1
|
Coelho D, Colas Y, Ethève-Quelquejeu M, Braud E, Iannazzo L. Halo-1,2,3-triazoles: Valuable Compounds to Access Biologically Relevant Molecules. Chembiochem 2024; 25:e202400150. [PMID: 38554039 DOI: 10.1002/cbic.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/01/2024]
Abstract
1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.
Collapse
Affiliation(s)
- Dylan Coelho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Yoann Colas
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| |
Collapse
|
2
|
Chi TC, Yang PC, Hung SK, Wu HW, Wang HC, Liu HK, Liu LW, Chou HH. Synthesis of Multisubstituted 1,2,3-Triazoles: Regioselective Formation and Reaction Mechanism. J Org Chem 2024; 89:5401-5408. [PMID: 38546539 DOI: 10.1021/acs.joc.3c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A synthetically useful approach to functionalized triazoles is described via the reaction of β-carbonyl phosphonates and azides. 1,4- and 1,5-disubstituted and 1,4,5-trisubstituted triazoles can be regio- and chemoselectively accessed under mild conditions in good to excellent yields (31 examples, up to 99%). A mechanism is proposed that rationalizes the avoidance of the 4-phosphonate byproducts, which is aligned with crystallographic and experimental evidence.
Collapse
Affiliation(s)
- Tzu-Ching Chi
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Chun Yang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shao-Kung Hung
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hui-Wen Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Chi Wang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Wen Liu
- National Tainan First Senior High School, Tainan 701, Taiwan
| | - Ho-Hsuan Chou
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Azbell TJ, Milner PJ. Cobalt(III) Halide Metal-Organic Frameworks Drive Catalytic Halogen Exchange. J Am Chem Soc 2024:10.1021/jacs.3c13872. [PMID: 38607314 PMCID: PMC11470105 DOI: 10.1021/jacs.3c13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The selective halogenation of complex (hetero)aromatic systems is a critical yet challenging transformation that is relevant to medicinal chemistry, agriculture, and biomedical imaging. However, current methods are limited by toxic reagents, expensive homogeneous second- and third-row transition metal catalysts, or poor substrate tolerance. Herein, we demonstrate that porous metal-organic frameworks (MOFs) containing terminal Co(III) halide sites represent a rare and general class of heterogeneous catalysts for the controlled installation of chlorine and fluorine centers into electron-deficient (hetero)aryl bromides using simple metal halide salts. Mechanistic studies support that these halogen exchange (halex) reactions proceed via redox-neutral nucleophilic aromatic substitution (SNAr) at the Co(III) sites. The MOF-based halex catalysts are recyclable, enable green halogenation with minimal waste generation, and facilitate halex in a continuous flow. Our findings represent the first example of SNAr catalysis using MOFs, expanding the lexicon of synthetic transformations enabled by these materials.
Collapse
Affiliation(s)
- Tyler J. Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
4
|
Brunelli F, Russo C, Giustiniano M, Tron GC. Each Interruption is an Opportunity: Novel Synthetic Strategies Explored Through Interrupted Click Reactions. Chemistry 2024; 30:e202303844. [PMID: 38408267 DOI: 10.1002/chem.202303844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 02/28/2024]
Abstract
The particular and unique mechanism of the copper-catalyzed reaction between azides and alkynes (CuAAC) has not only allowed for the efficient synthesis of 1,2,3-trisubstituted 1,4-triazoles in excellent yields and under mild conditions, becoming the quintessential click reaction, but it has also enabled the straightforward formation of a metallocycle intermediate, the copper triazolyl. This, under suitable reaction conditions able to suppress its protonolysis, can be used either for the creation of new bicyclic triazolyl structures or for the generation of novel three or four-component reactions. The aim of this review is to rationalize and unify all these transformations, which are collectively referred to as "interrupted click reactions".
