1
|
Maestro A, Malviya BK, Auer G, Ötvös SB, Kappe CO. A robust heterogeneous chiral phosphoric acid enables multi decagram scale production of optically active N, S-ketals. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4593-4599. [PMID: 38654978 PMCID: PMC11033974 DOI: 10.1039/d4gc00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Asymmetric organocatalysis has been recognized as one of the "top 10 emerging technologies" in chemistry by IUPAC in 2019. Its potential to make chemical processes more sustainable is promising, but there are still challenges that need to be addressed. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this manuscript, we combine a robust immobilized chiral phosphoric acid with a new packed-bed reactor design. This combination allows scaling up of the enantioselective addition of thiols to imines from a few milligrams to a multi-decagram scale in a continuous flow process without physical or chemical degradation of the catalyst.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
| | - Bhanwar K Malviya
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - Gerald Auer
- Department of Earth Sciences, University of Graz, NAWI Graz Geocenter A-8010 Graz Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| |
Collapse
|
2
|
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years.
Collapse
|
3
|
Li S, Zhang J, Chen S, Ma X. Semi-heterogeneous asymmetric organocatalysis: covalent immobilization of BINOL-derived chiral phosphoric acid (TRIP) to polystyrene brush grafted on SiO2 nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Luo S, Almatrafi E, Tang L, Song B, Zhou C, Zeng Y, Zeng G, Liu Z. Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39701-39726. [PMID: 36005213 DOI: 10.1021/acsami.2c10088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) as a new type of conjugated polymers have attracted extensive attention in academia and industry because of the combination of microporous structure and π-electron conjugated structure. The construction and application of gels and monoliths based on CMPs constitute a fertile area of research, promising to provide solutions to complex environmental and energy issues. This review summarizes and objectively analyzes the latest advances in the construction and application of processable CMP gels and monoliths, linking the basic and enhanced properties to widespread applications. In this review, we open with a summary of the construction methods used to build CMP gels and monoliths and assess the feasibility of different preparation techniques and the advantages of the products. The CMP gels and monoliths with enhanced properties involving various special applications are then deliberated by highlighting relevant scientific literature and discussions. Finally, we present the issues and future of openness in the field, as well as come up with the major challenges hindering further development, to guide researchers in this field.
Collapse
Affiliation(s)
- Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Giri A, Patra A. Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO 2 Fixation. CHEM REC 2022; 22:e202200071. [PMID: 35675959 DOI: 10.1002/tcr.202200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/07/2022]
Abstract
Catalysts play a pivotal role in achieving the global need for food and energy. In this context, porous organic polymers (POPs) with high surface area, robust architecture, tunable pore size, and chemical functionalities have emerged as promising testbeds for heterogeneous catalysis. Amorphous POPs having functionalized interconnected hierarchical porous structures activate a diverse range of substrates through covalent/non-covalent interactions or act as a host matrix to encapsulate catalytically active metal centers. On the other hand, conjugated POPs have been explored for photoinduced chemical transformations. In this personal account, we have delineated the evolution of various POPs and the specific role of pores and pore functionalities in heterogeneous catalysis. Subsequently, we retrospect our journey over the last ten years towards designing and fabricating amorphous POPs for heterogeneous catalysis, specifically photocatalytic reactive oxygen species (ROS)-mediated organic transformations and nonredox chemical fixation of CO2 . We have also outlined some of the future avenues of POPs and POP-based hybrid materials for diverse catalytic applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Anbazhagan R, Krishnamoorthi R, Thankachan D, Van Dinh TT, Wang CF, Yang JM, Chang YH, Tsai HC. Fluorine-Free Superhydrophobic Covalent-Organic-Polymer Nanosheet Coating for Selective Dye and Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4310-4320. [PMID: 35369694 DOI: 10.1021/acs.langmuir.1c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively. The adsorption isotherm model showed that the COPNs follow the Langmuir adsorption isotherm model and pseudo-second-order kinetics. Next, we explored the superhydrophobicity of the COPNs by in situ fabrication with melamine sponge (COPNs-MS), which incorporates the superhydrophobicity of COPNs [water contact angle (WCA) of >150°] with the structure and flexibility of the MS skeleton. The COPNs-MS shows various oil-adsorbing properties with good adsorption capacity (from 60 to 120 g/g) and also effectively separates various surfactant-stabilized emulsions with a separation efficiency of over 99%. The as-fabricated COPNs-MS retains its superhydrophobicity in various solvents and hazardous conditions (WCA ≥ 150°) and exhibits good flame retardancy and excellent compression properties with excellent antifouling property due to the superhydrophobic COPN coating. Furthermore, COPNs-MS also demonstrates excellent recyclability because the strong COPN coating in the MS skeleton retains its hydrophobicity. Therefore, our fluorine-free superhydrophobic COPNs are not only capable of selective dye adsorption but also exhibit very good oil adsorption and surfactant-stabilized emulsion separation performance.
