1
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Chen Q, Jiao CY, Xu H, Li SM, Yang JB, Mei H, Xu Y. Copper-containing POM-based hybrid P2Mo22V4Cu4 nanocluster as heterogeneous catalyst for the light-driven hydroxylation of benzene to phenol. Dalton Trans 2024; 53:1190-1195. [PMID: 38108093 DOI: 10.1039/d3dt02812g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The current traditional phenol production process has many shortcomings, and the efficient and clean photocatalytic one-step oxidation to phenol is gradually attracting attention. Heteropolyacids (PMo10V2) with high-density Lewis acid active sites and excellent photoelectron transfer ability are ideal choices for catalytic reactions. In this study, a copper-modified isolated dimeric hybrid nanocluster, [Cu(pyim)2]2[Cu(pyim)2(P2MoVI20MoV2VIV4O82)]2·(H2O) (pyim = [2-(pyridin-2-yl)imidazole]), was synthesized by a convenient hydrothermal method. The structural analysis demonstrated that the compound was composed of metal-organic complexes containing pyim ligands, Keggin-type heteropolyacids, and transition metal copper ions. Remarkably, this not only solves the difficulty that the heteropolymeric acid cannot be recovered by dissolving in the solvent but also introduces the copper atom as a second active center. The catalyst exhibited a benzene conversion of 15.6% and a selectivity of 85.2% in a mixed solution of acetonitrile and acetic acid under optimal reaction conditions. After four catalytic cycles, the PXRD pattern proved that the catalyst was still stable. This study provides a good idea for photocatalytic reactions and other environmental applications.
Collapse
Affiliation(s)
- Qun Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Cheng-Yang Jiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hu Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Jian-Bo Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| |
Collapse
|
3
|
Lin XT, Ishizaka Y, Maegawa Y, Takeuchi K, Inagaki S, Matsumoto K, Choi JC. 1,10-Phenanthroline-based periodic mesoporous organosilica: from its synthesis to its application in the cobalt-catalyzed alkyne hydrosilylation. RSC Adv 2023; 13:7828-7833. [PMID: 36909752 PMCID: PMC9996227 DOI: 10.1039/d2ra08272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
1,10-Phenanthroline (Phen) is a typical ligand for metal complexation and various metal/Phen complexes have been applied as a catalyst in several organic transformations. This study reports the synthesis of a Phen-based periodic mesoporous organosilica (Phen-PMO) with the Phen moieties being directly incorporated into the organosilica framework. The Phen-PMO precursor, 3,8-bis[(triisopropoxysilyl)methyl]-1,10-phenanthroline (1a), was prepared via the Kumada-Tamao-Corriu cross-coupling of 3,8-dibromo-1,10-phenanthroline and [(triisopropoxysilyl)methyl]magnesium chloride. The co-condensation of 1a and 1,2-bis(triethoxysilyl)ethane in the presence of P123 as the template surfactant afforded Phen-PMO 3 with an ordered 2-D hexagonal mesoporous structure as confirmed by nitrogen adsorption/desorption measurements, X-ray diffraction, and transition electron microscopy. Co(OAc)2 was immobilized on Phen-PMO 3, and the obtained complex showed good catalytic activity for the hydrosilylation reaction of phenylacetylene with phenylsilane.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Yusuke Ishizaka
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Toyota Central R&D Labs., Inc. Nagakute Aichi 480-1192 Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
4
|
Wang J, Shen X, Zhang Y, Lu J, Liu M, Ling L, Liao J, Chang L, Xie K. Synthesis of the Hierarchical TS-1 Using TritonX Homologues for Hydroxylation of Benzene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Highly Dispersed Vanadia Anchored on Protonated g-C3N4 as an Efficient and Selective Catalyst for the Hydroxylation of Benzene into Phenol. Molecules 2022; 27:molecules27206965. [DOI: 10.3390/molecules27206965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The direct hydroxylation of benzene is a green and economical-efficient alternative to the existing cumene process for phenol production. However, the undesired phenol selectivity at high benzene conversion hinders its wide application. Here, we develop a one-pot synthesis of protonated g-C3N4 supporting vanadia catalysts (V-pg-C3N4) for the efficient and selective hydroxylation of benzene. Characterizations suggest that protonating g-C3N4 in diluted HCl can boost the generation of amino groups (NH/NH2) without changing the bulk structure. The content of surface amino groups, which determines the dispersion of vanadia, can be easily regulated by the amount of HCl added in the preparation. Increasing the content of surface amino groups benefits the dispersion of vanadia, which eventually leads to improved H2O2 activation and benzene hydroxylation. The optimal catalyst, V-pg-C3N4-0.46, achieves 60% benzene conversion and 99.7% phenol selectivity at 60 oC with H2O2 as the oxidant.
