1
|
Zhou W, Wu R, Li J, Zhu D, Yu B. A Ligand-Controlled Approach Enabling Gold(I)-Catalyzed Stereoinvertive Glycosylation with Primal Glycosyl ortho-Alkynylbenzoate Donors. J Am Chem Soc 2024; 146:27915-27924. [PMID: 39314057 DOI: 10.1021/jacs.4c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A diarylurea-containing phosphine ligand-modulated stereoinvertive O-glycosylation with primal furanosyl and pyranosyl ortho-alkynylbenzoate (ABz) donors under gold(I) catalysis is disclosed. Both α- and β-configured glycosides could be obtained from the corresponding stereochemically pure β- and α-glycosyl donors with high yields and good to excellent stereoselectivities, respectively. This method accommodates a variety of glycosyl donors and alcoholic acceptors, leading to both 1,2-cis and 1,2-trans glycosidic linkages, and has been applied to the convenient preparation of a series of linear arabinan glycans. Mechanistic investigations reveal that the counteranion could bridge the diarylurea residue on the phosphine ligand with the alcoholic acceptor via hydrogen bond interactions, thereby permitting stereoinvertive displacement at the anomeric position.
Collapse
Affiliation(s)
- Weiping Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinchan Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Center for Chemical Glycobiology, Zhang jiang Institute for Advanced Study, Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Beyer PD, Nielsen MM, Picazo E, Jacobsen EN. β-Selective 2-Deoxy- and 2,6-Dideoxyglucosylations Catalyzed by Bis-Thioureas. J Am Chem Soc 2024; 146:27318-27323. [PMID: 39348510 DOI: 10.1021/jacs.4c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We present methods for β-selective 2-deoxy- and 2,6-dideoxyglucosylations of natural products, carbohydrates, and amino acids using bis-thiourea hydrogen-bond-donor catalysts. Disarming ester protecting groups were necessary to counter the high reactivity of 2-deoxyglycosyl electrophiles toward non-stereospecific SN1 pathways. Alcohol and phenol nucleophiles with both base- and acid-sensitive functionalities were compatible with the catalytic protocol, enabling access to a wide array of 2-deoxy-β-O-glucosides.
Collapse
Affiliation(s)
- Peyton D Beyer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M Nielsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elias Picazo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Kumar N, Gurawa A, Yadav A, Kashyap S. Influence of C-4 Axial/Equatorial Configuration and Neighboring Group/Remote Group Participation (NGP/RGP) Driven Conformational Evidence in Chemoselective Activation of Glycals. Org Lett 2024; 26:7072-7077. [PMID: 39116290 DOI: 10.1021/acs.orglett.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We herein reveal the possibility of the C-4 neighboring group/remote group participation (NGP/RGP) facilitating the stabilization of the anomeric center via dioxolenium intermediates in the chemoselective activation of glycal donors. We further realized that the axial/equatorial configuration of the C-4 group in the galacto- and gluco-glycal series enables diverse pathways to give direct 1,2-addition or Ferrier rearrangement, respectively. A proof-of-principle for stereoselective glycosylation was amply illustrated by employing carbohydrates, amino acids, natural products, and bioactive molecules to develop 2-deoxy-glycan analogs.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Aakanksha Gurawa
- Institut Charles Gerhardt Montpellier, Univ Montpellier, CNRS, 1919, route de Mende, 34294 Cedex 5 Montpellier, France
| | - Ankit Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| |
Collapse
|
4
|