Collapse
Affiliation(s)
- Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Darieo Thankachan
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Thi Thuy Van Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan University, Taoyuan 320, Taiwan
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan University, Taoyuan 320, Taiwan
| |
Collapse
|
7
|
Huang XY, Zheng Q, Zou LM, Gu Q, Tu T, You SL. Hyper-Crosslinked Porous Chiral Phosphoric Acids: Robust Solid Organocatalysts for Asymmetric Dearomatization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
8
|
Atilgan A, Beldjoudi Y, Yu J, Kirlikovali KO, Weber JA, Liu J, Jung D, Deria P, Islamoglu T, Stoddart JF, Farha OK, Hupp JT. BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12596-12605. [PMID: 35234435 DOI: 10.1021/acsami.1c21750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective heterogeneous photocatalysts capable of detoxifying chemical threats in practical settings must exhibit outstanding device integrity. We report a copolymerization that yields robust, porous, processible, chromophoric BODIPY (BDP; boron-dipyrromethene)-containing polymers of intrinsic microporosity (BDP-PIMs). Installation of a pentafluorophenyl at the meso position of a BDP produced reactive monomer that when combined with 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-spirobisindane (TTSBI) and tetrafluoroterephthalonitrile (TFTPN) yields PIM-1. Postsynthetic modification of these polymers yields Br-BDP-PIM-1a and -1b─polymers containing bromine at the 2,6-positions. Remarkably, the brominated polymers display porosity and processability features similar to those of H-BDP-PIMs. Gas adsorption reveals molecular-scale porosity and Brunette-Emmet-Teller surface areas as high as 680 m2 g-1. Electronic absorption spectra reveal charge-transfer (CT) bands centered at 660 nm, while bands arising from local excitations, LE, of BDP and TFTPN units are at 530 and 430 nm, respectively. Fluorescence spectra of the polymers reveal a Förster resonance energy-transfer (FRET) pathway to BDP units when TFTPN units are excited at 430 nm; weak phosphorescence at room temperature indicates a singlet-to-triplet intersystem crossing. The low-lying triplet state is well positioned energetically to sensitize the conversion of ground-state (triplet) molecular oxygen to electronically excited singlet oxygen. Photosensitization capabilities of these polymers toward singlet-oxygen-driven detoxification of a sulfur-mustard simulant 2-chloroethyl ethyl sulfide (CEES) have been examined. While excitation of CT and LEBDP bands yields weak catalytic activity (t1/2 > 15 min), excitation to higher energy states of TFTPN induces significant increases in photoactivity (t1/2 ≅ 5 min). The increase is attributable to (i) enhanced light collection, (ii) FRET between TFTPN and BDP, (iii) the presence of heavy atoms (bromine) having large spin-orbit coupling energies that can facilitate intersystem crossing from donor-acceptor CT-, FRET-, or LE-generated BDP singlet states to BDP-related triplet states, and (iv) polymer triplet excited-state sensitization of the formation of CEES-reactive, singlet oxygen.
Collapse
Affiliation(s)
- Ahmet Atilgan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jacob A Weber
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dahee Jung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
9
|
Deng L, Liu X, Song S. Recent advances in the asymmetric reduction of imines by recycled catalyst systems. Org Chem Front 2022. [DOI: 10.1039/d1qo01526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances relating to the asymmetric reduction of imines to afford optically active amines via recyclable catalyst systems are reviewed.