Collapse
|
6
|
Liu M, Don X, Guo Z, Yuan A, Gao S, Yang F. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Fully conversing and highly selective oxidation of benzene to phenol based on MOF-derived CuO@CN photocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Li JY, Wang DK, Lin YT, Wey MY, Tseng HH. Homogeneous sub-nanophase network tailoring of dual organosilica membrane for enhancing CO2 gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
|
10
|
Liang Y. Recent advanced development of metal-loaded mesoporous organosilicas as catalytic nanoreactors. NANOSCALE ADVANCES 2021; 3:6827-6868. [PMID: 36132354 PMCID: PMC9417426 DOI: 10.1039/d1na00488c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 05/10/2023]
Abstract
Ordered periodic mesoporous organosilicas have been widely applied in adsorption/separation/sensor technologies and the fields of biomedicine/biotechnology as well as catalysis. Crucially, surface modification with functional groups and metal complexes or nanoparticle loading has ensured high efficacy and efficiency. This review will highlight the current state of design and catalytic application of transition metal-loaded mesoporous organosilica nanoreactors. It will outline prominent synthesis approaches for the grafting of metal complexes, metal salt adsorption and in situ preparation of metal nanoparticles, and summarize the catalytic performance of the resulting mesoporous organosilica hybrid materials. Finally, the potential prospects and challenges of metal-loaded mesoporous organosilica nanoreactors are addressed.
Collapse
Affiliation(s)
- Yucang Liang
- Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 Tübingen 72076 Germany +49 7071 292436
| |
Collapse
|
11
|
Li H, Shen D, Lu H, Wu F, Chen X, Pleixats R, Pan J. The synthetic approaches, properties, classification and heavy metal adsorption applications of periodic mesoporous organosilicas. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Rahmani N, Amiri A, Ziarani GM, Badiei A. Review of some transition metal-based mesoporous catalysts for the direct hydroxylation of benzene to phenol (DHBP). MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Kang Q, Lin Y, Li Y, Xu L, Li K, Shi H. Catalytic S
N
Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Ke Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
15
|
Kang QK, Lin Y, Li Y, Xu L, Li K, Shi H. Catalytic S N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angew Chem Int Ed Engl 2021; 60:20391-20399. [PMID: 34263536 DOI: 10.1002/anie.202106440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Nucleophilic aromatic substitution (SN Ar) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SN Ar reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SN Ar conditions. Although the mechanism of SN Ar reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5 -cyclohexadienyl complex intermediate with an sp3 -hybridized carbon bearing both a nucleophile and a leaving group.
