1
|
Liu WM, Hao YJ, Zhang Y, Li XG, Ji SJ, Cai ZJ. Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution. Org Lett 2025; 27:363-368. [PMID: 39791233 DOI: 10.1021/acs.orglett.4c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials. A gram-scale reaction and facile conversion of the helical products into a promising chiral Lewis base catalyst, a chiroptical switch material, and monophosphine ligands further highlight the potential application of this protocol.
Collapse
Affiliation(s)
- Wei-Ming Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yong-Jiu Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xian-Gao Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Rippke M, Tian X, Reiß F, Wu L, Beweries T. Dehydrocoupling of Ammonia/Amine Boranes and Related Transformations Catalysed by Group 4 Metal Complexes. Chemistry 2024:e202403982. [PMID: 39658511 DOI: 10.1002/chem.202403982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Ammonia borane and amine boranes are main group analogues of alkanes, which are characterised by their large gravimetric hydrogen content. This hydrogen can be released in dehydrocoupling and dehydropolymerisation reactions to obtain B-N oligomers and polymers that are of importance as precursors for functional B-N materials. Furthermore, amine boranes are potent reagents for application in transfer hydrogenation reactions, representing a versatile, easy-to-handle alternative to the use of gaseous hydrogen for the reduction of organic compounds. Compared to late transition metals, complexes of readily available and comparatively inexpensive electropositive group 4 metals have been used to a much lesser extent. This review summarises the developments in the field of dehydrocoupling of amine boranes and transfer hydrogenation with these reagents, catalysed by complexes of group 4 metals. We analyse the background for these developments using examples and reaction mechanisms and provide an outlook for future developments in this field of research.
Collapse
Affiliation(s)
- Mirko Rippke
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ximei Tian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fabian Reiß
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Torsten Beweries
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
3
|
Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. Lanthanide/B(C 6F 5) 3-Promoted Hydroboration Reduction of Indoles and Quinolines with Pinacolborane. J Org Chem 2024. [PMID: 38178689 DOI: 10.1021/acs.joc.3c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We have developed a lanthanide/B(C6F5)3-promoted hydroboration reduction of indoles and quinolines with pinacolborane (HBpin). This reaction provides streamlined access to a range of nitrogen-containing compounds in moderate to excellent yields. Large-scale synthesis and further transformations to bioactive compounds indicate that the method has potential practical applications. Preliminary mechanistic studies suggest that amine additives promote the formation of indole-borane intermediates, and the lanthanide/B(C6F5)3-promoted hydroboration reduction proceeds via hydroboration of indole-borane intermediates with HBpin and in situ-formed BH3 species, followed by the protodeborylation process.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ziyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Mingxin Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rongrong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Efficient hydrogenation of N-heteroarenes into N-heterocycles over MOF-derived CeO2 supported nickel nanoparticles. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
5
|
Wei H, Gao Z, Cao L, Li K, Yan X, Liu T, Zhu M, Huang F, Fang X, Lin J. FePO 4 supported Rh subnano clusters with dual active sites for efficient hydrogenation of quinoline under mild conditions. NANOSCALE 2023; 15:1422-1430. [PMID: 36594603 DOI: 10.1039/d2nr05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemoselective hydrogenation of quinoline and its derivatives under mild reaction conditions still remains a challenging topic, which requires a suitable interaction between reactants and a catalyst to achieve high performance and stability. Herein, FePO4-supported Rh single atoms, subnano clusters and nanoparticle catalysts were synthesized and evaluated in the chemoselective hydrogenation of quinoline. The results show that the Rh subnano cluster catalyst with a size of ∼1 nm gives a specific reaction rate of 353 molquinoline molRh-1 h-1 and a selectivity of >99% for 1,2,3,4-tetrahydroquinoline under mild conditions of 50 °C and 5 bar H2, presenting better performance compared with the Rh single atoms and nanoparticle counterparts. Moreover, the Rh subnano cluster catalyst exhibits good stability and substrate universality for the hydrogenation of various functionalized quinolines. A series of characterization studies demonstrate that the acidic properties of the FePO4 support favors the adsorption of quinoline while the Rh subnano clusters promote the dissociation of H2 molecules, and then contribute to the enhanced hydrogenation performance. This work provides an important implication to design efficient Rh-based catalysts for chemoselective hydrogenation under mild conditions.
