1
|
Höthker S, Plato A, Grimme S, Qu ZW, Gansäuer A. Stereoconvergent Approach to the Enantioselective Construction of α-Quaternary Alcohols by Radical Epoxide Allylation. Angew Chem Int Ed Engl 2024; 63:e202405911. [PMID: 38669602 DOI: 10.1002/anie.202405911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We describe a highly stereoconvergent radical epoxide allylation towards diastereomerically and enantiomerically enriched α-quaternary alcohols in two steps from olefins. Our approach combines the stereospecifity and enantioselectivity of the Shi epoxidation with the unprecedented Ti(III)-promoted intramolecular radical group transfer allylation of epoxides. A directional isomerization step via configurationally labile radical intermediates enables the selective preparation of all-carbon quaternary stereocenters in a unique fashion.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Annika Plato
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Lin Z, Ren H, Lin X, Yu X, Zheng J. Synthesis of Azabicyclo[3.1.1]heptenes Enabled by Catalyst-Controlled Annulations of Bicyclo[1.1.0]butanes with Vinyl Azides. J Am Chem Soc 2024; 146:18565-18575. [PMID: 38935924 DOI: 10.1021/jacs.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bridged bicyclic scaffolds are emerging bioisosteres of planar aromatic rings under the concept of "escape from flatland". However, adopting this concept into the exploration of bioisosteres of pyridines remains elusive due to the challenge of incorporating a N atom into such bridged bicyclic structures. Herein, we report practical routes for the divergent synthesis of 2- and 3-azabicyclo[3.1.1]heptenes (aza-BCHepes) as potential bioisosteres of pyridines from the readily accessible vinyl azides and bicyclo[1.1.0]butanes (BCBs) via two distinct catalytic annulations. The reactivity of vinyl azides tailored with BCBs is the key to achieving divergent transformations. TiIII-catalyzed single-electron reductive generation of C-radicals from BCBs allows a concise (3 + 3) annulation with vinyl azides, affording novel 2-aza-BCHepe scaffolds. In contrast, scandium catalysis enables an efficient dipolar (3 + 2) annulation with vinyl azides to generate 2-azidobicyclo[2.1.1]hexanes, which subsequently undergo a chemoselective rearrangement to construct 3-aza-BCHepes. Both approaches efficiently deliver unique azabicyclo[3.1.1]heptene scaffolds with a high functional group tolerance. The synthetic utility has been further demonstrated by scale-up reactions and diverse postcatalytic transformations, providing valuable azabicyclics including 2- and 3-azabicyclo[3.1.1]heptanes and rigid bicyclic amino esters. In addition, the related sp2-hybridized nitrogen atom and the similar geometric property between pyridines and corresponding aza-BCHepes indicate that they are promising bioisosteres of pyridines.
Collapse
Affiliation(s)
- Zhongren Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinbo Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
4
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Shen J, Xu Z, Yang S, Li S, Jiang J, Zhang YQ. Quaternary Stereocenters via Catalytic Enantioconvergent Allylation of Epoxides. J Am Chem Soc 2023; 145:21122-21131. [PMID: 37722078 DOI: 10.1021/jacs.3c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The development of catalytic and enantioselective transformations for the synthesis of all-carbon quaternary stereocenters has long been recognized as a significant challenge in organic synthesis. While considerable progress has been made in asymmetric allylations, their potential to functionalize the commonly used synthon, epoxide, remains largely underexplored. Here we demonstrate the first highly regio- and enantioselective allylation of epoxides that delivers a range of quaternary stereocenters in the face of potentially problematic elimination and protonation reactions. The reaction proceeds via a radical approach under mild conditions and benefits from the use of earth-abundant titanium with a highly sophisticated salen ligand, which facilitates remarkable enantiocontrol and suppresses undesired side reactions. The resulting allylation products are multifunctional building blocks that can be elaborated chemo- and stereoselectively to a broad array of stereodefined structural motifs.