Collapse
Affiliation(s)
- Lidan Deng
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingwang Liu
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Shihua Song
- Porton Pharma Solutions Ltd, Fangzheng Avenue, Shuitu, BeiBei District, Chongqing 400067, China
| |
Collapse
|
10
|
El‐Shahat M. Advances in the reduction of quinolines to 1,2,3,4‐tetrahydroquinolines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahmoud El‐Shahat
- Photochemistry Department Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618 Giza Egypt
| |
Collapse
|
11
|
Wang S, Zhelavskyi O, Lee J, Argüelles AJ, Khomutnyk YY, Mensah E, Guo H, Hourani R, Zimmerman PM, Nagorny P. Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides. J Am Chem Soc 2021; 143:18592-18604. [PMID: 34705439 PMCID: PMC8585716 DOI: 10.1021/jacs.1c08448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes studies on the regioselective acetal protection of monosaccharide-based diols using chiral phosphoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS, as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various d-glucose-, d-galactose-, d-mannose-, and l-fucose-derived 1,2-diols and could be carried out in a regiodivergent fashion depending on the choice of chiral catalyst. The polymeric catalysts were conveniently recycled and reused multiple times for gram-scale functionalizations with catalytic loadings as low as 0.1 mol %, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 32 regioisomerically pure differentially protected mono- and disaccharide derivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected d-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated substrates revealed that low-temperature acetalizations happen via a syn-addition mechanism and that the reaction regioselectivity exhibits strong dependence on the temperature. The computational studies indicate a complex temperature-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and another via concerted asynchronous formation of an acetal, that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2 selectivities and are consistent with experimentally observed selectivity trends.
Collapse
Affiliation(s)
- Sibin Wang
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Oleksii Zhelavskyi
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeonghyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Alonso J. Argüelles
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, 307 E. Merrill St. Indianapolis, IN 46225
| | | | - Enoch Mensah
- Chemistry Department, Indiana University Southeast, 4201 Grant Line Rd. New Albany, IN 47150
| | - Hao Guo
- Deparment of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015
| | - Rami Hourani
- Chemistry Department, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080
| | - Paul M. Zimmerman
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| |
Collapse
|
12
|
S-Benzyl-N,N'-diphenyl substituted isothiouronium iodide as a highly efficient organocatalyst for transfer hydrogenation of 2-substituted quinolines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica‐Schröder K. Chiral Phosphoric Acids as Versatile Tools for Organocatalytic Asymmetric Transfer Hydrogenations. European J Org Chem 2021; 2021:5367-5381. [PMID: 34819797 PMCID: PMC8597106 DOI: 10.1002/ejoc.202100894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Indexed: 12/05/2022]
Abstract
Herein, recent developments in the field of organocatalytic asymmetric transfer hydrogenation (ATH) of C=N, C=O and C=C double bonds using chiral phosphoric acid catalysis are reviewed. This still rapidly growing area of asymmetric catalysis relies on metal-free catalysts in combination with biomimetic hydrogen sources. Chiral phosphoric acids have proven to be extremely versatile tools in this area, providing highly active and enantioselective alternatives for the asymmetric reduction of α,β-unsaturated carbonyl compounds, imines and various heterocycles. Eventually, such transformations are more and more often used in multicomponent/cascade reactions, which undoubtedly shows their great synthetic potential and the bright future of organocatalytic asymmetric transfer hydrogenations.
Collapse
Affiliation(s)
- Ádám Márk Pálvölgyi
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Fabian Scharinger
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Michael Schnürch
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | | |
Collapse
|
14
|
Gaviña D, Escolano M, Torres J, Alzuet‐Piña G, Sánchez‐Roselló M, Pozo C. Organocatalytic Enantioselective Friedel‐Crafts Alkylation Reactions of Pyrroles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Gaviña
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Marcos Escolano
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Gloria Alzuet‐Piña
- Department of Inorganic Chemistry University of Valencia E-46100 Burjassot Spain
| | | | - Carlos Pozo
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| |
Collapse
|
15
|
Palmieri A, Petrini M. Synthesis and practical applications of 2-(2-nitroalkyl)pyrroles. Org Biomol Chem 2021; 18:4533-4546. [PMID: 32510092 DOI: 10.1039/d0ob00956c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalization of pyrroles introducing a 2-nitroalkyl moiety allows the formation of nitro-containing compounds to be used as pivotal intermediates for the synthesis of bioactive compounds. The reaction of pyrroles with nitroalkenes under the Friedel-Crafts conditions allows a direct entry to 2-(2-nitroalkyl)pyrroles. This approach can also be used for the preparation of enantioenriched derivatives exploiting asymmetric catalysis. In a complementary fashion, the Henry reaction between 2-formylpyrroles and nitroalkanes generates the corresponding nitroaldol products which upon dehydration and reduction of the intermediate 2-pyrrolylnitroethene efficiently afford 2-(2-nitroalkyl)pyrroles. This review article summarizes the most relevant procedures for the preparation of 2-(2-nitroalkyl)pyrroles during the last two decades as well as their significant practical applications.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy.
