1
|
Wiegand DJ, Rittichier J, Meyer E, Lee H, Conway NJ, Ahlstedt D, Yurtsever Z, Rainone D, Kuru E, Church GM. Template-independent enzymatic synthesis of RNA oligonucleotides. Nat Biotechnol 2024:10.1038/s41587-024-02244-w. [PMID: 38997579 DOI: 10.1038/s41587-024-02244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 07/14/2024]
Abstract
RNA oligonucleotides have emerged as a powerful therapeutic modality to treat disease, yet current manufacturing methods may not be able to deliver on anticipated future demand. Here, we report the development and optimization of an aqueous-based, template-independent enzymatic RNA oligonucleotide synthesis platform as an alternative to traditional chemical methods. The enzymatic synthesis of RNA oligonucleotides is made possible by controlled incorporation of reversible terminator nucleotides with a common 3'-O-allyl ether blocking group using new CID1 poly(U) polymerase mutant variants. We achieved an average coupling efficiency of 95% and demonstrated ten full cycles of liquid phase synthesis to produce natural and therapeutically relevant modified sequences. We then qualitatively assessed the platform on a solid phase, performing enzymatic synthesis of several N + 5 oligonucleotides on a controlled-pore glass support. Adoption of an aqueous-based process will offer key advantages including the reduction of solvent use and sustainable therapeutic oligonucleotide manufacturing.
Collapse
Affiliation(s)
- Daniel J Wiegand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Ella Meyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Howon Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nicholas J Conway
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | | | | | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang Q, Ali T, Lin Z, Peng X. Development of 4,4'-dibromobinaphthalene analogues with potent photo-inducible DNA cross-linking capability and cytotoxicity towards breast MDA-MB 468 cancer cells. Bioorg Chem 2023; 140:106769. [PMID: 37633128 DOI: 10.1016/j.bioorg.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Taufeeque Ali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, United States.
| |
Collapse
|
3
|
Downs IL, David Ordonez Luna A, Kota KP, Rubin SK, Shirsekar SS, Ward MD, Panchal RG, Litosh VA. Modification of N-hydroxycytidine yields a novel lead compound exhibiting activity against the Venezuelan equine encephalitis virus. Bioorg Med Chem Lett 2023; 94:129432. [PMID: 37591319 DOI: 10.1016/j.bmcl.2023.129432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.
Collapse
Affiliation(s)
- Isaac L Downs
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - A David Ordonez Luna
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Krishna P Kota
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Sarah K Rubin
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Serena S Shirsekar
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Michael D Ward
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Rekha G Panchal
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Vladislav A Litosh
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA.
| |
Collapse
|
4
|
Fan H, Sun H, Zhang Q, Peng X. Photoinduced DNA Interstrand Cross-Linking by 1,1'-Biphenyl Analogues: Substituents and Leaving Groups Combine to Determine the Efficiency of Cross-Linker. Chemistry 2021; 27:5215-5224. [PMID: 33440025 DOI: 10.1002/chem.202005064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Indexed: 11/11/2022]
Abstract
Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Huabing Sun
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA.,School of Pharmacy, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin, 53211, USA
| |
Collapse
|
5
|
Fan H, Peng X. Photoinduced DNA Interstrand Cross-Linking by Benzene Derivatives: Leaving Groups Determine the Efficiency of the Cross-Linker. J Org Chem 2021; 86:493-506. [PMID: 33253574 DOI: 10.1021/acs.joc.0c02234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have synthesized and characterized two small libraries of 2-OMe or 2-NO2-benzene analogues 2a-i and 3a-i containing a wide variety of leaving groups. Irradiation of these compounds at 350 nm generated benzyl radicals that were spontaneously oxidized to benzyl cations directly producing DNA interstrand cross-links (ICLs). Compounds with a 2-methoxy substituent showed a faster cross-linking reaction rate and higher ICL efficiency than the corresponding 2-nitro analogues. Apart from the aromatic substituent, the benzylic leaving groups greatly affected DNA cross-linking efficiency. Higher ICL yields were observed for compounds with OCH3 (3b), OCH2Ph (3d), or Ph3P+ (3i) as leaving groups than those containing OAc (3a), NMe2 (3e), morpholine (3f), OCH2CH═CH2 (3c), SPh (3g), or SePh (3h). The heat stability study of the isolated ICL products indicated that dGs were the preferred alkylation sites in DNA for the benzyl cations produced from 2a-i, 3c, and 3e-i while 3a (L = OAc), 3b (L = OMe), and 3d (L = OCH2Ph) showed a similar photoreactivity toward dGs and dAs. Although the photogenerated benzyl cations alkylated dG, dC, and dA, ICL assay with variation of DNA sequences showed that the ICL reaction occurred with opposing dG/dC but not with staggered dA/dA.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