Collapse
Affiliation(s)
- Jian Shen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhongyun Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengxiao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yong-Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
6
|
Hilche T, Krebs T, Weißbarth H, Lang F, Schnakenburg G, Gansäuer A. Enantio- and Diastereomerically Pure Titanocenes by Dynamic Conformational Locking. Chemistry 2023; 29:e202301645. [PMID: 37283199 DOI: 10.1002/chem.202301645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
The synthesis of enantiomerically pure titanocenes is limited to cases with enantiomerically pure substituents at the cyclopentadienyl ligands and to ansa-titanocenes. For the latter complexes, the use of achiral ligands requires a resolution of enantiomers and frequently also a separation of the diastereoisomers obtained after metalation. Here, we introduce a new synthetic method that relies on the use of enantiomerically pure camphorsulfonate (CSA) ligands as control elements for the absolute and relative configuration of titanocene complexes. Starting from the conformationally flexible (RC5 H4 )2 TiCl2 , the desired conformationally locked and hence enantio- and diastereomerically pure complexes (RC5 H4 )2 Ti(CSA)2 are obtained in just two steps. According to X-ray crystallography the (RC5 H4 )2 Ti fragment is essentially C2 -symmetric and nuclear magnetic resonance displays overall C2 -symmetry. We applied density functional theory methods to unravel the dynamics of the complexes and the mechanisms and selectivities of their formation.
Collapse
Affiliation(s)
- Tobias Hilche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tim Krebs
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Hendrik Weißbarth
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Fabian Lang
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Höthker S, Gansäuer A. Formal Anti-Markovnikov Addition of Water to Olefins by Titanocene-Catalyzed Epoxide Hydrosilylation: From Stoichiometric to Sustainable Catalytic Reactions. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200240. [PMID: 37483422 PMCID: PMC10362118 DOI: 10.1002/gch2.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Indexed: 07/25/2023]
Abstract
Here, the evolution of the titanocene-catalyzed hydrosilylation of epoxides that yields the corresponding anti-Markovnikov alcohols is summarized. The study focuses on aspects of sustainability, efficient catalyst activation, and stereoselectivity. The latest variant of the reaction employs polymethylhydrosiloxane (PMHS), a waste product of the Müller-Rochow process as terminal reductant, features an efficient catalyst activation with benzylMgBr and the use of the bench stable Cp2TiCl2 as precatalyst. The combination of olefin epoxidation and epoxide hydrosilylation provides a uniquely efficient approach to the formal anti-Markovnikov addition of H2O to olefins.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| |
Collapse
|
8
|
Zhang Y, Qiu G, Liu F, Zhao D, Tian M, Sun K. Visible Light-Induced Cascade Sulfonylation/Cyclization to Produce Quinoline-2,4-Diones under Metal-Free Conditions. Molecules 2023; 28:molecules28073137. [PMID: 37049899 PMCID: PMC10095780 DOI: 10.3390/molecules28073137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
A general visible light-induced sulfonylation/cyclization to produce quinoline-2,4-diones was achieved under photocatalyst-free conditions. The reactions were performed at room temperature, and various substituents (halogen, alkyl, aryl) and substituted products were obtained with 29 examples within 2 h. Large-scale synthesis and derivatization study via carbonyl reduction to produce easily modified hydroxyl groups and convenient N-Ts deprotection showed the potential utility of this strategy.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ge Qiu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (G.Q.); (K.S.)
| | - Fei Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Dongyang Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Miao Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (G.Q.); (K.S.)