| | - Marino Petrini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy.
| |
Collapse
|
16
|
Zhu ZH, Ding YX, Zhou YG. Biomimetic reduction of imines and heteroaromatics with chiral and regenerable [2.2]Paracyclophane-Based NAD(P)H model CYNAM. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Zhang Z, Shen X, Li Z, Ma S, Xia H, Liu X. Multifunctional chiral cationic porous organic polymers: gas uptake and heterogeneous asymmetric organocatalysis. Polym Chem 2021. [DOI: 10.1039/d1py00242b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral porous organic polymers are characterized by robust, non-toxic and recyclable properties. Therefore, compared with small molecular catalysts, they have attracted much attention in the field of heterogeneous asymmetric organic catalysis.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Xiaochen Shen
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Ziping Li
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Si Ma
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Technology
- Jilin University
- Changchun 130012
- P.R. China
| | - Xiaoming Liu
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| |
Collapse
|
18
|
Lai J, Fianchini M, Pericàs MA. Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junshan Lai
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| |
Collapse
|
19
|
Atilgan A, Cetin MM, Yu J, Beldjoudi Y, Liu J, Stern CL, Cetin FM, Islamoglu T, Farha OK, Deria P, Stoddart JF, Hupp JT. Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. J Am Chem Soc 2020; 142:18554-18564. [PMID: 32981316 DOI: 10.1021/jacs.0c07784] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ahmet Atilgan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - M. Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Furkan M. Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
20
|
Muzalevskiy VM, Belyaeva KV, Trofimov BA, Nenajdenko VG. Organometal-Free Arylation and Arylation/Trifluoroacetylation of Quinolines by Their Reaction with CF 3-ynones and Base-Induced Rearrangement. J Org Chem 2020; 85:9993-10006. [PMID: 32631065 DOI: 10.1021/acs.joc.0c01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of quinolines with CF3-ynones resulted in the formation of 1,3-oxazinoquinolines. Subsequent treatment of the reaction mixture with a base initiated deep structural transformation of primary products. Both steps proceed in very high yield. As a result, unusual rearrangement of 1,3-oxazinoquinolines to form either 2-arylquinolines or 2-aryl-3-trifluoroacetylquinolines was discovered. The decisive role of the base in the reaction direction was shown. Using these reactions, highly efficient pathways to 2-arylquinolines and 2-aryl-3-trifluoroacetylquinolines were elaborated to provide the corresponding compounds in high yields using a simple one-pot procedure. The possible mechanism of rearrangement is discussed.
Collapse
Affiliation(s)
- Vasiliy M Muzalevskiy
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| | - Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| |
Collapse
|
21
|
Wang J, Zhao ZB, Zhao Y, Luo G, Zhu ZH, Luo Y, Zhou YG. Chiral and Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric Reduction: Design, Synthesis, Scope, and Mechanistic Studies. J Org Chem 2020; 85:2355-2368. [PMID: 31886670 DOI: 10.1021/acs.joc.9b03054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coenzyme NAD(P)H plays an important role in electron as well as proton transmission in the cell. Thus, a variety of NAD(P)H models have been involved in biomimetic reduction, such as stoichiometric Hantzsch esters and achiral regenerable dihydrophenantheridine. However, the development of a general and new-generation biomimetic asymmetric reduction is still a long-term challenge. Herein, a series of chiral and regenerable NAD(P)H models with central, axial, and planar chiralities have been designed and applied in biomimetic asymmetric reduction using hydrogen gas as a terminal reductant. Combining chiral NAD(P)H models with achiral transfer catalysts such as Brønsted acids and Lewis acids, the substrate scope could be also expanded to imines, heteroaromatics, and electron-deficient tetrasubstituted alkenes with up to 99% yield and 99% enantiomeric excess (ee). The mechanism of chiral regenerable NAD(P)H models was investigated as well. Isotope-labeling reactions indicated that chiral NAD(P)H models were regenerated by the ruthenium complex under hydrogen gas first, and then the hydride of NAD(P)H models was transferred to unsaturated bonds in the presence of transfer catalysts. In addition, density functional theory calculations were also carried out to give further insight into the transition states for the corresponding transfer catalysts.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zi-Biao Zhao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanan Zhao
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Gen Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
22
|
An WK, Zheng SJ, Du YN, Ding SY, Li ZJ, Jiang S, Qin Y, Liu X, Wei PF, Cao ZQ, Song M, Pan Z. Thiophene-embedded conjugated microporous polymers for photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
“Bottom-up” embedding of thiophene derivatives into CMPs for highly efficient heterogeneous photocatalysis is reported.