6
|
Stereochemistry of the α-carbon in the benzylic modifying moiety attached at the C-5 end of thymidine affects the potency of a newly identified anti-cancer lead nucleoside. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Chakrapani A, Vaňková Hausnerová V, Ruiz-Larrabeiti O, Pohl R, Krásný L, Hocek M. Photocaged 5-(Hydroxymethyl)pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA. Org Lett 2020; 22:9081-9085. [PMID: 33156631 DOI: 10.1021/acs.orglett.0c03462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Hydroxymethylcytosine and uracil are epigenetic nucleobases, but their biological roles are still unclear. We present the synthesis of 2-nitrobenzyl photocaged 5-hydroxymethyl-2'-deoxycytidine and uridine 3'-O-phosphoramidites and their use in automated solid-phase synthesis of oligonucleotides (ONs) modified at specific positions. The ONs were used as primers for PCR to construct DNA templates modified in the promoter region that allowed switching of transcription through photochemical uncaging.
Collapse
Affiliation(s)
- Aswathi Chakrapani
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olatz Ruiz-Larrabeiti
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
8
|
Takeshita L, Yamada Y, Masaki Y, Seio K. Synthesis of Deoxypseudouridine 5'-Triphosphate Bearing the Photoremovable Protecting Group at the N1 Position Capable of Enzymatic Incorporation to DNA. J Org Chem 2020; 85:1861-1870. [PMID: 31910013 DOI: 10.1021/acs.joc.9b02194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic incorporation of deoxynucleoside 5'-triphosphate bearing the photocleavable protecting group is a useful method for the preparation of photocaged oligodeoxynucleotides. Here, we describe the synthesis of new photocaged deoxynucleoside triphosphates N1-(2-nitrobenzyl)-deoxypseudouridine triphosphate (dNBΨTP) and N1-(6-nitropiperonyloxymethyl)-deoxypseudouridine triphosphate (dNPOMΨTP). We successfully synthesized dNBΨTP and dNPOMΨTP and applied them to enzymatic synthesis of photocaged oligonucleotides. In addition, we also synthesized phosphoramidites of N1-(2-nitrobenzyl)- and N1-(6-nitropiperonyloxymethyl)-deoxypseudouridine to enable chemical synthesis of photocaged oligonucleotides incorporating them. The photocleavable 2-nitrobenzyl and 6-nitropiperonyloxymethyl in oligonucleotides were cleaved by irradiation at 365 nm for 30 and 10 s, respectively. We also studied the enzymatic incorporation of dNBΨTP and dNPOMΨTP using the Klenow fragment exo-. As a result, it was clarified that dNPOMΨTP could be incorporated to oligonucleotide 193 times more efficiently than dNBΨTP, as judged by Vmax/Km. We also performed the incorporation of at least eight dNPOMΨ residues in a 35-mer oligodeoxynucleotide. It has also been revealed that the oligodeoxynucleotides incorporating photocaged deoxypseudouridine were useful for photocontrol of DNA triplex formation.
Collapse
Affiliation(s)
- Leo Takeshita
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Yuji Yamada
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| | - Kohji Seio
- Department of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8501 , Japan
| |
Collapse
|
9
|
Vaníková Z, Janoušková M, Kambová M, Krásný L, Hocek M. Switching transcription with bacterial RNA polymerase through photocaging, photorelease and phosphorylation reactions in the major groove of DNA. Chem Sci 2019; 10:3937-3942. [PMID: 31015933 PMCID: PMC6457204 DOI: 10.1039/c9sc00205g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
We report proof of principle biomimetic switching of transcription in vitro through non-natural chemical reactions in the major groove of DNA templates. Photocaged DNA templates containing nitrobenzyl-protected 5-hydroxymethyluracil or - cytosine permitted no transcription with E. coli RNA polymerase (OFF state). Their irradiation with 400 nm light resulted in DNA templates containing hydroxymethylpyrimidines, which switched transcription ON with a higher yield (250-350%) compared to non-modified DNA. Phosphorylation of templates containing 5-hydroxymethyluracil (but not 5-hydroxymethylcytosine) then turned transcription OFF again. It is the first step towards artificial bioorthogonal chemical epigenetics.