Li T, Li T, Yang Y, Qiu Y, Liu Y, Zhang M, Zhuang H, Schmidt RR, Peng P. Reaction Rate and Stereoselectivity Enhancement in Glycosidations with O-Glycosyl Trihaloacetimidate Donors due to Catalysis by a Lewis Acid-Nitrile Cooperative Effect. J Org Chem 2024. [PMID: 38805026 DOI: 10.1021/acs.joc.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Activation of O-glycosyl trihaloacetimidate glycosyl donors with AuCl3 as a catalyst and pivalonitrile (tBuCN) as a ligand led to excellent glycosidation results in terms of yield and anomeric selectivity. In this way, various β-d-gluco- and β-d-galactopyranosides were obtained conveniently and efficiently. Experimental studies and density functional theory (DFT) calculations, in order to elucidate the reaction course, support formation of the tBuCN-AuCl2-OR(H)+ AuCl4- complex as a decisive intermediate in the glycosidation event. Proton transfer from this acceptor complex to the imidate nitrogen leads to donor activation. In this way, guided by the C-2 configuration of the glycosyl donor, the alignment of the acceptor complex enforces the stereoselective β-glycoside formation in an intramolecular fashion, thus promoting also a fast reaction course. The high stereocontrol of this novel 'Lewis acid-nitrile cooperative effect' is independent of the glycosyl donor anomeric configuration and without the support of neighboring group or remote group participation. The power of the methodology is shown by a successful glycoalkaloid solamargine synthesis.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yue Yang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yongshun Qiu
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong 266237, China
| |
Collapse
|
5
|
Wang C, Krupp A, Strohmann C, Grabe B, Loh CCJ. Harnessing Multistep Chalcogen Bonding Activation in the α-Stereoselective Synthesis of Iminoglycosides. J Am Chem Soc 2024; 146:10608-10620. [PMID: 38564319 PMCID: PMC11027159 DOI: 10.1021/jacs.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The use of noncovalent interactions (NCIs) has received significant attention as a pivotal synthetic handle. Recently, the exploitation of unconventional NCIs has gained considerable traction in challenging reaction manifolds such as glycosylation due to their capacity to facilitate entry into difficult-to-access sugars and glycomimetics. While investigations involving oxacyclic pyrano- or furanoside scaffolds are relatively common, methods that allow the selective synthesis of biologically important iminosugars are comparatively rare. Here, we report the capacity of a phosphonochalcogenide (PCH) to catalyze the stereoselective α-iminoglycosylation of iminoglycals with a wide array of glycosyl acceptors with remarkable protecting group tolerance. Mechanistic studies have illuminated the counterintuitive role of the catalyst in serially activating both the glycosyl donor and acceptor in the up/downstream stages of the reaction through chalcogen bonding (ChB). The dynamic interaction of chalcogens with substrates opens up new mechanistic opportunities based on iterative ChB catalyst engagement and disengagement in multiple elementary steps.
Collapse
Affiliation(s)
- Caiming Wang
- Abteilung
Chemische Biologie, Max Planck Institut
für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Anna Krupp
- Anorganische
Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Anorganische
Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Bastian Grabe
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Charles C. J. Loh
- Abteilung
Chemische Biologie, Max Planck Institut
für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Li Z, Shen W, Cao C, Wang Z, Zhang Y, Xue W. Thiourea-Cu(OTf) 2/NIS-synergistically promoted stereoselective glycoside formation with 2-azidoselenoglycosides or thioglycosides as donors. Org Biomol Chem 2024; 22:2137-2144. [PMID: 38385160 DOI: 10.1039/d4ob00064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A novel promoter system for glycosylation is described. A catalytic amount of thiourea and Cu(OTf)2 together with a slight excess of N-iodosuccinimide synergistically promotes glycosylation at room temperature. The combination of reagents applies to some 2-azidoselenoglycoside and thioglycoside donors. A wide range of alcoholic acceptors underwent smooth conversion to O-(2-azido)glycosides with good stereoselectivities. In addition, the value of this method has been highlighted by its convenient operation and outstanding functional group compatibility.