Collapse
Affiliation(s)
- Haisheng Wei
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Zhaohua Gao
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Liru Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| | - Kairui Li
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Xiaorui Yan
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Tiantian Liu
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Mingyuan Zhu
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Fei Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xu Fang
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| |
Collapse
|
6
|
Martí À, Montesinos‐Magraner M, Echavarren AM, Franchino A. H-Bonded Counterion-Directed Catalysis: Enantioselective Gold(I)-Catalyzed Addition to 2-Alkynyl Enones as a Case Study. European J Org Chem 2022; 2022:e202200518. [PMID: 36590458 PMCID: PMC9796400 DOI: 10.1002/ejoc.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Indexed: 01/04/2023]
Abstract
H-bonded counterion-directed catalysis (HCDC) is a strategy wherein a chiral anion that is hydrogen-bonded to the achiral ligand of a metal complex is responsible for enantioinduction. In this article we present the application of H-bonded counterion-directed catalysis to the Au(I)-catalyzed enantioselective tandem cycloisomerization-addition reaction of 2-alkynyl enones. Following the addition of C-, N- or O-centered nucleophiles, bicyclic furans were obtained in moderate to excellent yield and enantioselectivity (28 examples, 59-96 % yield, 62 : 38 to 95 : 5 er). The optimal catalytic system, comprising a phosphinosquaramide Au(I) chloride complex and a BINOL-derived phosphoramidate Ag(I) salt, was selected in a combinatorial fashion from a larger library with the help of high-throughput screening. An enantioselectivity switch of ca. 120 Δee% was observed upon addition of the achiral Au(I) component to the Ag(I) salt.
Collapse
Affiliation(s)
- Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Marc Montesinos‐Magraner
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| |
Collapse
|
7
|
Liu X, Tang Z, Si Z, Zhang Z, Zhao L, Liu L. Enantioselective
para
‐C(sp
2
)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angew Chem Int Ed Engl 2022; 61:e202208874. [DOI: 10.1002/anie.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xun‐Shen Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhi‐Yao Si
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lei Zhao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
8
|
Liu XS, Tang Z, Si ZY, Zhang Z, Zhao L, Liu L. Enantioselective para‐C(sp2)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun-Shen Liu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhiqiong Tang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhi-Yao Si
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhikun Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lei Zhao
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lu Liu
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
9
|
Yu L, Li W, Tapdara A, Kyne SH, Harode M, Babaahmadi R, Ariafard A, Chan PWH. Chiral Gold Complex Catalyzed Cycloisomerization/Regio- and Enantioselective Nitroso-Diels–Alder Reaction of 1,6-Diyne Esters with Nitrosobenzenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wenhai Li
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Anyawan Tapdara
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Sara Helen Kyne
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Mandeep Harode
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Rasool Babaahmadi
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
10
|
Highly efficient and selective hydrogenation of quinolines at room temperature over Ru@NC-500 catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wu Z, Krishnamurthy S, Tummalapalli KSS, Antilla JC. Chiral Calcium Phosphate-Catalyzed Enantioselective Amination of 3-Aryl-2-oxindoles with Dibenzyl Azodicarboxylate. J Org Chem 2022; 87:8203-8212. [PMID: 35621216 DOI: 10.1021/acs.joc.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral calcium phosphate-catalyzed enantioselective amination of 2-oxindoles with dibenzyl azodicarboxylate has been developed, affording the products in consistently high yields and excellent enantioselectivity. This synthetic method features low catalyst loading and a high catalytic efficiency. Moreover, the practical value of this process is well demonstrated by a scale-up experiment and a trial of catalyst recovery and reuse.