Collapse
Affiliation(s)
- Zuzana Vaníková
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| | - Martina Janoušková
- Dept. of Molecular Genetics of Bacteria , Institute of Microbiology , Czech Academy of Sciences , CZ-14220 Prague 4 , Czech Republic .
| | - Milada Kambová
- Dept. of Molecular Genetics of Bacteria , Institute of Microbiology , Czech Academy of Sciences , CZ-14220 Prague 4 , Czech Republic .
| | - Libor Krásný
- Dept. of Molecular Genetics of Bacteria , Institute of Microbiology , Czech Academy of Sciences , CZ-14220 Prague 4 , Czech Republic .
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague 6 , Czech Republic . .,Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
10
|
Boháčová S, Ludvíková L, Poštová Slavětínská L, Vaníková Z, Klán P, Hocek M. Protected 5-(hydroxymethyl)uracil nucleotides bearing visible-light photocleavable groups as building blocks for polymerase synthesis of photocaged DNA. Org Biomol Chem 2019; 16:1527-1535. [PMID: 29431832 DOI: 10.1039/c8ob00160j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).
Collapse
Affiliation(s)
- Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
11
|
Moya-Garzón MD, Martín Higueras C, Peñalver P, Romera M, Fernandes MX, Franco-Montalbán F, Gómez-Vidal JA, Salido E, Díaz-Gavilán M. Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1. J Med Chem 2018; 61:7144-7167. [DOI: 10.1021/acs.jmedchem.8b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Dolores Moya-Garzón
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Cristina Martín Higueras
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Pablo Peñalver
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Manuela Romera
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Miguel X. Fernandes
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Francisco Franco-Montalbán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
12
|
De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol 2018; 36:645-650. [PMID: 29912208 DOI: 10.1038/nbt.4173] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/22/2018] [Indexed: 01/02/2023]
Abstract
Oligonucleotides are almost exclusively synthesized using the nucleoside phosphoramidite method, even though it is limited to the direct synthesis of ∼200 mers and produces hazardous waste. Here, we describe an oligonucleotide synthesis strategy that uses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Each TdT molecule is conjugated to a single deoxyribonucleoside triphosphate (dNTP) molecule that it can incorporate into a primer. After incorporation of the tethered dNTP, the 3' end of the primer remains covalently bound to TdT and is inaccessible to other TdT-dNTP molecules. Cleaving the linkage between TdT and the incorporated nucleotide releases the primer and allows subsequent extension. We demonstrate that TdT-dNTP conjugates can quantitatively extend a primer by a single nucleotide in 10-20 s, and that the scheme can be iterated to write a defined sequence. This approach may form the basis of an enzymatic oligonucleotide synthesizer.
Collapse
|
13
|
Boháčová S, Vaníková Z, Poštová Slavětínská L, Hocek M. Protected 2′-deoxyribonucleoside triphosphate building blocks for the photocaging of epigenetic 5-(hydroxymethyl)cytosine in DNA. Org Biomol Chem 2018; 16:5427-5432. [DOI: 10.1039/c8ob01106k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2′-Deoxyribonucleoside triphosphates containing 5-(hydroxymethyl)cytosine protected with photocleavable groups were prepared and studied as substrates for the enzymatic synthesis of DNA containing a photocaged epigenetic 5hmC base.
Collapse
Affiliation(s)
- Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
| | - Zuzana Vaníková
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
- Department of Organic Chemistry
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
- Department of Organic Chemistry
| |
Collapse
|
14
|
Chen Z, Zhou W, Qiao S, Kang L, Duan H, Xie XS, Huang Y. Highly accurate fluorogenic DNA sequencing with information theory-based error correction. Nat Biotechnol 2017; 35:1170-1178. [PMID: 29106407 DOI: 10.1038/nbt.3982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/30/2017] [Indexed: 11/09/2022]
Abstract
Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.