| |
Collapse
|
9
|
Streuff J. Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis. Synlett 2022. [DOI: 10.1055/s-0042-1751391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe single-electron transfer from an in situ formed titanium(III) catalyst to ketones, imines, nitriles, Michael acceptors, and many other functions has enabled a large number of intra- and intermolecular reductive umpolung reactions. Likewise, it allows the homolytic cleavage of functional groups for selective defunctionalizations. These reactions often take place with the participation of two titanium(III) species, avoiding free-radical pathways and enabling high catalyst control of the reaction selectivity. This account discusses the development of the individual reactions together with the fundamental mechanistic discoveries that led to a better understanding of such titanium(III)-catalyzed processes in general.1 Introduction2 Active Titanium(III) Species and Additives3 Ketone-Nitrile Couplings4 Further Reductive Umpolung Reactions5 Catalytic Homolytic C–CN and C–SO2R Cleavage6 Conclusion
Collapse
|
10
|
Zhu Y, Jiang C, Li H, Liu P, Sun P. Electrochemical Aerobic Oxygenation and Nitrogenation of Cyclic Alkenes via C═C Bond Cleavage or Oxygenation and Azidation of Open-Chain Alkenes. J Org Chem 2022; 87:11031-11041. [PMID: 35917464 DOI: 10.1021/acs.joc.2c01293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient strategy involving electrochemical C═C double-bond cleavage and functionalization of cyclic alkenes for the synthesis of ketonitriles is described. This transformation features environmentally friendly conditions and utilizes relatively safe TMSN3 as the nitrogenation reagent and molecular oxygen as the oxidant. For the open-chain alkenes, the reaction gave 1,2-difunctionalized products. A wide range of cyclic alkenes and open-chain alkenes were found to be compatible, providing the corresponding ketonitriles and α-azido aromatic ketones in moderate to good yields.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Huang ZY, Yang H, Jiang ZY, Zhou L, Li QH, Zhao ZG. In(OTf)3 catalyzed regioselective acyloin rearrangement of 1-acyl-1-indanols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Calogero F, Magagnano G, Potenti S, Pasca F, Fermi A, Gualandi A, Ceroni P, Bergamini G, Cozzi PG. Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chem Sci 2022; 13:5973-5981. [PMID: 35685797 PMCID: PMC9132033 DOI: 10.1039/d2sc00800a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
The pinacol coupling reaction, a reductive coupling of carbonyl compounds that proceeds through the formation of ketyl radicals in the presence of an electron donor, affords the corresponding 1,2-diols in one single step. The photoredox version of this transformation has been accomplished using different organic dyes or photoactive metal complexes in the presence of sacrificial donors such as tertiary amines or Hantzsch's ester. Normally, the homo-coupling of such reactive ketyl radicals is neither diastereo- nor enantio-selective. Herein, we report a highly diastereoselective pinacol coupling reaction of aromatic aldehydes promoted by 5 mol% of the non-toxic, inexpensive and available Cp2TiCl2 complex. The key feature that allows the complete control of diastereoselectivity is the employment of a red-absorbing organic dye in the presence of a redox-active titanium complex. Taking advantage of the well-tailored photoredox potential of this organic dye, the selective reduction of Ti(iv) to Ti(iii) is achieved. These conditions enable the formation of the d,l (syn) diastereoisomer as the favored product of the pinacol coupling (d.r. > 20 : 1 in most of the cases). Moreover, employing a simply prepared chiral SalenTi complex, the new photoredox reaction gave a complete diastereoselection for the d,l diastereoisomer, and high enantiocontrol (up to 92% of enantiomeric excess). A metallaphotoredox, diastereoselective and enantioselective pinacol coupling reaction promoted by titanium complexes with the use of a red-absorbing organic dye was developed.![]()
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giandomenico Magagnano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Laboratorio SMART, Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Francesco Pasca
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
13
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
14
|
Xie H, Wang S, Wang Y, Guo P, Shu XZ. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
15
|
Guo S, Wang X, Zhao D, Zhang Z, Zhang G, Tang S, Sun K. Convenient Access to Ester‐Containing Quinolinones Through Sequential Radical Alkoxycarbonylation/Cyclization/Hydrolysis Process. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sa Guo
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Xin Wang
- Yantai University School of Chemistry CHINA
| | | | - Zhiguo Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Guisheng Zhang
- Henan Normal University School of Chemistry and Chemical Engineering School of Chemistry CHINA
| | - Shi Tang
- Jishou University School of Chemistry CHINA
| | - Kai Sun
- Yantai University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