Collapse
Affiliation(s)
- Zhenwei Wu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Suvratha Krishnamurthy
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - K S Satyanarayana Tummalapalli
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
12
|
Bao M, Zhou S, Hu W, Xu X. Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhu ZH, Ding YX, Zhou YG. Transfer-catalyst-free biomimetic asymmetric reduction of 3-sulfonyl coumarins with a regenerable NAD(P)H model. Chem Commun (Camb) 2022; 58:3973-3976. [PMID: 35254349 DOI: 10.1039/d1cc06896b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel transfer-catalyst-free biomimetic reduction of the tetrasubstituted olefins 3-sulfonyl coumarins with the chiral and regenerable [2.2]paracyclophane-based NAD(P)H model CYNAM has been developed, affording chiral 3-sulfonyl dihydrocoumarins with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
14
|
Zhang Z, Sabat N, Frison G, Marinetti A, Guinchard X. Enantioselective Au(I)-Catalyzed Multicomponent Annulations via Tethered Counterion-Directed Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhenhao Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Nazarii Sabat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Franchino A, Martí À, Echavarren AM. H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. J Am Chem Soc 2022; 144:3497-3509. [PMID: 35138843 PMCID: PMC8895408 DOI: 10.1021/jacs.1c11978] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A new strategy for
enantioselective transition-metal catalysis
is presented, wherein a H-bond donor placed on the ligand of a cationic
complex allows precise positioning of the chiral counteranion responsible
for asymmetric induction. The successful implementation of this paradigm
is demonstrated in 5-exo-dig and 6-endo-dig cyclizations of 1,6-enynes, combining an achiral phosphinourea
Au(I) chloride complex with a BINOL-derived phosphoramidate Ag(I)
salt and thus allowing the first general use of chiral anions in Au(I)-catalyzed
reactions of challenging alkyne substrates. Experiments with modified
complexes and anions, 1H NMR titrations, kinetic data,
and studies of solvent and nonlinear effects substantiate the key
H-bonding interaction at the heart of the catalytic system. This conceptually
novel approach, which lies at the intersection of metal catalysis,
H-bond organocatalysis, and asymmetric counterion-directed catalysis,
provides a blueprint for the development of supramolecularly assembled
chiral ligands for metal complexes.
Collapse
Affiliation(s)
- Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
16
|
Escofet I, Zuccarello G, Echavarren AM. Gold-catalyzed enantioselective cyclizations and cycloadditions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
El‐Shahat M. Advances in the reduction of quinolines to 1,2,3,4‐tetrahydroquinolines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahmoud El‐Shahat
- Photochemistry Department Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618 Giza Egypt
| |
Collapse
|
18
|
Wang L, Lin J, Xia C, Sun W. Iridium-Catalyzed Asymmetric Transfer Hydrogenation of Quinolines in Biphasic Systems or Water. J Org Chem 2021; 86:16641-16651. [PMID: 34758620 DOI: 10.1021/acs.joc.1c01925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An asymmetric transfer hydrogenation (ATH) of quinolines in water or biphasic systems was developed. This ATH reaction proceeds smoothly without the need for inert atmosphere protection in the presence of a water-soluble iridium catalyst, which bears an easily available aminobenzimidazole ligand. This ATH system can work at a catalyst loading of 0.001 mol % (S/C = 100 000, turnover number (TON) of up to 33 000) under mild reaction conditions. The turnover frequency (TOF) value can reach as high as 90 000 h-1. A variety of quinoline and N-heteroaryl compounds are transformed into the desired products in high yield and up to 99% enantiomeric excess (ee).
Collapse
Affiliation(s)
- Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Shao BR, Shi L, Zhou YG. Asymmetric hydrogenation of O-/N-functional group substituted arenes. Chem Commun (Camb) 2021; 57:12741-12753. [PMID: 34762082 DOI: 10.1039/d1cc04722a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric hydrogenation of aromatic compounds represents one of the most straightforward synthetic methods to construct important chiral cyclic skeletons that are often found in biologically active agents and natural products. So far, the most successful examples in this field are largely limited to aromatics containing alkyl and aryl substituted groups due to the poor functional-group tolerance of hydrogenation. Direct asymmetric hydrogenation of functionalized aromatics provides enormous potential for expanding the structural diversity of reductive products of planar aromatic compounds, which is highly desirable and has not been well studied. This feature article focuses on the progress in catalytic asymmetric hydrogenation and transfer hydrogenation of O/N substituted arenes.