Collapse
Affiliation(s)
- Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ke Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Selective Oxidation of Benzyl Alcohol with Oxygen Catalyzed by Vanadia Supported on Nitrogen-Containing Ordered Mesoporous Carbon Materials. Catal Letters 2021. [DOI: 10.1007/s10562-021-03699-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Zohrevandi M, Mozafari R, Ghadermazi M. A nickel nanoparticle engineered CoFe 2O 4/SiO 2-NH 2@carboxamide composite as a novel scaffold for the oxidation of sulfides and oxidative coupling of thiols. RSC Adv 2021; 11:14717-14729. [PMID: 35424007 PMCID: PMC8697801 DOI: 10.1039/d1ra01592c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work was to prepare a new Ni-carboxamide complex supported on CoFe2O4 nanoparticles (CoFe2O4/SiO2-NH2@carboxamide-Ni). The carboxamide host material unit generated cavities that stabilized the nickel nanoparticles effectively and prevented the aggregation and separation of these particles on the surface. This compound was appropriately characterized using FT-IR spectroscopy, FE-SEM, ICP-OES, EDX, XRD, TGA analysis, VSM, and X-ray atomic mapping. The catalytic oxidation of sulfides and oxidative coupling of thiols in the presence of the designed catalyst was explored as a highly selective catalyst using hydrogen peroxide (H2O2) as a green oxidant. The easy separation, simple workup, excellent stability of the nanocatalyst, short reaction times, non-explosive materials as well as appropriate yields of the products are some outstanding advantages of this protocol.
Collapse
Affiliation(s)
- Mina Zohrevandi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Roya Mozafari
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Mohammad Ghadermazi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| |
Collapse
|
18
|
Encapsulating ruthenium in silica using a single source precursor: Differing outcomes for a cycloaddition reaction. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kumari S, Muthuramalingam S, Dhara AK, Singh UP, Mayilmurugan R, Ghosh K. Cu(I) complexes obtained via spontaneous reduction of Cu(II) complexes supported by designed bidentate ligands: bioinspired Cu(I) based catalysts for aromatic hydroxylation. Dalton Trans 2020; 49:13829-13839. [PMID: 33001072 DOI: 10.1039/d0dt02413a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper(i) complexes [Cu(L1-7)2](ClO4) (1-7) of bidentate ligands (L1-L7) have been synthesized via spontaneous reduction and characterized as catalysts for aromatic C-H activation using H2O2 as the oxidant. The single crystal X-ray structure of 1 exhibited a distorted tetrahedral geometry. All the copper(i) complexes catalyzed direct hydroxylation of benzene to form phenol with good selectivity up to 98%. The determined kinetic isotope effect (KIE) values, 1.69-1.71, support the involvement of a radical type mechanism. The isotope-labeling experiments using H218O2 showed 92% incorporation of 18O into phenol and confirm that H2O2 is the key oxygen supplier. Overall, the catalytic efficiencies of the complexes are strongly influenced by the electronic and steric factor of the ligand, which is fine-tuned by the ligand architecture. The benzene hydroxylation reaction possibly proceeded via a radical mechanism, which was confirmed by the addition of radical scavengers (TEMPO) to the catalytic reaction that showed a reduction in phenol formation.
Collapse
Affiliation(s)
- Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Ashish Kumar Dhara
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - U P Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
20
|
Luo L, Zhang T, Wang M, Yun R, Xiang X. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. CHEMSUSCHEM 2020; 13:5173-5184. [PMID: 32721068 DOI: 10.1002/cssc.202001398] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The photo-driven oxidation of organic molecules into corresponding high-value-added products has become a promising method in chemical synthesis. This strategy can drive thermodynamically non-spontaneous reactions and achieve challenging thermocatalytic processes under ambient conditions. Reactive oxygen species (ROS) are not only significant intermediates for producing target products via photoinduced oxidation reactions but also contribute to the creation of sustainable chemical processes. Here, the latest advances in heterogeneous photo-driven oxidation reactions involving ROS are summarized. The major types of ROS and their generation are introduced, and the behaviors of various ROS involved in photo-driven processes are reviewed in terms of the formation of different bonds. Emphasis is placed on unraveling the reaction mechanisms of ROS and establishing strategies for their regulation, and the remaining challenges and perspectives are summarized and analyzed. This Review is expected to provide an in-depth understanding of the mechanisms of ROS involved in photo-driven oxidation processes as an important foundation for the design of efficient catalysts. Clarifying the role of ROS in oxidation reactions has important scientific significance for improving the atomic and energy efficiency of reactions in practical applications.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Miao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Rongping Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