16
|
Muthumanickam S, Thennila M, Yuvaraj P, Lingam KAP, Selvakumar K. An Efficient Synthesis of Heterogeneous and Hard Bound Ti
IV
‐MCM‐41 Catalyzed Mannich Bases and π‐Conjugated Imines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Thennila
- Department of Physics Sethu Institute of Technology Virudhunagar 626115 . Tamilnadu India
| | - Paneerselvam Yuvaraj
- CSIR-North East Institute of Science & Technology Branch Laboratory Lamphelpat Imphal Manipur 795004 India
| | | | | |
Collapse
|
17
|
Duan S, Widlicka DW, Burns MP, Kumar R, Hotham I, Desrosiers JN, Bowles P, Jones KN, Nicholson LD, Buetti-Weekly MT, Han L, Steflik J, Hansen E, Hayward CM, Strohmeyer H, Monfette S, Sutton SC, Morris C. Application of Biocatalytic Reductive Amination for the Synthesis of a Key Intermediate to a CDK 2/4/6 Inhibitor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengquan Duan
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Daniel W. Widlicka
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Michael P. Burns
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Rajesh Kumar
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Ian Hotham
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Jean-Nicolas Desrosiers
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Paul Bowles
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Kris N. Jones
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Lindsay D. Nicholson
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Michele T. Buetti-Weekly
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Lu Han
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Jeremy Steflik
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Eric Hansen
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Cheryl M. Hayward
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Holly Strohmeyer
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Sébastien Monfette
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Scott C. Sutton
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| | - Christopher Morris
- Chemical and Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Groton, Connecticut 06340, United States
| |
Collapse
|
18
|
Younas SL, Streuff J. Kinetic Analysis Uncovers Hidden Autocatalysis and Inhibition Pathways in Titanium(III)-Catalyzed Ketone-Nitrile Couplings. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sara L. Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Department of Chemistry—BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
19
|
Martin T, Galeotti M, Salamone M, Liu F, Yu Y, Duan M, Houk KN, Bietti M. Deciphering Reactivity and Selectivity Patterns in Aliphatic C-H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. J Org Chem 2021; 86:9925-9937. [PMID: 34115516 DOI: 10.1021/acs.joc.1c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A kinetic, product, and computational study on the reactions of the cumyloxyl radical with monosubstituted cyclopentanes and cyclohexanes has been carried out. HAT rates, site-selectivities for C-H bond oxidation, and DFT computations provide quantitative information and theoretical models to explain the observed patterns. Cyclopentanes functionalize predominantly at C-1, and tertiary C-H bond activation barriers decrease on going from methyl- and tert-butylcyclopentane to phenylcyclopentane, in line with the computed C-H BDEs. With cyclohexanes, the relative importance of HAT from C-1 decreases on going from methyl- and phenylcyclohexane to ethyl-, isopropyl-, and tert-butylcyclohexane. Deactivation is also observed at C-2 with site-selectivity that progressively shifts to C-3 and C-4 with increasing substituent steric bulk. The site-selectivities observed in the corresponding oxidations promoted by ethyl(trifluoromethyl)dioxirane support this mechanistic picture. Comparison of these results with those obtained previously for C-H bond azidation and functionalizations promoted by the PINO radical of phenyl and tert-butylcyclohexane, together with new calculations, provides a mechanistic framework for understanding C-H bond functionalization of cycloalkanes. The nature of the HAT reagent, C-H bond strengths, and torsional effects are important determinants of site-selectivity, with the latter effects that play a major role in the reactions of oxygen-centered HAT reagents with monosubstituted cyclohexanes.
Collapse
Affiliation(s)
- Teo Martin
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
20
|
Xia WJ, Fan TG, Zhao ZW, Chen X, Wang XX, Li YM. Radical Annulation of 2-Cyanoaryl Acrylamides via C═C Double Bond Cleavage: Access to Amino-Substituted 2-Quinolones. Org Lett 2021; 23:6158-6163. [PMID: 34313448 DOI: 10.1021/acs.orglett.1c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel annulation of 2-cyanoaryl acrylamides via C═C double bond cleavage has been developed for facile and efficient access to a broad spectrum of functionalized 4-amino-2-quinolones, which are important N-heterocycles. In this transformation, the solvent THF is demonstrated to play a crucial role, and the addition of alkyl radicals to nitrile, 1,5-hydride shift, and cleavage of the C-C bond are involved in the mechanism.