Collapse
Affiliation(s)
- Bing-Ru Shao
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Lei Shi
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| |
Collapse
|
20
|
Niu L, An Y, Yang X, Bian G, Wu Q, Xia Z, Bai G. Highly dispersed Ni nanoparticles encapsulated in hollow mesoporous silica spheres as an efficient catalyst for quinoline hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
22
|
Han Z, Liu G, Yang X, Dong XQ, Zhang X. Enantiodivergent Synthesis of Chiral Tetrahydroquinoline Derivatives via Ir-Catalyzed Asymmetric Hydrogenation: Solvent-Dependent Enantioselective Control and Mechanistic Investigations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhengyu Han
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Gang Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xuanliang Yang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
23
|
Martín‐Torres I, Ogalla G, Yang J, Rinaldi A, Echavarren AM. Enantioselective Alkoxycyclization of 1,6-Enynes with Gold(I)-Cavitands: Total Synthesis of Mafaicheenamine C. Angew Chem Int Ed Engl 2021; 60:9339-9344. [PMID: 33576560 PMCID: PMC8251978 DOI: 10.1002/anie.202017035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Chiral gold(I)-cavitand complexes have been developed for the enantioselective alkoxycyclization of 1,6-enynes. This enantioselective cyclization has been applied for the first total synthesis of carbazole alkaloid (+)-mafaicheenamine C and its enantiomer, establishing its configuration as R. The cavity effect was also evaluated in the cycloisomerization of dienynes. A combination of experiments and theoretical studies demonstrates that the cavity of the gold(I) complexes forces the enynes to adopt constrained conformations, which results in the high observed regio- and stereoselectivities.
Collapse
Affiliation(s)
- Inmaculada Martín‐Torres
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Gala Ogalla
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Jin‐Ming Yang
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Antonia Rinaldi
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
| |
Collapse
|
24
|
Martín‐Torres I, Ogalla G, Yang J, Rinaldi A, Echavarren AM. Enantioselective Alkoxycyclization of 1,6‐Enynes with Gold(I)‐Cavitands: Total Synthesis of Mafaicheenamine C. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Inmaculada Martín‐Torres
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Gala Ogalla
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Jin‐Ming Yang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonia Rinaldi
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
25
|
Zhu ZH, Ding YX, Zhou YG. Biomimetic reduction of imines and heteroaromatics with chiral and regenerable [2.2]Paracyclophane-Based NAD(P)H model CYNAM. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Cui X, Huang W, Wu L. Zirconium-hydride-catalyzed transfer hydrogenation of quinolines and indoles with ammonia borane. Org Chem Front 2021. [DOI: 10.1039/d1qo00672j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein, by applying zirconium-hydride complex as the catalyst, the transfer hydrogenation of quinoline and indole derivatives with ammonia borane as a proton and hydride source is achieved.
Collapse
Affiliation(s)
- Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
27
|
Petrushko WD, Nikonov GI. Mono(hydrosilylation) of N-Heterocycles Catalyzed by B(C6F5)3 and Silylium Ion. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William D. Petrushko
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3A1, Canada
| | - Georgii I. Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
28
|
Kim AN, Stoltz BM. Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes. ACS Catal 2020; 10:13834-13851. [PMID: 34567830 PMCID: PMC8460131 DOI: 10.1021/acscatal.0c03958] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric hydrogenation of heteroarenes has recently emerged as an effective strategy for the direct access to enantioenriched, saturated heterocycles. Although several homogeneous catalyst systems have been extensively developed for the hydrogenation of heteroarenes with high levels of chemo- and stereoselectivity, the development of mild conditions that allow for efficient and stereoselective hydrogenation of a broad range of substrates remains a challenge. This Perspective highlights recent advances in homogeneous catalysis of heteroarene hydrogenation as inspiration for the further development of asymmetric hydrogenation catalysts, and addresses underdeveloped areas and limitations of the current technology.