Collapse
|
23
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
24
|
Dhakshinamoorthy A, Navalon S, Asiri AM, Garcia H. Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chem Commun (Camb) 2020; 56:26-45. [DOI: 10.1039/c9cc07953j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This Feature Article describes the recent developments in the use of MOFs as catalysts under continuous flow conditions illustrating that these materials can meet the required stability.
Collapse
Affiliation(s)
| | - Sergio Navalon
- Departamento de Quimica
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Hermenegildo Garcia
- Center of Excellence for Advanced Materials Research
- King Abdulaziz University
- Jeddah
- Saudi Arabia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV)
| |
Collapse
|
25
|
Das SK, Chatterjee S, Mondal S, Bhaumik A. A new triazine-thiophene based porous organic polymer as efficient catalyst for the synthesis of chromenes via multicomponent coupling and catalyst support for facile synthesis of HMF from carbohydrates. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Chen X, Jiang H, Li X, Hou B, Gong W, Wu X, Han X, Zheng F, Liu Y, Jiang J, Cui Y. Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Chen
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xu Li
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| | - Bang Hou
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Wu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xing Han
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Fanfan Zheng
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
27
|
Chen X, Jiang H, Li X, Hou B, Gong W, Wu X, Han X, Zheng F, Liu Y, Jiang J, Cui Y. Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angew Chem Int Ed Engl 2019; 58:14748-14757. [DOI: 10.1002/anie.201908959] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Xu Chen
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xu Li
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| | - Bang Hou
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Wu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xing Han
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Fanfan Zheng
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
28
|
Shapenova DS, Magdalinova NA, Klyuev MV. One-Pot Synthesis of 2,3,4,4a,10,10a-Hexahydro-1H-phenoxazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019090070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Monterde C, Navarro R, Iglesias M, Sánchez F. Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Choi SJ, Choi EH, Song C, Ko YJ, Lee SM, Kim HJ, Jang HY, Son SU. Hyper-Cross-Linked Polymer on the Hollow Conjugated Microporous Polymer Platform: A Heterogeneous Catalytic System for Poly(caprolactone) Synthesis. ACS Macro Lett 2019; 8:687-693. [PMID: 35619525 DOI: 10.1021/acsmacrolett.9b00229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work shows that the shape-controlled microporous organic polymer (MOP) can be utilized for the morphological engineering of another class of MOP materials. The morphology of a hyper-cross-linked polymer (HCP) was successfully engineered on the hollow conjugated microporous polymer (CMP). Through the postsynthetic modification of HCP bearing BINOLs (HCP-B) on the hollow CMP-like material (H-CMPL), the HCP bearing BINOL phosphoric acid (HCP-BP) was engineered on the H-CMPL platform. The resultant H-CMPL@HCP-BP showed good catalytic performance as a heterogeneous catalytic system and excellent recyclability in the ring-opening polymerization of ε-caprolactones to poly(caprolactone).
Collapse
Affiliation(s)
- Sung Jae Choi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Eun Ho Choi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon 34133, Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
31
|
Tang X, He H, Fang X, Chang Z, Antilla JC. Design and synthesis of new alkyl-based chiral phosphoric acid catalysts. Chirality 2019; 31:592-602. [PMID: 31197898 DOI: 10.1002/chir.23101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 11/06/2022]
Abstract
Using chiral BINOL-derived phosphoric acids (PA's) to activate substrates for enhanced reactivity is now regarded as a powerful strategy to control enantioselectivity in asymmetric synthesis. Generally, most substituents at the 3,3'-positions of BINOL PA's are aryl derivatives. These derivatives are pivotal in attaining high selectivity. PA's with alkyl substituents in these positions have rarely been reported. Herein, we introduced alkyl-based substituents at the 3,3'-position of PA's. These new potential catalysts, if applied in reactions, may allow altered noncovalent interactions (as opposed to the typical aryl substituents in these positions) with substrates used in chiral PA-catalyzed chemistry in the future.