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Camilla Russo
- Dipartimento di Farmacia, Università degli Studi, Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi, Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
5
|
Peng L, Zhao Y, Okuda Y, Le L, Tang Z, Yin SF, Qiu R, Orita A. Process-Divergent Syntheses of 4- and 5-Sulfur-Functionalized 1,2,3-Triazoles via Copper-Catalyzed Azide-Alkyne Cycloadditions of 1-Phosphinyl-2-sulfanylethynes. J Org Chem 2023. [PMID: 36763008 DOI: 10.1021/acs.joc.2c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yasuhiro Okuda
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Akihiro Orita
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
6
|
Kotovshchikov YN, Sultanov RH, Latyshev GV, Lukashev NV, Beletskaya IP. Domino assembly of dithiocarbamates via Cu-catalyzed denitrogenative thiolation of iodotriazole-based diazo precursors. Org Biomol Chem 2022; 20:5764-5770. [PMID: 35815554 DOI: 10.1039/d2ob00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient domino approach to assemble benzoxazoles and anthranilamides bearing dithiocarbamate moieties has been developed. The proposed route represents a Cu-catalyzed three-component reaction between readily available 5-iodo-1,2,3-triazoles, amines, and CS2. The cascade transformation is based on a denitrogenative coupling of in situ formed dithiocarbamic acids with diazo intermediates, generated via annulation-triggered triazole ring-opening. This method is applicable to nucleophilic secondary amines and features good functional group compatibility.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Rinat H Sultanov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
7
|
Tabolin AA. Fluoroheterocycle formation using fluoroalkynes and their synthetic equivalents. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Laxio Arenas J, Retailleau P, Gillet JM, Ghermani NE, Ongeri S, Crousse B. 5-Fluoro-1,2,3-triazole motif in peptides and its electronic properties. Org Biomol Chem 2022; 20:8410-8414. [DOI: 10.1039/d2ob01716d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The 5-fluoro triazole amino acid has been prepared by halogen exchange between the 5-iodo triazole and fluoride salts and incorporated in peptides. X-ray crystallography reveals a cylindrical shape in its deformation electron density.
Collapse
Affiliation(s)
- José Laxio Arenas
- UMR 8076, BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - Jean-Michel Gillet
- UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
| | - Nour-Eddine Ghermani
- UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
- UMR CNRS 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Sandrine Ongeri
- UMR 8076, BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Benoît Crousse
- UMR 8076, BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
9
|
Morand S, Jubault P, Bouillon JP, Couve-Bonnaire S. gem-Heteroatom-Substituted Fluoroalkenes as Mimics of Amide Derivatives or Phosphates: A Comprehensive Review. Chemistry 2021; 27:17273-17292. [PMID: 34533868 DOI: 10.1002/chem.202102548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/18/2023]
Abstract
gem-Heteroatom-substituted fluoroalkenes have received little attention despite their great potential in medicinal chemistry or in fine chemistry. Indeed, due to the electronic and steric similarity between the fluoroalkene moiety and the amide bond as well as the high strength of the carbon-fluorine bond, these gem-heteroatom-substituted fluoroalkenes could be envisioned as stable mimics of various important organic functions, such as phosphates, carbamates, S-thiocarbamates and ureas. We present herein an overview describing the syntheses over the last decade of heteroatom-substituted fluoroalkenes in geminal position. This review will be divided into several sections covering each the common following heteroatom: oxygen-, nitrogen-, sulfur-, phosphorus-, boron- and silicon-substituted fluoroalkenes.
Collapse
Affiliation(s)
- Solène Morand
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | | | - Samuel Couve-Bonnaire
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
10
|
|
11
|
Zhang X, Basuli F, Abdelwahed S, Begley T, Swenson R. Radiosynthesis of 5-[ 18F]Fluoro-1,2,3-triazoles through Aqueous Iodine-[ 18F]Fluorine Exchange Reaction. Molecules 2021; 26:molecules26185522. [PMID: 34576993 PMCID: PMC8469629 DOI: 10.3390/molecules26185522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
In this report, a simple and efficient process to achieve fluorine-18-labeled 1,2,3-triazole is reported. The heteroaromatic radiofluorination was successfully achieved through an iodine–fluorine-18 exchange in an aqueous medium requiring only trace amounts of base and no azeotropic drying of fluorine-18. This methodology was optimized on a model reaction and further validated on multiple 1,2,3-triazole substrates with 18–60% radiochemical conversions. Using this strategy—the radiosynthesis of a triazole-based thiamin analogue—a potential positron emission tomography (PET) probe for imaging thiamin-dependent enzymes was synthesized with 10–16% isolated radiochemical yield (RCY) in 40 min (uncorrected, n > 5).