Collapse
Affiliation(s)
- Alexia N. Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
Cao Y, Zhang S, Antilla JC. Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shouqi Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C. Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, P. R. China
| |
Collapse
|
30
|
Pang M, Chen JY, Zhang S, Liao RZ, Tung CH, Wang W. Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nat Commun 2020; 11:1249. [PMID: 32144242 PMCID: PMC7060234 DOI: 10.1038/s41467-020-15118-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/03/2022] Open
Abstract
Catalytic hydrogenation or transfer hydrogenation of quinolines was thought to be a direct strategy to access dihydroquinolines. However, the challenge is to control the chemoselectivity and regioselectivity. Here we report an efficient partial transfer hydrogenation system operated by a cobalt-amido cooperative catalyst, which converts quinolines to 1,2-dihydroquinolines by the reaction with H3N·BH3 at room temperature. This methodology enables the large scale synthesis of many 1,2-dihydroquinolines with a broad range of functional groups. Mechanistic studies demonstrate that the reduction of quinoline is controlled precisely by cobalt-amido cooperation to operate dihydrogen transfer from H3N·BH3 to the N=C bond of the substrates.
Collapse
Affiliation(s)
- Maofu Pang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Shengjie Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China.
| |
Collapse
|
31
|
Zhang Z, Smal V, Retailleau P, Voituriez A, Frison G, Marinetti A, Guinchard X. Tethered Counterion-Directed Catalysis: Merging the Chiral Ion-Pairing and Bifunctional Ligand Strategies in Enantioselective Gold(I) Catalysis. J Am Chem Soc 2020; 142:3797-3805. [DOI: 10.1021/jacs.9b11154] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhenhao Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Vitalii Smal
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
32
|
Wang J, Zhao ZB, Zhao Y, Luo G, Zhu ZH, Luo Y, Zhou YG. Chiral and Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric Reduction: Design, Synthesis, Scope, and Mechanistic Studies. J Org Chem 2020; 85:2355-2368. [PMID: 31886670 DOI: 10.1021/acs.joc.9b03054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coenzyme NAD(P)H plays an important role in electron as well as proton transmission in the cell. Thus, a variety of NAD(P)H models have been involved in biomimetic reduction, such as stoichiometric Hantzsch esters and achiral regenerable dihydrophenantheridine. However, the development of a general and new-generation biomimetic asymmetric reduction is still a long-term challenge. Herein, a series of chiral and regenerable NAD(P)H models with central, axial, and planar chiralities have been designed and applied in biomimetic asymmetric reduction using hydrogen gas as a terminal reductant. Combining chiral NAD(P)H models with achiral transfer catalysts such as Brønsted acids and Lewis acids, the substrate scope could be also expanded to imines, heteroaromatics, and electron-deficient tetrasubstituted alkenes with up to 99% yield and 99% enantiomeric excess (ee). The mechanism of chiral regenerable NAD(P)H models was investigated as well. Isotope-labeling reactions indicated that chiral NAD(P)H models were regenerated by the ruthenium complex under hydrogen gas first, and then the hydride of NAD(P)H models was transferred to unsaturated bonds in the presence of transfer catalysts. In addition, density functional theory calculations were also carried out to give further insight into the transition states for the corresponding transfer catalysts.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zi-Biao Zhao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanan Zhao
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Gen Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
33
|
Hu XH, Hu XP. Highly Diastereo- and Enantioselective Ir-Catalyzed Hydrogenation of 2,3-Disubstituted Quinolines with Structurally Fine-Tuned Phosphine-Phosphoramidite Ligands. Org Lett 2019; 21:10003-10006. [PMID: 31802677 DOI: 10.1021/acs.orglett.9b03925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly diastereo- and enantioselective Ir-catalyzed hydrogenation of unfunctionalized 2,3-disubstituted quinolines, especially 3-alkyl-2-arylquinolines, has been realized. The success of this hydrogenation is ascribed to the use of a structurally fine-tuned chiral phosphine-phosphoramidite ligand with a (Sa)-3,3'-dimethyl H8-naphthyl moiety and (Rc)-1-phenylethylamine backbone. The hydrogenation displayed broad functional group tolerance, thus furnishing a wide range of optically active 2,3-disubstituted tetrahydroquinolines in up to 96% ee and with perfect cis-diastereoselectivity.