Collapse
Affiliation(s)
- Xiaoxue Tang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Hualing He
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Xiantao Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Zexu Chang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Gong W, Chen X, Jiang H, Chu D, Cui Y, Liu Y. Highly Stable Zr(IV)-Based Metal-Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions. J Am Chem Soc 2019; 141:7498-7508. [PMID: 30986351 DOI: 10.1021/jacs.9b02294] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterogeneous Brønsted acid catalysts featuring high porosity, crystallinity, and stability have been of great interest for both fundamental studies and practical applications, but synthetically, they still face a formidable challenge. Here, we illustrated a ligand design strategy for directly installing chiral phosphoric acid catalysts into highly stable Zr-MOFs by sterically protecting them from coordinating with metal ions. A pair of chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2] were prepared from enantiopure 4,4',6,6'-tetra(benzoate) and -tetra(2-naphthoate) ligands of 1,1'-spirobiindane-7,7'-phosphoric acid. They share the same topological structure but differ in channel sizes, and both of them demonstrate excellent tolerance toward water, acid and base. Significantly enhanced Brønsted acidity was observed for the phosphoric acids that are uniformly distributed within the frameworks in comparison with the nonimmobilized acids. This not only facilitates the catalysis of asymmetric two-component tandem acetalization, Friedel-Crafts, and iso-Pictet-Spengler reactions but also promotes the catalysis of asymmetric three-component tandem deacetalization-acetalization and Friedel-Crafts reactions benefiting from the synergy with exposed Lewis acidic Zr(IV) sites. The enantioselectivities are comparable or favorable compared to those obtained from the corresponding homogeneous systems. The features of high reactivity, selectivity, stability, and recyclability for Zr(IV)-MOFs make them hold promise as a new type of heterogeneous acid catalyst for the eco-friendly synthesis of fine chemicals.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xu Chen
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
33
|
Poly[1,3,6,8-tetra(2-thiophenyl)pyrene] and poly[1,3,6,8-tetra(3-thiophenyl)pyrene] conjugated microporous polymers for reversible adsorbing and fluorescent sensing iodine. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis. Nat Commun 2019; 10:600. [PMID: 30723208 PMCID: PMC6363736 DOI: 10.1038/s41467-019-08416-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023] Open
Abstract
The search for porous materials with strong Brønsted acid sites for challenging reactions has long been of significant interest, but it remains a formidable synthetic challenge. Here we demonstrate a cage extension strategy to construct chiral permanent porous hydrogen-bonded frameworks with strong Brønsted acid groups for heterogeneous asymmetric catalysis. We report the synthesis of two octahedral coordination cages using enantiopure 4,4’,6,6’-tetra(benzoate) ligand of 1,1’-spirobiindane-7,7’-phosphoric acid and Ni4/Co4-p-tert-butylsulfonylcalix[4]arene clusters. Intercage hydrogen-bonds and hydrophobic interactions between tert-butyl groups direct the hierarchical assembly of the cages into a permanent porous material. The chiral phosphoric acid-containing frameworks can be high efficient and recyclable heterogeneous Brønsted acid catalysts for asymmetric [3+2] coupling of indoles with quinone monoimine and Friedel-Crafts alkylations of indole with aryl aldimines. The afforded enantioselectivities (up to 99.9% ee) surpass those of the homogeneous counterparts and compare favorably with those of the most enantioselective homogeneous phosphoric acid catalysts reported to date. The search for porous materials with strong Brønsted acid sites for challenging chemical reactions has been of significant interest, but remains challenging. Here the authors report a cage extension strategy to construct chiral permanent porous hydrogen-bonded frameworks with strong Brønsted acid groups for heterogeneous asymmetric catalysis.
Collapse
|
35
|
Hollow organic polymeric nano-bowls-supported BINOL-derived chiral phosphoric acid: enhanced catalytic performances in the enantioselective allylation of aromatic aldehydes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Zumbrägel N, Machui P, Nonnhoff J, Gröger H. Enantioselective Biocatalytic Reduction of 2 H-1,4-Benzoxazines Using Imine Reductases. J Org Chem 2019; 84:1440-1447. [PMID: 30562025 DOI: 10.1021/acs.joc.8b02867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biocatalytic reduction of 2 H-1,4-benzoxazines using imine reductases is reported. This process enables a smooth and enantioselective synthesis of the resulting cyclic amines under mild conditions in aqueous media by means of a catalytic amount of the cofactor NADPH as hydride source as well as glucose as the reducing agent used in stoichiometric amounts for in situ cofactor recycling. Several substrates were studied, and the 3,4-dihydro-2 H-1,4-benzoxazines were obtained with up to 99% ee. In addition, the efficiency of this reduction process based on imine reductases as catalysts has been demonstrated for one 2 H-1,4-benzoxazine on an elevated laboratory scale running at a substrate loading of 10 g L-1 in the presence of a tailor-made whole-cell catalyst.