21
|
Qi Y, Xu Q, Tu G, Fu Y, Zhang F, Zhu W. Vanadium oxides anchored on nitrogen-incorporated carbon: An efficient heterogeneous catalyst for the selective oxidation of sulfide to sulfoxide. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Yamaguchi S, Ihara D, Yamashita Y, Uemoto Y, Yahiro H. Catalytic oxidation of cyclic hydrocarbons with hydrogen peroxide using Fe complexes immobilized into montmorillonite. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|
24
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
25
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorg Chem 2020; 59:5918-5928. [DOI: 10.1021/acs.inorgchem.9b03676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
26
|
Yu ZH, Gan YL, Xu J, Xue B. Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catal Letters 2020. [DOI: 10.1007/s10562-019-03003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Wei Mi, Han W, Li J, Zheng Y, Zhang Z. Direct Hydroxylation of Benzene to Phenol by Dielectric Barrier Discharge Plasma. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s003602441913020x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ma X, Dang R, Liu Z, Yang F, Li H, Guo T, Luo J. Facile synthesis of heterogeneous recyclable Pd/CeO2/TiO2 nanostructured catalyst for the one pot hydroxylation of benzene to phenol. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Sarkar P, Chowdhury AH, Riyajuddin S, Biswas S, Ghosh K, Islam SM. Zn( ii)@TFP-DAQ COF: an efficient mesoporous catalyst for the synthesis of N-methylated amine and carbamate through chemical fixation of CO 2. NEW J CHEM 2020. [DOI: 10.1039/c9nj04673a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective N-methylation and carbamate formation reactions were demonstrated via the chemical incorporation of CO2 using a Zn-loaded TFP-DAQ COF (covalent organic framework) as an active catalyst under mild reaction conditions.
Collapse
|
30
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Farahmand S, Ghiaci M, Vatanparast M, Razavizadeh JS. One-step hydroxylation of benzene to phenol over Schiff base complexes incorporated onto mesoporous organosilica in the presence of different axial ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj00928h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid-phase hydroxylation of benzene to phenol using Schiff base complexes anchored on a mesoporous organosilica support was investigated in various solvents when molecular oxygen was utilized as a green oxidant.
Collapse
Affiliation(s)
| | - Mehran Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - Morteza Vatanparast
- Department of Chemistry
- Amirkabir University of Technology
- Tehran Polytechnic
- Tehran
- Iran
| | | |
Collapse
|
32
|
Stabilizing CuPd bimetallic alloy nanoparticles deposited on holey carbon nitride for selective hydroxylation of benzene to phenol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Acharyya SS, Ghosh S, Yoshida Y, Kaneko T, Sasaki T, Iwasawa Y. NH 3 -Driven Benzene C-H Activation with O 2 that Opens a New Way for Selective Phenol Synthesis. CHEM REC 2019; 19:2069-2081. [PMID: 31268237 DOI: 10.1002/tcr.201900023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 11/08/2022]
Abstract
Catalytic benzene C-H activation toward selective phenol synthesis with O2 remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three-steps cumene process in liquid phase, which is energy-intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas-phase single-path reaction process. This account documents the pivotal confined single metal ion site platform with a sufficiently large coordination sphere in β zeolite pores, which promotes the unprecedented catalysis for the selective benzene hydroxylation with O2 under coexisting NH3 by the new inter-ligand concerted mechanism. Among alkali and alkaline-earth metal ions and transition and precious metal ions, single Cs+ and Rb+ sites with ion diameters >0.300 nm in the β pores exhibited good performances for the direct phenol synthesis in a gas-phase single-path reaction process. The single Cs+ and Rb+ sites that possess neither significant Lewis acidic-basic property nor redox property, cannot activate benzene, O2 , and NH3 , respectively, whereas when they coadsorbed together, the reaction of the inter-coadsorbates on the single alkali-metal ion site proceeds concertedly (the inter-ligand concerted mechanism), bringing about the benzene C-H activation toward phenol synthesis. The NH3 -driven benzene C-H activation with O2 was compared to the switchover of the reaction pathways from the deep oxidation to selective oxidation of benzene by coexisting NH3 on Pt6 metallic cluster/β and Ni4 O4 oxide cluster/β. The NH3 -driven selective oxidation mechanism observed with the Cs+ /β and Rb+ /β differs from the traditional redox catalysis (Mars-van Krevelen) mechanism, simple Langmuir-Hinshelwood mechanism, and acid-base catalysis mechanism involving clearly defined interaction modes. The present catalysis concept opens a new way for catalytic selective oxidation processes involving direct phenol synthesis.