Collapse
Affiliation(s)
- Zitian Chen
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Wenxiong Zhou
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shuo Qiao
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Li Kang
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Haifeng Duan
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - X Sunney Xie
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Ohno K, Sugiyama D, Takeshita L, Kanamori T, Masaki Y, Sekine M, Seio K. Synthesis of photocaged 6-O-(2-nitrobenzyl)guanosine and 4-O-(2-nitrobenzyl) uridine triphosphates for photocontrol of the RNA transcription reaction. Bioorg Med Chem 2017; 25:6007-6015. [PMID: 28986114 DOI: 10.1016/j.bmc.2017.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/27/2022]
Abstract
6-O-(2-Nitrobenzyl)guanosine and 4-O-(2-nitrobenzyl)uridine triphosphates (NBGTP, NBUTP) were synthesized, and their biochemical and photophysical properties were evaluated. We synthesized NBUTP using the canonical triphosphate synthesis method and NBGTP from 2',3'-O-TBDMS guanosine via a triphosphate synthesis method by utilizing mild acidic desilylation conditions. Deprotection of the nitrobenzyl group in NBGTP and NBUTP proceeded within 60s by UV irradiation at 365nm. Experiments using NBGTP or NBUTP in T7-RNA transcription reactions showed that NBGTP could be useful for the photocontrol of transcription by UV irradiation.
Collapse
Affiliation(s)
- Kentaro Ohno
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Daiki Sugiyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Leo Takeshita
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mitsuo Sekine
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
16
|
Gade CR, Dixit M, Sharma NK. Dideoxy nucleoside triphosphate (ddNTP) analogues: Synthesis and polymerase substrate activities of pyrrolidinyl nucleoside triphosphates (prNTPs). Bioorg Med Chem 2016; 24:4016-4022. [PMID: 27377861 DOI: 10.1016/j.bmc.2016.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
The dideoxynucleoside triphosphates (ddNTPs) terminate the bio-polymerization of DNA and become essential chemical component of DNA sequencing technology which is now basic tool for molecular biology research. In this method the radiolabeled or fluorescent dye labeled ddNTP analogues are being used for DNA sequencing by detection of the terminated DNA fragment after single labeled ddNTP incorporation into DNA under PCR conditions. This report describes the syntheses of rationally designed novel amino-functionalized ddNTP analogue such as Pyrrolidine nucleoside triphosphates (prNTPs), and their polymerase activities with DNA polymerase by LC-MS and Gel-electrophoretic techniques. The Mass and PAGE analyses strongly support the incorporation of prNTPs into DNA oligonucleotide with Therminator DNA polymerase as like control substrate ddNTP. As resultant the DNA oligonucleotide are functionalized as amine group by prNTP incorporation with polymerase. Hence prNTPs provide opportunities to prepare demandable conjugated DNA with other biomolecules/dyes/fluorescence molecule without modifying nucleobase structure.
Collapse
Affiliation(s)
- Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Jatni 752050, Odisha, India
| | - Manjusha Dixit
- School of Biological Sciences, NISER, Bhubaneswar, Jatni 752050, Odisha, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Jatni 752050, Odisha, India.
| |
Collapse
|
17
|
Influences of alpha-substituent in 4,5-dimethoxy-2-nitrobenzyl-protected esters on both photocleavage rate and subsequent photoreaction of the generated 2-nitrosophenyl ketones: A novel photorearrangement of 2-nitrosophenyl ketones. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Leonidova A, Anstaett P, Pierroz V, Mari C, Spingler B, Ferrari S, Gasser G. Induction of Cytotoxicity through Photorelease of Aminoferrocene. Inorg Chem 2015; 54:9740-8. [DOI: 10.1021/acs.inorgchem.5b01332] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Leonidova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Institute
of Molecular Cancer Research, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefano Ferrari
- Institute
of Molecular Cancer Research, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
19
|
Takada A, Fujiwara H, Sugimoto K, Ueda H, Tokuyama H. Total Synthesis of (−)‐Isoschizogamine. Chemistry 2015; 21:16400-3. [DOI: 10.1002/chem.201503606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Akihiro Takada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6‐3, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan), Fax: (+81) 22‐795‐6877
| | - Hiroaki Fujiwara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6‐3, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan), Fax: (+81) 22‐795‐6877
| | - Kenji Sugimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6‐3, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan), Fax: (+81) 22‐795‐6877
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6‐3, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan), Fax: (+81) 22‐795‐6877
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6‐3, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan), Fax: (+81) 22‐795‐6877
| |
Collapse
|
20
|
Chen Z, Duan H, Qiao S, Zhou W, Qiu H, Kang L, Xie XS, Huang Y. Fluorogenic sequencing using halogen-fluorescein-labeled nucleotides. Chembiochem 2015; 16:1153-7. [PMID: 25846104 DOI: 10.1002/cbic.201500117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/23/2023]
Abstract
Fluorogenic sequencing is a sequencing-by-synthesis technology that combines the advantages of pyrosequencing and fluorescence detection. With native duplex DNA as the major product, we employ polymerase to incorporate the complement- arily matched terminal phosphate-labeled fluorogenic nucleotides into the DNA template and release halogen-fluorescein as the reporter. This red-emitting fluorophore successfully avoids spectral overlap with the autofluorescence background of the flow chip. We fully characterized the enzymatic reaction kinetics of the new substrates, and performed a 35-base sequencing experiment with 60 reaction cycles. Our achievement expands the substrate repertoire for fluorogenic sequencing, and extends the spectral range to obtain better signal-to-background performance.