Collapse
Affiliation(s)
- Nadine Zumbrägel
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Paul Machui
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Jannis Nonnhoff
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| |
Collapse
|
37
|
Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802922. [PMID: 30345562 DOI: 10.1002/adma.201802922] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/15/2018] [Indexed: 05/08/2023]
Abstract
Exploring advanced porous materials is of critical importance in the development of science and technology. Porous polymers, being famous for their all-organic components, tailored pore structures, and adjustable chemical components, have attracted an increasing level of research interest in a large number of applications, including gas adsorption/storage, separation, catalysis, environmental remediation, energy, optoelectronics, and health. Recent years have witnessed tremendous research breakthroughs in these fields thanks to the unique pore structures and versatile skeletons of porous polymers. Here, recent milestones in the diverse applications of porous polymers are presented, with an emphasis on the structural requirements or parameters that dominate their properties and functionalities. The Review covers the following applications: i) gas adsorption, ii) water treatment, iii) separation, iv) heterogeneous catalysis, v) electrochemical energy storage, vi) precursors for porous carbons, and vii) other applications (e.g., intelligent temperature control textiles, sensing, proton conduction, biomedicine, optoelectronics, and actuators). The key requirements for each application are discussed and an in-depth understanding of the structure-property relationships of these advanced materials is provided. Finally, a perspective on the future research directions and challenges in this field is presented for further studies.
Collapse
Affiliation(s)
- Jinlun Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Shimei Li
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pengwei Ma
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xingcai Zhang
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qianhui Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Ruowen Fu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
38
|
Lan Y, Yang C, Zhang Y, An W, Xue H, Ding S, Zhou P, Wang W. Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water. Polym Chem 2019. [DOI: 10.1039/c9py00326f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The “bottom-up” reticulation of chiral pyrrolidine into POPs for heterogeneous organocatalysis in pure water.
Collapse
Affiliation(s)
- Yubao Lan
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Chunxia Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Wankai An
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Huadong Xue
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Sanyuan Ding
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
39
|
Wang B, Wang Y, Jiang Y, Chu M, Qi S, Ju W, Xu D. Asymmetric fluorination of indanone-2-carboxylates using a polystyrene-supported diphenylamine-linked bis(oxazoline) complex. Org Biomol Chem 2018; 16:7702-7710. [PMID: 30288521 DOI: 10.1039/c8ob01943f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective fluorination of indanone-2-carboxylates catalyzed by a polystyrene-supported diphenylamine-linked bis(oxazoline) (PS-box)-Cu(OTf)2 complex has been developed in a continuous flow system. The supported complex exhibited extremely efficient catalytic performance with high activity, affording the corresponding products in excellent yields (up to 99% yield) with excellent enantioselectivities (up to 99% ee) and more than 4000 turnover number (TON).
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yidong Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Mingming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Suosuo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wanzhen Ju
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Danqian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
40
|
Rodríguez‐Escrich C, Pericàs MA. Catalytic Enantioselective Flow Processes with Solid‐Supported Chiral Catalysts. CHEM REC 2018; 19:1872-1890. [DOI: 10.1002/tcr.201800097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Carles Rodríguez‐Escrich
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química OrgànicaUniversitat de Barcelona 08080 Barcelona Spain
| |
Collapse
|
41
|
Zhang W, Tang J, Yu W, Huang Q, Fu Y, Kuang G, Pan C, Yu G. Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01478] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weijie Zhang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Wenguang Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Qiao Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Yu Fu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Guichao Kuang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 110762, China
| |
Collapse
|
42
|
Clot-Almenara L, Rodríguez-Escrich C, Pericàs MA. Desymmetrisation of meso-diones promoted by a highly recyclable polymer-supported chiral phosphoric acid catalyst. RSC Adv 2018; 8:6910-6914. [PMID: 35540356 PMCID: PMC9078317 DOI: 10.1039/c7ra13471a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/04/2018] [Indexed: 11/21/2022] Open
Abstract
A polystyrene-supported BINOL-derived chiral phosphoric acid has been applied to the desymmetrisation of meso-diones to produce enantioenriched cyclohexenones. The catalytic resin has proven highly active and robust, giving rise to Hajos-Parrish or Wieland-Miescher type products in good yields and enantioselectivities, while allowing for extended recycling.