Collapse
Affiliation(s)
- Shankha S Acharyya
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Shilpi Ghosh
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Takehiko Sasaki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| |
Collapse
|
34
|
Tu TN, Nguyen HTT, Nguyen HTD, Nguyen MV, Nguyen TD, Tran NT, Lim KT. A new iron-based metal-organic framework with enhancing catalysis activity for benzene hydroxylation. RSC Adv 2019; 9:16784-16789. [PMID: 35516388 PMCID: PMC9064430 DOI: 10.1039/c9ra03287h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 12/01/2022] Open
Abstract
A new Fe-based metal-organic framework (MOF), termed Fe-TBAPy Fe2(OH)2(TBAPy)·4.4H2O, was solvothermally synthesized. Structural analysis revealed that Fe-TBAPy is built from [Fe(OH)(CO2)2]∞ rod-shaped SBUs (SBUs = secondary building units) and 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4-) linker to form the frz topological structure highlighted by 7 Å channels and 3.4 Å narrow pores sandwiching between the pyrene cores of TBAPy4-. Consequently, Fe-TBAPy was used as a recyclable heterogeneous catalyst for benzene hydroxylation. Remarkably, the catalysis reaction resulted in high phenol yield and selectivity of 64.5% and 92.9%, respectively, which are higher than that of the other Fe-based MOFs and comparable with those of the best-performing heterogeneous catalysts for benzene hydroxylation. This finding demonstrated the potential for the design of MOFs with enhancing catalysis activity for benzene hydroxylation.
Collapse
Affiliation(s)
- Thach N Tu
- Nguyen Tat Thanh University 300A Nguyen Tat Thanh Street, District 4 Ho Chi Minh City 755414 Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Hue T T Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Huong T D Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - My V Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Trinh D Nguyen
- Nguyen Tat Thanh University 300A Nguyen Tat Thanh Street, District 4 Ho Chi Minh City 755414 Vietnam
| | - Nhung Thi Tran
- Ho Chi Minh City University of Technology and Education 01 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 720100 Vietnam
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University Busan 608-737 South Korea
| |
Collapse
|
35
|
Lin F, Meng X, Lu S, Wu L. One‐Pot Synthesis and Structure Evolution of Copper‐Containing Ethane‐Silica Induced by Copper Sources. ChemistrySelect 2019. [DOI: 10.1002/slct.201803703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feng Lin
- Department of Chemistry and Chemical EngineeringHeze University Heze 274015, Shandong province P.R. China
| | - Xiangyan Meng
- Department of Chemistry and Chemical EngineeringHeze University Heze 274015, Shandong province P.R. China
| | - Shengjie Lu
- Department of Chemistry and Chemical EngineeringHeze University Heze 274015, Shandong province P.R. China
| | - Lishun Wu
- Department of Chemistry and Chemical EngineeringHeze University Heze 274015, Shandong province P.R. China
| |
Collapse
|
36
|
Wanna WH, Janmanchi D, Thiyagarajan N, Ramu R, Tsai YF, Pao CW, Yu SSF. Selective catalytic oxidation of benzene to phenol by a vanadium oxide nanorod (V nr) catalyst in CH 3CN using H 2O 2(aq) and pyrazine-2-carboxylic acid (PCA). NEW J CHEM 2019. [DOI: 10.1039/c9nj02514f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A vanadium oxide nanorod (Vnr) catalyst has been synthesized without using surfactants through crystallization, which is highly active for benzene to phenol oxidation.