Collapse
Affiliation(s)
- Zuowa Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wenyan Shen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Changyu Cao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhaoyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yaosheng Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Weihua Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
7
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
8
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew Chem Int Ed Engl 2024; 63:e202316667. [PMID: 38116860 DOI: 10.1002/anie.202316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a β-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex β-face for nucleophilic attack.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
10
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
11
|
Wei MM, Ma YF, Zhang GL, Li Q, Xiong DC, Ye XS. Urea-catalyzed N-Glycosylation of Amides/Azacycles with Glycosyl Halides. Chem Asian J 2023; 18:e202300791. [PMID: 37843982 DOI: 10.1002/asia.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The efficient synthesis of N-glycosides via direct N-glycosylation of amides/azacycles has been reported. The glycosylation of amides/azacycles with glycosyl halides in the presence of a catalytic amount of urea proceeded smoothly to provide the corresponding N-glycosylated amides or nucleosides in good to excellent yields with 1,2-trans-stereoselectivity. Moreover, by the addition of terpyridine, the 1,2-cis-stereoselectivity was achieved.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Yu-Feng Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Gao-Lan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| |
Collapse
|
12
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
13
|
Bhardwaj M, Mukherjee D. Regio and Stereoselective One-Pot Synthesis of 2-Deoxy-3-thio Pyranoses and Their O-Glycosides from Glycals. J Org Chem 2023; 88:5676-5686. [PMID: 37083468 DOI: 10.1021/acs.joc.3c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A reaction of glycals with two different types of nucleophiles in the presence of SnCl4 enabled one-pot rapid access to 2-deoxy-3-thio pyranoses and their O-glycosides. The process involves thioaryl substitution at C-3 with stereoretention and α-selective O-glycosylation at C-1 from d-glycals, thus combining two reactions with three interventions. The present methodology features an attractive three-component coupling (1:1.2:1.5 ratio) with operational simplicity at 0 °C in 10-20 min. This stereoselective one-pot 1,3-difunctionalization approach of glycals is compatible with wide range of primary and secondary alcohols affording products in good to excellent yields. This methodology was successfully extended toward disaccharide synthesis. Several control experiments suggested a plausible reaction mechanism and rationale behind regio and stereoselectivity. The reaction strategy possesses an intrinsic ability for the synthesis of various natural products and drug molecules.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry, BOSE Institute, Kolkata 700054, India
| |
Collapse
|
14
|
Carney N, Perry N, Garabedian J, Nagorny P. Development of α-Selective Glycosylation with l-Oleandral and Its Application to the Total Synthesis of Oleandrin. Org Lett 2023; 25:966-971. [PMID: 36739571 DOI: 10.1021/acs.orglett.2c04358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This letter describes the development of an α-selective glycosylation using l-oleandrose, a 2-deoxysugar that is frequently found in natural products, and its application to the total synthesis of the natural cardiotonic steroids oleandrin and beaumontoside. To improve the reaction diastereoselectivity and to minimize side-product formation, an extensive evaluation and optimization of the conditions leading to α-selective glycosylation of digitoxigenin with l-oleandrose-based donors was conducted. These studies led to the exploration of 8 different phosphine·acid complexes or salts and yielded HBr·PPh3 as the optimal catalyst, which provided in the cleanest α-glycosylation and produced protected beaumontoside in 67% yield. Subsequent application of these conditions to synthetic oleandrigenin afforded the desired α-product in 69% isolated yield─enabling the completion of the first synthesis of oleandrin in 17 steps (1.2% yield) from testosterone.
Collapse
Affiliation(s)
- Nolan Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Natasha Perry
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob Garabedian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Hou M, Xiang Y, Gao J, Zhang J, Wang N, Shi H, Huang N, Yao H. Stereoselective Synthesis of 2-Deoxy Glycosides via Iron Catalysis. Org Lett 2023; 25:832-837. [PMID: 36700622 DOI: 10.1021/acs.orglett.2c04379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An Fe-catalyzed 2-deoxy glycosylation method was developed from 3,4-O-carbonate glycals directly at room temperature. This novel approach enabled facile access to alkyl and aryl 2-deoxy glycosides in high yields with exclusive α-stereoselectivity, tolerating various alcohols, phenols, and glycals. The synthetic utility and advantage of this strategy have been demonstrated by the modification of six natural products and the construction of a tetrasaccharide.