Collapse
Affiliation(s)
- Lidia Clot-Almenara
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Carles Rodríguez-Escrich
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona 08080 Barcelona Spain
| |
Collapse
|
43
|
Wei F, Cai X, Nie J, Wang F, Lu C, Yang G, Chen Z, Ma C, Zhang Y. A 1,2,3-triazolyl based conjugated microporous polymer for sensitive detection of p-nitroaniline and Au nanoparticle immobilization. Polym Chem 2018. [DOI: 10.1039/c8py00702k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 1,2,3-triazolyl based fluorescent CMP was used as an excellent chemosensor for p-nitroaniline detection and a support for Au catalyst deposition.
Collapse
Affiliation(s)
- Feng Wei
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Xinyi Cai
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Junqi Nie
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Feiyi Wang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Cuifen Lu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Guichun Yang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Zuxing Chen
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Chao Ma
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| |
Collapse
|
44
|
Altava B, Burguete MI, García-Verdugo E, Luis SV. Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chem Soc Rev 2018; 47:2722-2771. [DOI: 10.1039/c7cs00734e] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Achiral polymeric supports can have important positive effects on the activity, stability and selectivity of supported chiral catalysts.
Collapse
Affiliation(s)
- Belén Altava
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| |
Collapse
|
45
|
Lee J, Chang JY. Synthesis of a palladium acetylide-based tubular microporous polymer monolith via a self-template approach: a potential precursor of supported palladium nanoparticles for heterogeneous catalysis. RSC Adv 2018; 8:25277-25282. [PMID: 35539775 PMCID: PMC9082618 DOI: 10.1039/c8ra03275k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022] Open
Abstract
A monolithic, palladium acetylide-based conjugated microporous polymer, Pd-CMP, was synthesized from a palladium dichloride and a trialkyne. The polymerization proceeded in two different ways, the dehydrohalogenation reaction between the alkyne and the palladium halide and the homocoupling reaction of the alkyne. Pd-CMP had a rigid hollow tubular structure. The in situ formed crystalline triethylammonium chloride (TEACl) rod played a critical role in the formation of the tubular morphology as a template. Through the attachment of the polymer particles to the surface of the rod and their reactions with soluble alkynes, a core–shell structure with a TEACl core and a polymer shell formed. The TEACl core was removed by washing with methanol to yield a hollow polymer tube. Pd-CMP showed a hierarchical pore structure and reversible compressibility. Supported Pd nanoparticles were prepared by one-step thermolysis of Pd-CMP as a heterogeneous catalyst. The average diameters of NPs in the products thermolyzed at 300 (Pd-CMP300) and 500 °C (Pd-CMP500) were 2.6 and 4.1 nm, respectively. Pd-CMP300 was used in the heterogeneous catalysis of the 4-nitrophenol reduction reaction and Suzuki–Miyaura coupling between iodobenzene and phenylboronic acid. The reaction yields were higher than 95%. The catalyst could be used for a flow reaction and easily recycled without significant activity loss. A monolithic palladium acetylide-based tubular microporous polymer was synthesized as a promising precursor of a palladium heterogeneous catalyst.![]()
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Materials Science and Engineering
- College of Engineering
- Seoul National University
- Seoul 08826
- Korea
| | - Ji Young Chang
- Department of Materials Science and Engineering
- College of Engineering
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
46
|
Zhou YB, Zhan ZP. Conjugated Microporous Polymers for Heterogeneous Catalysis. Chem Asian J 2017; 13:9-19. [DOI: 10.1002/asia.201701107] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yun-Bing Zhou
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Zhuang-Ping Zhan
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
47
|
|
48
|
Zhang X, Kormos A, Zhang J. Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. Org Lett 2017; 19:6072-6075. [DOI: 10.1021/acs.orglett.7b02887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiang Zhang
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Attila Kormos
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Department
Chemical Biology Research Group, Institute of Organic Chemistry, Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Jian Zhang
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
49
|
|
50
|
Chen X, Jiang H, Hou B, Gong W, Liu Y, Cui Y. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal–Organic Frameworks for Batch and Flow Reactions. J Am Chem Soc 2017; 139:13476-13482. [DOI: 10.1021/jacs.7b06459] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Chen
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bang Hou
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|