Collapse
Affiliation(s)
- Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
21
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
22
|
Mitsui A, Nagao K, Ohmiya H. Catalytic Reductive Cross-Coupling between Aromatic Aldehydes and Arylnitriles. Chemistry 2021; 27:7094-7098. [PMID: 33769641 DOI: 10.1002/chem.202100763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/23/2022]
Abstract
A reductive cross-coupling reaction between aromatic aldehydes and arylnitriles using a copper catalyst and a silylboronate as a reductant is reported. This protocol represents an unprecedented approach to the chemoselective synthesis of α-hydroxy ketones by electrophile-electrophile cross-coupling.
Collapse
Affiliation(s)
- Atsuhisa Mitsui
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,JST, PRESTO 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
23
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
24
|
Paternoga J, Kühlborn J, Rossdam NO, Opatz T. Hantzsch Ester-Mediated Photochemical Transformations in the Ketone Series: Remote C(sp3)–H Arylation and Cyclopentene Synthesis through Strain Release. J Org Chem 2021; 86:3232-3248. [DOI: 10.1021/acs.joc.0c02591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jan Paternoga
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Jonas Kühlborn
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Nils Ole Rossdam
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
25
|
Abstract
An N-heterocyclic carbene (NHC)-catalyzed strategy has been developed to address the issue of using toxic transitional metals in the field of C-C bond activation. The novel reaction mode enables an efficient docking between the cyanoalkyl from the cycloketone oxime derivative and the acyl group from the aldehyde, affording ketonitrile in moderate to good yields, which is one kind of useful building block for synthesizing nitrogen-containing pharmacophores.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan-Hong Wan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Martínez AR, Morales LP, Ojeda ED, Rodríguez MC, Rodríguez-García I. The Proven Versatility of Cp 2TiCl. J Org Chem 2020; 86:1311-1329. [PMID: 33147037 DOI: 10.1021/acs.joc.0c01233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last two decades, titanocene monochloride has been postulated as a monoelectronic transfer reagent capable of catalyzing an important variety of chemical transformations. In this Perspective, our contributions to this growing field of research are summarized and analyzed. Especially known have been our contributions in C-C bond formation reactions, hydrogen-atom transfer from water to radicals, and isomerization reactions, as well as the development of a catalytic cycle that has subsequently allowed the preparation of a great variety of natural terpenes. It is also worth mentioning our contribution in the postulation of this single-electron transfer agent (SET) as a new green catalyst with a broad range of applications in organic and organometallic chemistry. The most significant catalytic processes developed by other research groups are also briefly described, with special emphasis on the reaction mechanisms involved. Finally, a reflection is made on the future trends in the research of this SET, aimed at consolidating this chemical as a new green reagent that will be widely used in fine chemistry, green chemistry, and industrial chemical processes.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Laura Pozo Morales
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Emilio Díaz Ojeda
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - María Castro Rodríguez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | | |
Collapse
|
27
|
Robinson SG, Wu X, Jiang B, Sigman MS, Lin S. Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3 + 2] Cycloaddition. J Am Chem Soc 2020; 142:18471-18482. [PMID: 33064948 DOI: 10.1021/jacs.0c07128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ti(salen) complexes catalyze the asymmetric [3 + 2] cycloaddition of cyclopropyl ketones with alkenes. While high enantioselectivities are achieved with electron-rich alkenes, electron-deficient alkenes are less selective. Herein, we describe mechanistic studies to understand the origins of catalyst and substrate trends in an effort to identify a more general catalyst. Density functional theory (DFT) calculations of the selectivity determining transition state revealed the origin of stereochemical control to be catalyst distortion, which is largely influenced by the chiral backbone and adamantyl groups on the salicylaldehyde moieties. While substitution of the adamantyl groups was detrimental to the enantioselectivity, mechanistic information guided the development of a set of eight new Ti(salen) catalysts with modified diamine backbones. These catalysts were evaluated with four electron-deficient alkenes to develop a three-parameter statistical model relating enantioselectivity to physical organic parameters. This statistical model is capable of quantitative prediction of enantioselectivity with structurally diverse alkenes. These mechanistic insights assisted the discovery of a new Ti(salen) catalyst, which substantially expanded the reaction scope and significantly improved the enantioselectivity of synthetically interesting building blocks.