Collapse
Affiliation(s)
- Mingyu Hou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Yimin Xiang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Gao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
16
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
17
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
18
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
19
|
Affiliation(s)
- Giulio Goti
- Università degli Studi di Padova Dipartimento di Scienze Chimiche via Francesco Marzolo, 1 35131 Padova ITALY
| |
Collapse
|
20
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
21
|
Kumar M, Gurawa A, Kumar N, Kashyap S. Bismuth-Catalyzed Stereoselective 2-Deoxyglycosylation of Disarmed/Armed Glycal Donors. Org Lett 2022; 24:575-580. [PMID: 34995079 DOI: 10.1021/acs.orglett.1c04008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi(OTf)3 promoted direct and highly stereoselective glycosylation of "disarmed" and "armed" glycals to synthesize 2-deoxyglycosides has been reported. The tunable and solvent-controlled chemoselective activation of deactivated glycal donors distinguishing the competitive Ferrier and 1,2-addition pathways was discovered to improve substrate scope. The practical versatility of the method has been amply demonstrated with the oligosaccharide syntheses and 2-deoxyglycosylation of high-value natural products and drugs.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| |
Collapse
|
22
|
Javed, Tiwari A, Azeem Z, Mandal PK. 4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars. J Org Chem 2022; 87:3718-3729. [DOI: 10.1021/acs.joc.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Yao W, Wang H, Zeng J, Wan Q. Practical synthesis of 2-deoxy sugars via metal free deiodination reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2015365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
25
|
Halder S, Addanki RB, Sarmah BK, Kancharla PK. Catalytic Stereoselective Synthesis of 2-Deoxy α-glycosides Using Glycosyl Ortho-[1-(p-MeOPhenyl)Vinyl]Benzoates (PMPVB) Donors. Org Biomol Chem 2022; 20:1874-1878. [DOI: 10.1039/d1ob02502c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Deoxy Glycosyl Ortho-[1-(p-MeOPhenyl)Vinyl]Benzoates (PMPVB) donors have been presented as stable, reactive glycosyl donors for the synthesis of 2-deoxy α-glycosides. The donors react under Brønsted acid conditions to provide the 2-deoxy-α-glycosides...
Collapse
|
26
|
Gallier F, E Miranda LSDM. Organocatalysis applied to carbohydrates: from roots to current developments. Org Biomol Chem 2021; 20:919-933. [PMID: 34931627 DOI: 10.1039/d1ob01919h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalysis emerged in the last decade as a powerful tool for the synthesis of complex molecules. In the field of carbohydrates, it found widespread use in the synthesis of rare and non-natural carbohydrate derivatives. Additionally, it has also found important application in the stereoselective functionalization of the anomeric carbon in glycosylation reactions. These efforts culminated in the development of different types of catalysts operating through distinct activation modes that allow the selective synthesis of α- or β-glycosides even on daunting substrates. All these advances starting from its first examples in carbohydrate synthesis to the current developments in glycosylation reactions are reviewed.
Collapse
Affiliation(s)
- Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Leandro Soter de Mariz E Miranda
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.,Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Av Athos da Silveira Ramos 149, Centro de Tecnologia, Bl A, 21941909 Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Mukherji A, Addanki RB, Halder S, Kancharla PK. Sterically Strained Brønsted Pair Catalysis by Bulky Pyridinium Salts: Direct Stereoselective Synthesis of 2-Deoxy and 2,6-Dideoxy-β-thioglycosides from Glycals. J Org Chem 2021; 86:17226-17243. [PMID: 34794312 DOI: 10.1021/acs.joc.1c02305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sterically strained ionic Brønsted pair complex obtained from a sterically bulky base 2,4,6-tri-tert-butylpyridine and hydrochloric acid imbues unusual reactivity to the anionic chloride. The complete shielding of the cationic [N-H]+ by the bulky ortho-tert-butyl groups weakens the possible hydrogen-bonding interactions with the chloride anion, and the [N-H]+···Cl- distance is unusually longer (3.10 Å). This results in strained/frustrated electrostatic interactions between the ion-pair, thus infusing an increased reactivity in both of the ions, which results in the activation of a third molecule like thiol via hydrogen-bonding. This intriguing weak interaction-based reactivity has been utilized to develop an organocatalytic synthesis of 2-deoxy-β-thioglycosides from glycals. While the 1H NMR studies showcase the diamagnetic activation of thiols in the presence of the catalyst, the electron paramagnetic resonance (EPR) studies reveal the generation of a radical species that suggests a possible frustrated radical pair catalysis. Besides, IR spectroscopic studies explain the intriguing influence of size/charge density of the anion on the solvation-insusceptible, cationic [TTBPyH]+ and on the observed reactivity.