Collapse
Affiliation(s)
| | | | | | - Ravirala Ramu
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
- Sree Dattha Institute of Engineering & Science
| | - Yi-Fang Tsai
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - Steve S.-F. Yu
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
- Sustainable Chemical Science and Technology
| |
Collapse
|
37
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. One step phenol synthesis from benzene catalysed by nickel(ii) complexes. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01471c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nickel(ii)complexes of N4-ligands are reported as efficient catalysts for direct benzene hydroxylation via bis(μ-oxo)dinickel(iii) intermediate species. The exclusive phenol formation is achieved with a yield of 41%.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Marappan Velusamy
- Department of Chemistry
- North Eastern Hill University
- Shillong-793022
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| |
Collapse
|
38
|
Devi M, Das B, Barbhuiya MH, Bhuyan B, Dhar SS, Vadivel S. Fabrication of nanostructured NiO/WO3with graphitic carbon nitride for visible light driven photocatalytic hydroxylation of benzene and metronidazole degradation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02904d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of a novel NiO/WO3nanohybrid modified graphitic carbon nitride nanosheets with enhanced photocatalytic activity towards photocatalytic hydroxylation of benzene and degradation of a pharmaceutical waste metronidazole.
Collapse
Affiliation(s)
- Meghali Devi
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | - Bishal Das
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | - Bishal Bhuyan
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | | |
Collapse
|
39
|
Catalytic oxidation of benzene to phenol with hydrogen peroxide over Fe-terpyridine complexes supported on a cation exchange resin. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Bhuyan B, Devi M, Bora D, Dhar SS, Newar R. Design of a Photoactive Bimetallic Cu‐Au@g‐C
3
N
4
Catalyst for Visible Light Driven Hydroxylation of the Benzene Reaction through C–H Activation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bishal Bhuyan
- Department of Chemistry National Institute of Technology 788010 Silchar Assam India
| | - Meghali Devi
- Department of Chemistry National Institute of Technology 788010 Silchar Assam India
| | - Debashree Bora
- Department of Chemistry National Institute of Technology 788010 Silchar Assam India
| | | | - Rajashree Newar
- Department of Chemistry National Institute of Technology 788010 Silchar Assam India
| |
Collapse
|
41
|
Zhou Y, Ma Z, Tang J, Yan N, Du Y, Xi S, Wang K, Zhang W, Wen H, Wang J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nat Commun 2018; 9:2931. [PMID: 30050071 PMCID: PMC6062531 DOI: 10.1038/s41467-018-05351-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
Hydroxylation of arenes via activation of aromatic Csp2–H bond has attracted great attention for decades but remains a huge challenge. Herein, we achieve the ring hydroxylation of various arenes with stoichiometric hydrogen peroxide (H2O2) into the corresponding phenols on a robust heterogeneous catalyst series of V–Si–ZSM-22 (TON type vanadium silicalite zeolites) that is straightforward synthesized from an unusual ionic liquid involved dry-gel-conversion route. For benzene hydroxylation, the phenol yield is 30.8% (selectivity >99%). Ring hydroxylation of mono-/di-alkylbenzenes and halogenated aromatic hydrocarbons cause the yields up to 26.2% and selectivities above 90%. The reaction is completed within 30 s, the fastest occasion so far, resulting in ultra-high turnover frequencies (TOFs). Systematic characterization including 51V NMR and X-ray absorption fine structure (XAFS) analyses suggest that such high activity associates with the unique non-radical hydroxylation mechanism arising from the in situ created diperoxo V(IV) state. Hydroxylation of arenes via activation of aromatic Csp2–H bond remains a challenge. Here, the authors have managed to get various arenes hydroxylated to corresponding phenols using stoichiometric hydrogen peroxide and a series of robust V–Si–ZSM-22 catalysts synthesized via an ionic liquid involved dry-gel-conversion route.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Zhipan Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Junjie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Kai Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China.