Collapse
Affiliation(s)
- Sophia G Robinson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Binyang Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Fermi A, Gualandi A, Bergamini G, Cozzi PG. Shining Light on Ti
IV
Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrea Fermi
- Dipartimento di Chimica "G. Ciamician" Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "G. Ciamician" Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica "G. Ciamician" Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "G. Ciamician" Università di Bologna via Selmi 2 40126 Bologna Italy
| |
Collapse
|
29
|
Wiesler S, Younas SL, Kratzert D, Streuff J. Titanocene catalysts with modifiable C-symmetric chiral ligands. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Wang Y, Wang N, Zhao J, Sun M, You H, Fang F, Liu ZQ. Visible-Light-Promoted Site-Specific and Diverse Functionalization of a C(sp3)–C(sp3) Bond Adjacent to an Arene. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Nengyong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Jianyou Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Minzhi Sun
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Huichao You
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Fang Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| |
Collapse
|
31
|
Titanium catalyzed synthesis of amines and N-heterocycles. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Xia WJ, Xin Y, Zhao ZW, Chen X, Wang XX, Li Y, Wang G, Li YM. Oxidative cascade cyclization of 2-cyano-3-arylaniline derived acrylamides with toluenes, ethers, aliphatic alcohols or simple alkanes. Org Chem Front 2020. [DOI: 10.1039/d0qo00535e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative radical cascade cyclization of 2-cyano-3-arylaniline derived acrylamides with a variety of hydrocarbons including toluenes, ethers, aliphatic alcohols and alkanes has been developed to construct alkyl substituted pyridophenanthridines.
Collapse
Affiliation(s)
- Wen-Jin Xia
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Yangchun Xin
- Katzin Diagnostic & Research PET/MR Center
- Nemours/Alfred I. DuPont Hospital for Children
- Wilmington
- USA
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Xin Chen
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Yi Li
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Guanlin Wang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| |
Collapse
|
33
|
Manßen M, Schafer LL. Titanium catalysis for the synthesis of fine chemicals – development and trends. Chem Soc Rev 2020; 49:6947-6994. [DOI: 10.1039/d0cs00229a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atlas as a Titan(ium) is holding the earth-abundant chemistry world. Titanium is the second most abundant transition metal, is a key player in important industrial processes (e.g. polyethylene) and shows much promise for diverse applications in the future.
Collapse
Affiliation(s)
- Manfred Manßen
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Laurel L. Schafer
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
34
|
Qi L, Li R, Yao X, Zhen Q, Ye P, Shao Y, Chen J. Syntheses of Pyrroles, Pyridines, and Ketonitriles via Catalytic Carbopalladation of Dinitriles. J Org Chem 2019; 85:1097-1108. [PMID: 31877047 DOI: 10.1021/acs.joc.9b02999] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first example of the Pd-catalyzed addition of organoboron reagents to dinitriles, as an efficient means of preparing 2,5-diarylpyrroles and 2,6-diarylpyridines, has been discussed here. Furthermore, the highly selective carbopalladation of dinitriles with organoboron reagents to give long-chain ketonitriles has been developed as well. Based on the broad scope of substrates, excellent functional group tolerance, and use of commercially available substrates, the Pd-catalyzed addition reaction of arylboronic acid and dinitriles is expected to be significant in future synthetic procedures.