Collapse
Affiliation(s)
- Zitian Chen
- College of Engineering, Peking University, Beijing 100871 (China) http://www.gene.pku.edu.cn.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Haifeng Duan
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).
| | - Shuo Qiao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Wenxiong Zhou
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Haiwei Qiu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Li Kang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - X Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (USA)
| | - Yanyi Huang
- College of Engineering, Peking University, Beijing 100871 (China) http://www.gene.pku.edu.cn. .,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).
| |
Collapse
|
21
|
Vaníková Z, Hocek M. Polymerase Synthesis of Photocaged DNA Resistant against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Vaníková Z, Hocek M. Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew Chem Int Ed Engl 2014; 53:6734-7. [PMID: 24850380 DOI: 10.1002/anie.201402370] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Indexed: 12/12/2022]
Abstract
5-[(2-Nitrobenzyl)oxymethyl]-2'-deoxyuridine 5'-O-triphosphate was used for polymerase (primer extension or PCR) synthesis of photocaged DNA that is resistant to the cleavage by restriction endonucleases. Photodeprotection of the caged DNA released 5-hydroxymethyluracil-modified nucleic acids, which were fully recognized and cleaved by restriction enzymes.
Collapse
Affiliation(s)
- Zuzana Vaníková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | | |
Collapse
|
23
|
Wu J, Wang J, Tang X. Synthesis of photolabile dUTP analogues and their enzymatic incorporation for DNA labeling. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Tang X, Zhang J, Sun J, Wang Y, Wu J, Zhang L. Caged nucleotides/nucleosides and their photochemical biology. Org Biomol Chem 2013; 11:7814-24. [PMID: 24132515 DOI: 10.1039/c3ob41735b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleotides and nucleosides are not only key units of DNA/RNA that store genetic information, but are also the regulators of many biological events of our lives. By caging the key functional groups or key residues of nucleotides with photosensitive moieties, it will be possible to trigger biological events of target nucleotides with spatiotemporal resolution and amplitude upon light activation or photomodulate polymerase reactions with the caged nucleotide analogues for next-generation sequencing (NGS) and bioorthogonal labeling. This review highlights three different caging strategies for nucleotides and demonstrates the photochemical biology of these caged nucleotides.
Collapse
Affiliation(s)
- Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
25
|
Synthesis and enzymatic incorporation of photolabile dUTP analogues into DNA and their applications for DNA labeling. Bioorg Med Chem 2013; 21:6205-11. [PMID: 23719284 DOI: 10.1016/j.bmc.2013.04.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
Abstract
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).
Collapse
|
26
|
Chen F, Dong M, Ge M, Zhu L, Ren L, Liu G, Mu R. The history and advances of reversible terminators used in new generations of sequencing technology. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:34-40. [PMID: 23414612 PMCID: PMC4357665 DOI: 10.1016/j.gpb.2013.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 02/06/2023]
Abstract
DNA sequencing using reversible terminators, as one sequencing by synthesis strategy, has garnered a great deal of interest due to its popular application in the second-generation high-throughput DNA sequencing technology. In this review, we provided its history of development, classification, and working mechanism of this technology. We also outlined the screening strategies for DNA polymerases to accommodate the reversible terminators as substrates during polymerization; particularly, we introduced the "REAP" method developed by us. At the end of this review, we discussed current limitations of this approach and provided potential solutions to extend its application.
Collapse
Affiliation(s)
- Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
28
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
29
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|