar to those elicited by glutamate photoreleased from the widely used MNI-caged glutamate.
Collapse
Affiliation(s)
- Morgane Petit
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Labruère R, Alouane A, Le Saux T, Aujard I, Pelupessy P, Gautier A, Dubruille S, Schmidt F, Jullien L. “Self-Immolative” Spacer for Uncaging with Fluorescence Reporting. Angew Chem Int Ed Engl 2012; 51:9344-7. [DOI: 10.1002/anie.201204032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Indexed: 01/15/2023]
|
19
|
Labruère R, Alouane A, Le Saux T, Aujard I, Pelupessy P, Gautier A, Dubruille S, Schmidt F, Jullien L. “Self-Immolative” Spacer for Uncaging with Fluorescence Reporting. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
|