Collapse
Affiliation(s)
- Linjun Qi
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P. R. China
| | - Xinrong Yao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Qianqian Zhen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Pengqing Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| |
Collapse
|
35
|
Banerjee I, Anga S, Bano K, Panda TK. Efficient and chemoselective hydroboration of organic nitriles promoted by TiIV catalyst supported by unsymmetrical acenaphthenequinonediimine ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Abstract
New catalytic strategies that leverage single-electron redox events have provided chemists with useful tools for solving synthetic problems. In this context, Ti offers opportunities that are complementary to late transition metals for reaction discovery. Following foundational work on epoxide reductive functionalization, recent methodological advances have significantly expanded the repertoire of Ti radical chemistry. This Synopsis summarizes recent developments in the burgeoning area of Ti radical catalysis with a focus on innovative catalytic strategies such as radical redox-relay and dual catalysis.
Collapse
Affiliation(s)
- Terry McCallum
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Song Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
37
|
Lin Z, Lan Y, Wang C. Reductive Allylic Defluorinative Cross-Coupling Enabled by Ni/Ti Cooperative Catalysis. Org Lett 2019; 21:8316-8322. [DOI: 10.1021/acs.orglett.9b03102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Yun Lan
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Ye KY, McCallum T, Lin S. Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols. J Am Chem Soc 2019; 141:9548-9554. [PMID: 31180216 DOI: 10.1021/jacs.9b04993] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely, bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton transfer/electron transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.
Collapse
Affiliation(s)
- Ke-Yin Ye
- College of Chemistry , Fuzhou University , Fuzhou , 350116 , P.R. China.,Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Terry McCallum
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Song Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
39
|
Leijendekker LH, Weweler J, Leuther TM, Kratzert D, Streuff J. Development, Scope, and Applications of Titanium(III)-Catalyzed Cyclizations to Aminated N-Heterocycles. Chemistry 2019; 25:3382-3390. [PMID: 30615817 DOI: 10.1002/chem.201805909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Leonardus H. Leijendekker
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jens Weweler
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Tobias M. Leuther
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Daniel Kratzert
- Institut für Anorganische und Analytische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jan Streuff
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
40
|
López-Martínez JL, Torres-García I, Rodríguez-García I, Muñoz-Dorado M, Álvarez-Corral M. Stereoselective Barbier-Type Allylations and Propargylations Mediated by CpTiCl 3. J Org Chem 2019; 84:806-816. [PMID: 30582330 DOI: 10.1021/acs.joc.8b02643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CpTiCl2, prepared in situ by manganese reduction of CpTiCl3, is an excellent new system for the Barbier-type allylation and propargylation of carbonyl compounds. It can be used in catalytic amounts when combined with Et3N·HBr/TMSBr, which acts as a regenerating system. The high regio- and stereoselectivity shown by this system makes it useful for prenylation and crotylation processes in the synthesis of natural products.
Collapse
Affiliation(s)
| | - Irene Torres-García
- Dpto. Química Orgánica , Universidad de Almería , ceiA3, 04120 Almería , Spain
| | | | - Manuel Muñoz-Dorado
- Dpto. Química Orgánica , Universidad de Almería , ceiA3, 04120 Almería , Spain
| | | |
Collapse
|
41
|
Beaumier EP, Pearce AJ, See XY, Tonks IA. Modern applications of low-valent early transition metals in synthesis and catalysis. Nat Rev Chem 2019; 3:15-34. [PMID: 30989127 PMCID: PMC6462221 DOI: 10.1038/s41570-018-0059-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low-valent early transition metals are often intrinsically highly reactive as a result of their strong propensity toward oxidation to more stable high-valent states. Harnessing these highly reducing complexes for productive reactivity is potentially powerful for C-C bond construction, organic reductions, small-molecule activation and many other reactions that offer orthogonal chemoselectivity and/or regioselectivity patterns to processes promoted by late transition metals. Recent years have seen many exciting new applications of low-valent metals through building new catalytic and/or multicomponent reaction manifolds out of classical reactivity patterns. In this Review, we survey new methods that employ early transition metals and invoke low-valent precursors or intermediates in order to identify common themes and strategies in synthesis and catalysis.