Collapse
Affiliation(s)
- Xin-Hu Hu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
34
|
Singh V, Sakaki S, Deshmukh MM. Theoretical prediction of Ni(I)-catalyst for hydrosilylation of pyridine and quinoline. J Comput Chem 2019; 40:2119-2130. [PMID: 31184780 DOI: 10.1002/jcc.25864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
Catalytic synthesis of dihydropyridine by transition-metal complex is one of the important research targets, recently. Density functional theory calculations here demonstrate that nickel(I) hydride complex (bpy)NiI H (bpy = 2,2'-bipyridine) 1 is a good catalyst for hydrosilylation of both quinoline and pyridine. Two pathways are possible; in path 1, substrate reacts with 1 to form stable intermediate Int1. After that, N3 ─C1 bond of substrate inserts into Ni─H bond of 1 via TS1 to afford N-coordinated 1,2-dihydroquinoline Int2 with the Gibbs activation energy (ΔG°‡ ) of 21.8 kcal mol-1 . Then, Int2 reacts with hydrosilane to form hydrosilane σ-complex Int3; this is named path 1A. In the other route (path 1B), Int1 reacts with phenylsilane in a concerted manner via hydride-shuttle transition state TS2 to afford Int3. In TS2, Si atom takes hypervalent trigonal bipyramidal structure. Formation of hypervalent structure is crucial for stabilization of TS2 (ΔG°‡ = 17.3 kcal mol-1 ). The final step of path 1 is metathesis between Ni─N3 bond of Int3 and Si─H bond of PhSiH3 to afford N-silylated 1,2-dihydroproduct and regenerate 1 (ΔG°‡ = 4.5 kcal mol-1 ). In path 2, 1 reacts with hydrosilane to form Int5, which then forms adduct Int6 with substrate through Si-N interaction between substrate and PhSiH3 . Then, N-silylated 1,2-dihydroproduct is produced via hydride-shuttle transition state TS5 (ΔG°‡ = 18.8 kcal mol-1 ). The absence of N-coordination of substrate to NiI in TS5 is the reason why path 2 is less favorable than path 1B. Quinoline hydrosilylation occurs more easily than pyridine because quinoline has the lowest unoccupied molecular orbital at lower energy than that of pyridine. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India
| |
Collapse
|
35
|
Guo Y, Harutyunyan SR. Highly Enantioselective Catalytic Addition of Grignard Reagents to N-Heterocyclic Acceptors. Angew Chem Int Ed Engl 2019; 58:12950-12954. [PMID: 31257687 PMCID: PMC6772156 DOI: 10.1002/anie.201906237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/23/2019] [Indexed: 01/14/2023]
Abstract
General methods to prepare chiral N‐heterocyclic molecular scaffolds are greatly sought after because of their significance in medicinal chemistry. Described here is the first general catalytic methodology to access a wide variety of chiral 2‐ and 4‐substituted tetrahydro‐quinolones, dihydro‐4‐pyridones, and piperidones with excellent yields and enantioselectivities, utilizing a single catalyst system.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
36
|
Guo Y, Harutyunyan SR. Highly Enantioselective Catalytic Addition of Grignard Reagents to N‐Heterocyclic Acceptors. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Syuzanna R. Harutyunyan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
37
|
Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63336-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Xu C, Feng Y, Li F, Han J, He YM, Fan QH. A Synthetic Route to Chiral Benzo-Fused N-Heterocycles via Sequential Intramolecular Hydroamination and Asymmetric Hydrogenation of Anilino-Alkynes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cong Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Faju Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiahong Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| |
Collapse
|
39
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
40
|
Li X, Tian J, Liu N, Tu X, Zeng N, Wang X. Spiro‐Bicyclic Bisborane Catalysts for Metal‐Free Chemoselective and Enantioselective Hydrogenation of Quinolines. Angew Chem Int Ed Engl 2019; 58:4664-4668. [DOI: 10.1002/anie.201900907] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xian‐Shuang Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning‐Ning Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
41
|
Li X, Tian J, Liu N, Tu X, Zeng N, Wang X. Spiro‐Bicyclic Bisborane Catalysts for Metal‐Free Chemoselective and Enantioselective Hydrogenation of Quinolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xian‐Shuang Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning‐Ning Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
42
|
Wang J, Zhu Z, Chen M, Chen Q, Zhou Y. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Wang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing China
| | - Zhou‐Hao Zhu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mu‐Wang Chen
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yong‐Gui Zhou