| |
Collapse
|
42
|
Facile synthesis of Fe-containing graphitic carbon nitride materials and their catalytic application in direct hydroxylation of benzene to phenol. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Ghosh D, Febriansyah B, Gupta D, Ng LKS, Xi S, Du Y, Baikie T, Dong Z, Soo HS. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation. ACS NANO 2018; 12:5903-5912. [PMID: 29775278 DOI: 10.1021/acsnano.8b02118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
Collapse
Affiliation(s)
- Dwaipayan Ghosh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Benny Febriansyah
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Disha Gupta
- School of Materials Science and Engineering , 50 Nanyang Avenue , Nanyang Technological University , Singapore 639798 , Singapore
| | - Leonard Kia-Sheun Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- Energy Research Institute@NTU (ERI@N) , Nanyang Technological University, Interdisciplinary Graduate School , Research Techno Plaza , Singapore 637553 , Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences A*STAR , 1 Pesek Road , Singapore 627833 , Singapore
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences A*STAR , 1 Pesek Road , Singapore 627833 , Singapore
| | - Tom Baikie
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University , Research Techno Plaza , Singapore 637553 , Singapore
| | - ZhiLi Dong
- School of Materials Science and Engineering , 50 Nanyang Avenue , Nanyang Technological University , Singapore 639798 , Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- Solar Fuels Laboratory , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
44
|
Yang Y, Tang R. Direct hydroxylation of benzene to phenol by supported vanadium substitution polyoxometalates using H2O2 as oxidant. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Zhu L, Jin F, Fan M, Liu J, Chang R, Jia Q, Tang C, Li Q. Bio-Oil as a Potential Biomass-Derived Renewable Raw Material for Bio-Phenol Production. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lijuan Zhu
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Feng Jin
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Minghui Fan
- Anhui Tobacco Industrial Co., Ltd.; Anhui Key Laboratory of Tobacco Chemistry; 9 Tianda Road, Hefei 230088 Anhui China
| | - Junxu Liu
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Rui Chang
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Qifang Jia
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Chi Tang
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Quanxin Li
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| |
Collapse
|
46
|
Yamaguchi S, Miyake Y, Takiguchi K, Ihara D, Yahiro H. Oxidation of cyclic hydrocarbons with hydrogen peroxide over iron complexes encapsulated in cation-exchanged zeolite. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Das P, Ray S, Bhanja P, Bhaumik A, Mukhopadhyay C. Serendipitous Observation of Liquid-Phase Size Selectivity inside a Mesoporous Silica Nanoreactor in the Reaction of Chromene with Formic Acid. ChemCatChem 2018. [DOI: 10.1002/cctc.201701975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paramita Das
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
- Department of Chemistry; Asutosh College; 92, S. P. Mukherjee Road Kolkata- 700026 India
| | - Suman Ray
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
| | - Piyali Bhanja
- Department of Materials Science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata- 700032 India
| | - Asim Bhaumik
- Department of Materials Science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata- 700032 India
| | - Chhanda Mukhopadhyay
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
| |
Collapse
|
48
|
Hofmann LE, Mach L, Heinrich MR. Nitrogen Oxides and Nitric Acid Enable the Sustainable Hydroxylation and Nitrohydroxylation of Benzenes under Visible Light Irradiation. J Org Chem 2017; 83:431-436. [PMID: 29171756 DOI: 10.1021/acs.joc.7b02333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new type of waste recycling strategy is described in which nitrogen oxides or nitric acid are directly employed in photocatalyzed hydroxylations and nitrohydroxylations of benzenes. Through these transformations, otherwise costly denitrification can be combined with the synthesis of valuable compounds for various applications.
Collapse
Affiliation(s)
- Laura Elena Hofmann
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Leonard Mach
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
49
|
Muhammad R, Jyoti, Mohanty P. Nitrogen enriched triazine bridged mesoporous organosilicas for CO2 capture and dye adsorption applications. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Yaghoubi A, Dekamin MG. Green and Facile Synthesis of 4H
-Pyran Scaffold Catalyzed by Pure Nano-Ordered Periodic Mesoporous Organosilica with Isocyanurate Framework (PMO-ICS). ChemistrySelect 2017. [DOI: 10.1002/slct.201700717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory; Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| |
Collapse
|