Collapse
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Zhao G, Li J, Wang T. Visible-light-induced photoacid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates. Chem Commun (Camb) 2021; 57:12659-12662. [PMID: 34768281 DOI: 10.1039/d1cc04887b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation. The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Juncheng Li
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
29
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
30
|
Zhao X, Wu B, Shu P, Meng L, Zeng J, Wan Q. Rhenium(V)-catalyzed synthesis of 1,1'-2-deoxy thioglycosides. Carbohydr Res 2021; 508:108415. [PMID: 34358864 DOI: 10.1016/j.carres.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
As stable glycomimetics, thioglycosides are important tools for the investigation of biological processes and discovery of new drugs. In this note, we report a ReOCl3(SMe2)(OPPh3) catalyzed coupling reaction between β-glycosyl thiols (1-thio sugars) and glycals for the preparation of 1,1'-α,β-2-deoxy thioglycosides, which are glycomimetics of natural trehalose and 2-deoxy glycosides. Furthermore, an S-linked trisaccharide was successfully obtained by successive employment of the Re(V) catalyzed thioglycosylation protocol.
Collapse
Affiliation(s)
- Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Bin Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Penghua Shu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
31
|
Pongener I, Pepe DA, Ruddy JJ, McGarrigle EM. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide. Chem Sci 2021; 12:10070-10075. [PMID: 34377400 PMCID: PMC8317664 DOI: 10.1039/d1sc01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Dionissia A Pepe
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Joseph J Ruddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
32
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Shang W, Zhu C, Peng F, Pan Z, Ding Y, Xia C. Nitrogen-Centered Radical-Mediated Cascade Amidoglycosylation of Glycals. Org Lett 2021; 23:1222-1227. [PMID: 33560134 DOI: 10.1021/acs.orglett.0c04178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nitrogen-centered radical-mediated strategy for preparing 1,2-trans-2-amino-2-deoxyglycosides in one step was established. The cascade amidoglycosylation was initiated by a benzenesulfonimide radical generated from NFSI under the catalytic reduction of TEMPO. The benzenesulfonimide radical was electrophilically added to the glycals, and then the resulting glycosidic radical was converted to oxocarbenium upon oxidation by TEMPO+, which enabled the following anomeric specific glycosylation.
Collapse
Affiliation(s)
- Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chunyu Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fengyuan Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
34
|
Bhuma N, Lebedel L, Yamashita H, Shimizu Y, Abada Z, Ardá A, Désiré J, Michelet B, Martin‐Mingot A, Abou‐Hassan A, Takumi M, Marrot J, Jiménez‐Barbero J, Nagaki A, Blériot Y, Thibaudeau S. Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naresh Bhuma
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ludivine Lebedel
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yutaka Shimizu
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Zahra Abada
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Bastien Michelet
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Martin‐Mingot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ali Abou‐Hassan
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yves Blériot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
35
|
Ghosh T, Mukherji A, Kancharla PK. Influence of Anion-Binding Schreiner's Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals. J Org Chem 2021; 86:1253-1261. [PMID: 33352053 DOI: 10.1021/acs.joc.0c02473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amines are used as additives to facilitate or increase the host-guest chemistry between the thiourea and the anions of Bronsted acids. However, we here demonstrate, for the first time, the synergistic effect of the combination of DMAP/HCl/Schreiner's thiourea in catalyzing dehydrative glycosylation. The variations in the electronic effects of the cationic Bronsted acid part (the protonated DMAP) in the presence of chloride binding Schreiner's thiourea have been discussed using NMR and X-ray crystallographic techniques.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
36
|
Wang C, Liang H, Hang Z, Wang ZY, Xie Q, Xue W. Lewis acid/base pair as a catalytic system for α-stereoselective synthesis of 2-deoxyglycosides through the addition of alcohols to glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Bhuma N, Lebedel L, Yamashita H, Shimizu Y, Abada Z, Ardá A, Désiré J, Michelet B, Martin‐Mingot A, Abou‐Hassan A, Takumi M, Marrot J, Jiménez‐Barbero J, Nagaki A, Blériot Y, Thibaudeau S. Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angew Chem Int Ed Engl 2020; 60:2036-2041. [DOI: 10.1002/anie.202010175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Naresh Bhuma
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ludivine Lebedel
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yutaka Shimizu
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Zahra Abada
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Bastien Michelet
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Martin‐Mingot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ali Abou‐Hassan
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yves Blériot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
38
|
A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat Commun 2020; 11:4911. [PMID: 32999276 PMCID: PMC7527348 DOI: 10.1038/s41467-020-18595-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations. Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.