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- State Key Laboratory of Fine ChemicalsZhang Dayu School of ChemistryDalian University of Technology Dalian China
| |
Collapse
|
43
|
Wang J, Zhu ZH, Chen MW, Chen QA, Zhou YG. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angew Chem Int Ed Engl 2019; 58:1813-1817. [PMID: 30556234 DOI: 10.1002/anie.201813400] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/10/2022]
Abstract
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qing-An Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
44
|
Jin J, Zhao Y, Sze EML, Kothandaraman P, Chan PWH. Chiral Brønsted Acid and Gold Catalyzed Enantioselective Synthesis of 1,8‐Dihydroindeno[2,1‐
b
]pyrroles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jianwen Jin
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Yichao Zhao
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Ella Min Ling Sze
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Prasath Kothandaraman
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Philip Wai Hong Chan
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
45
|
Alshakova ID, Gabidullin B, Nikonov GI. Ru‐Catalyzed Transfer Hydrogenation of Nitriles, Aromatics, Olefins, Alkynes and Esters. ChemCatChem 2018. [DOI: 10.1002/cctc.201801039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iryna D. Alshakova
- Chemistry DepartmentBrock University 1812 Sir Isaac Brock Way, St. Catharines, Niagara Region L2S 3 A1 Ontario Canada
| | - Bulat Gabidullin
- X-ray Core Facility Faculty of ScienceUniversity of Ottawa 150 Louis Pasteur Ottawa, ON K1 N 6 N5 Canada
| | - Georgii I. Nikonov
- Chemistry DepartmentBrock University 1812 Sir Isaac Brock Way, St. Catharines, Niagara Region L2S 3 A1 Ontario Canada
| |
Collapse
|
46
|
Murashkina AV, Mitrofanov AY, Grishin YK, Rybakov VB, Beletskaya IP. Convenient Au(III)-Catalysed Synthesis of 1-Alkyl-3-diethoxy-phosphoryl-1,2,3,4-tetrahydroisoquinolines. ChemistrySelect 2018. [DOI: 10.1002/slct.201801456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arina V. Murashkina
- Chemistry Department; Moscow State University; Leninskie Gory, GSP-3 Moscow 119991 Russia
| | | | - Yuri K. Grishin
- Chemistry Department; Moscow State University; Leninskie Gory, GSP-3 Moscow 119991 Russia
| | - Victor B. Rybakov
- Chemistry Department; Moscow State University; Leninskie Gory, GSP-3 Moscow 119991 Russia
| | - Irina P. Beletskaya
- Chemistry Department; Moscow State University; Leninskie Gory, GSP-3 Moscow 119991 Russia
| |
Collapse
|
47
|
Gong J, Wan Q, Kang Q. Gold(I)/Chiral Rh(III) Lewis Acid Relay Catalysis Enables Asymmetric Synthesis of Spiroketals and Spiroaminals. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Gong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao Road West Fuzhou 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Qian Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao Road West Fuzhou 350002 People's Republic of China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao Road West Fuzhou 350002 People's Republic of China
| |
Collapse
|
48
|
Zhang S, Xia Z, Ni T, Zhang Z, Ma Y, Qu Y. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Yao P, Cong P, Gong R, Li J, Li G, Ren J, Feng J, Lin J, Lau PCK, Wu Q, Zhu D. Biocatalytic Route to Chiral 2-Substituted-1,2,3,4-Tetrahydroquinolines Using Cyclohexylamine Oxidase Muteins. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peiyuan Yao
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Peiqian Cong
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| | - Rui Gong
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| | - Jinlong Li
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Guangyue Li
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Jie Ren
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Jinhui Feng
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Jianping Lin
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Peter C. K. Lau
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Qiaqing Wu
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
| | - Dunming Zhu
- National
Engineering Laboratory for Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial
Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic
Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P.R. China
| |
Collapse
|
50
|
Lortie JL, Dudding T, Gabidullin BM, Nikonov GI. Zinc-Catalyzed Hydrosilylation and Hydroboration of N-Heterocycles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02811] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John L. Lortie
- Department
of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Department
of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Bulat M. Gabidullin
- X-ray
Core Facility, Faculty of Science, University of Ottawa, 150 Louis
Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Georgii I. Nikonov
- Department
of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|