Collapse
Affiliation(s)
- Evan P. Beaumier
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Adam J. Pearce
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Xin Yi See
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Roldan-Molina E, Padial NM, Lezama L, Oltra JE. CpTiCl 2
, an Improved Titanocene(III) Catalyst in Organic Synthesis. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Esther Roldan-Molina
- Department of Organic Chemistry.; University of Granada; Campus Fuentenueva s/n, E -18071 Granada Spain
| | - Natalia M. Padial
- Department of Organic Chemistry.; University of Granada; Campus Fuentenueva s/n, E -18071 Granada Spain
| | - Luis Lezama
- Department of Inorganic Chemistry and BCMaterials. University of the Basque Country. UPV/EHU; 48080 Bilbao Spain
| | - J. Enrique Oltra
- Department of Organic Chemistry.; University of Granada; Campus Fuentenueva s/n, E -18071 Granada Spain
| |
Collapse
|
43
|
Turner OJ, Murphy JA, Hirst DJ, Talbot EPA. Hydrogen Atom Transfer-Mediated Cyclisations of Nitriles. Chemistry 2018; 24:18658-18662. [PMID: 30341926 DOI: 10.1002/chem.201805236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 01/06/2023]
Abstract
Hydrogen atom transfer-mediated intramolecular C-C coupling reactions between alkenes and nitriles, using PhSiH3 and catalytic Fe(acac)3 , are described. This introduces a new strategic bond disconnection for ring-closing reactions, forming ketones via imine intermediates. Of note is the scope of the reaction, including formation of sterically hindered ketones, spirocycles and fused cyclic systems.
Collapse
Affiliation(s)
- Oliver J Turner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - David J Hirst
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Eric P A Talbot
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Present address: Pharmaron, Hertford Rd, Hoddesdon, EN11 9BU, UK
| |
Collapse
|
44
|
Wiesler S, Bau MA, Younas SL, Luu HT, Kratzert D, Streuff J. A Unified Approach to Customized Chiral Carbon-Bridged ansa
-Metallocenes. Chemistry 2018; 24:16532-16536. [DOI: 10.1002/chem.201804497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Wiesler
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| | - Michael A. Bau
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| | - Sara L. Younas
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| | - Hieu-Trinh Luu
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| | - Daniel Kratzert
- Institut für Anorganische und Analytische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| | - Jan Streuff
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
45
|
Chenniappan VK, Silwal S, Rahaim RJ. Ni/Ti Dual Catalytic Cross-Coupling of Nitriles and Organobromides To Access Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vinoth Kumar Chenniappan
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater, Oklahoma 74078, United States
| | - Sajan Silwal
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater, Oklahoma 74078, United States
| | - Ronald J. Rahaim
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
46
|
Streuff J, Himmel D, Younas SL. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings. Dalton Trans 2018; 47:5072-5082. [PMID: 29561012 DOI: 10.1039/c8dt00643a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.
Collapse
Affiliation(s)
- Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sara L Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
47
|
Huang HM, McDouall JJW, Procter DJ. Radical Anions from Urea-type Carbonyls: Radical Cyclizations and Cyclization Cascades. Angew Chem Int Ed Engl 2018; 57:4995-4999. [PMID: 29493858 DOI: 10.1002/anie.201800667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Huan-Ming Huang
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | | | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
48
|
Huang HM, McDouall JJW, Procter DJ. Radical Anions from Urea-type Carbonyls: Radical Cyclizations and Cyclization Cascades. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Huan-Ming Huang
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | | | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
49
|
Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. Diastereo- and Enantioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay. J Am Chem Soc 2018; 140:3514-3517. [DOI: 10.1021/jacs.7b13710] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Hao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Johannes H. Harenberg
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department Chemie, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Wang K, Kong W. Recent Advances in Transition Metal-Catalyzed Asymmetric Radical Reactions. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700745] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuai Wang
- Institute for Advanced Studies; Wuhan University, 299 Bayi Road, Wuchang District; Wuhan Hubei 430072 China
| | - Wangqing Kong
- Institute for Advanced Studies; Wuhan University, 299 Bayi Road, Wuchang District; Wuhan Hubei 430072 China
| |
Collapse
|