Collapse
|
39
|
Li T, Li T, Linseis M, Wang F, Winter RF, Schmidt RR, Peng P. Catalytic Regioselective Benzoylation of 1,2- trans-Diols in Carbohydrates with Benzoyl Cyanide: The Axial Oxy Group Effect and the Action of Achiral and Chiral Amine Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
| | - Michael Linseis
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| | - Rainer F. Winter
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Richard R. Schmidt
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| |
Collapse
|
40
|
Liu M, Liu K, Xiong D, Zhang H, Li T, Li B, Qin X, Bai J, Ye X. Stereoselective Electro‐2‐deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 27 Shanda Nanlu Jinan Shandong 250100 China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
41
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
42
|
Liu M, Liu KM, Xiong DC, Zhang H, Li T, Li B, Qin X, Bai J, Ye XS. Stereoselective Electro-2-deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020; 59:15204-15208. [PMID: 32394599 DOI: 10.1002/anie.202006115] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Abstract
We report a novel and highly stereoselective electro-2-deoxyglycosylation from glycals. This method features excellent stereoselectivity, scope, and functional-group tolerance. This process can also be applied to the modification of a wide range of natural products and drugs. Furthermore, a scalable synthesis of glycosylated podophyllotoxin and a one-pot trisaccharide synthesis through iterative electroglycosylations were achieved.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
43
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
44
|
Mayfield AB, Metternich JB, Trotta AH, Jacobsen EN. Stereospecific Furanosylations Catalyzed by Bis-thiourea Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:4061-4069. [PMID: 32013410 DOI: 10.1021/jacs.0c00335] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a new method for stereoselective O-furanosylation reactions promoted by a precisely tailored bis-thiourea hydrogen-bond-donor catalyst. Furanosyl donors outfitted with an anomeric dialkylphosphate leaving group undergo substitution with high anomeric selectivity, providing access to the challenging 1,2-cis substitution pattern with a range of alcohol acceptors. A variety of stereochemically distinct, benzyl-protected glycosyl donors were engaged successfully as substrates. Mechanistic studies support a stereospecific mechanism in which rate-determining substitution occurs from a catalyst-donor resting-state complex.
Collapse
Affiliation(s)
- Andrew B Mayfield
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jan B Metternich
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Adam H Trotta
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
45
|
Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. Core‐Shell Fe
3
O
4
@Carbon@SO
3
H: A Powerful Recyclable Catalyst for the Synthesis of α‐2‐Deoxygalactosides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Youxian Dong
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guosheng Sun
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guofang Yang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Qingbing Wang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Jianbo Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| |
Collapse
|
46
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
47
|
Tatina MB, Moussa Z, Xia M, Judeh ZMA. Perfluorophenylboronic acid-catalyzed direct α-stereoselective synthesis of 2-deoxygalactosides from deactivated peracetylated d-galactal. Chem Commun (Camb) 2019; 55:12204-12207. [PMID: 31549691 DOI: 10.1039/c9cc06151g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluorophenylboronic acid 1c catalyzes the direct stereoselective addition of alcohol nucleophiles to deactivated peracetylated d-galactal to give 2-deoxygalactosides in 55-88% yield with complete α-selectivity. The unprecedented results reported here also enable the synthesis of disaccharides containing the 2-deoxygalactose moiety directly from the deactivated peracetylated d-galactal. This convenient and metal-free glycosylation method works well with a wide range of alcohol nucleophiles as acceptors and tolerates a range of functional groups without the formation of the Ferrier byproduct and without the need for a large excess of nucleophiles or additives. The method is potentially useful for the synthesis of a variety of α-2-deoxygalactosides.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, 15551, United Arab Emirates
| | - Mengxin Xia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
48
|
Direct Addition of Amides to Glycals Enabled by Solvation‐Insusceptible 2‐Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Nakatsuji Y, Kobayashi Y, Takemoto Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019; 58:14115-14119. [PMID: 31392793 DOI: 10.1002/anie.201907129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 01/12/2023]
Abstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
50
|
Shaw M, Kumar A. Additive‐Free Gold(III)‐Catalyzed Stereoselective Synthesis of 2‐Deoxyglycosides Using Phenylpropiolate Glycosides as Donors. Chem Asian J 2019; 14:4651-4658. [DOI: 10.1002/asia.201900888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mukta Shaw
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| | - Amit Kumar
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| |
Collapse
|