Collapse
Affiliation(s)
- Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (F.B.); (R.S.)
- Correspondence:
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (F.B.); (R.S.)
| | - Sameh Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Tadhg Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA;
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20892, USA; (F.B.); (R.S.)
| |
Collapse
|
12
|
Kotovshchikov YN, Tatevosyan SS, Latyshev GV, Lukashev NV, Beletskaya IP. Facile Access to Triazole-Fused 3,1-Benzoxazines Enabled by Metal-Free Base-Promoted Intramolecular C–O Coupling. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1623-2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractA convenient approach to assemble 1,2,3-triazole-fused 4H-3,1-benzoxazines has been developed. Diverse alcohol-tethered 5-iodotriazoles, readily accessible by a modified protocol of Cu-catalyzed (3+2)-cycloaddition, were utilized as precursors of the target fused heterocycles. The intramolecular C–O coupling proceeded efficiently under base-mediated transition-metal-free conditions, furnishing cyclization products in yields up to 96%. Suppression of the competing reductive cleavage of the C–I bond was achieved by the use of Na2CO3 in acetonitrile at 100 °C. This practical and cost-effective procedure features a broad substrate scope and valuable functional group tolerance.
Collapse
|
13
|
Vroemans R, Ribone SR, Thomas J, Van Meervelt L, Ollevier T, Dehaen W. Synthesis of homochiral sulfanyl- and sulfoxide-substituted naphthyltriazoles and study of the conformational stability. Org Biomol Chem 2021; 19:6521-6526. [PMID: 34254109 DOI: 10.1039/d1ob00784j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of novel homochiral atropisomeric sulfanyl- and sulfoxide-substituted naphthyltriazoles is described. The triazolization methodology used presents a new way towards novel and highly stable 1,2,3-triazole-based atropisomers, and introduces a new and complementary synthetic pathway towards 4-sulfanyl substituted 1,2,3-triazoles. Starting from sulfanyl-substituted naphthyl ketones, enantiopure amines, and 4-nitrophenyl azide, a collection of 16 sulfanyl-substituted naphthyltriazoles were obtained via the triazolization reaction in which the homochiral diastereomers are readily isolated. Subsequent monooxidation results in the preparation of several sulfoxide-substituted naphthyltriazoles. The absolute configuration of a set of diastereomeric sulfanyl- and sulfoxide-appended naphthyltriazoles was deduced via X-ray crystallography. Furthermore, the conformational stability of the atropisomers was determined experimentally, and further confirmed and analyzed with the aid of computational DFT calculations.
Collapse
Affiliation(s)
- Robby Vroemans
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Sergio R Ribone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Ciencias Farmacéuticas, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Joice Thomas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Thierry Ollevier
- Département de chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
14
|
Arenas JL, Crousse B. An Overview of 4‐ and 5‐Halo‐1,2,3‐triazoles from Cycloaddition Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Laxio Arenas
- BioCIS, UMR 8076 CNRS Univ. Paris Saclay, Univ. Paris Sud Chatenay Malabry France
| | - Benoît Crousse
- BioCIS, UMR 8076 CNRS Univ. Paris Saclay, Univ. Paris Sud Chatenay Malabry France
| |
Collapse
|
15
|
Cotman A, Guérin T, Kovačević I, Benedetto Tiz D, Durcik M, Fulgheri F, Možina Š, Secci D, Sterle M, Ilaš J, Zega A, Zidar N, Mašič LP, Tomašič T, Leroux F, Hanquet G, Kikelj D. Practical Synthesis and Application of Halogen-Doped Pyrrole Building Blocks. ACS OMEGA 2021; 6:9723-9730. [PMID: 33869952 PMCID: PMC8047689 DOI: 10.1021/acsomega.1c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
A practical access to four new halogen-substituted pyrrole building blocks was realized in two to five synthetic steps from commercially available starting materials. The target compounds were prepared on a 50 mg to 1 g scale, and their conversion to nanomolar inhibitors of bacterial DNA gyrase B was demonstrated for three of the prepared building blocks to showcase the usefulness of such chemical motifs in medicinal chemistry.
Collapse
Affiliation(s)
- Andrej
Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Thomas Guérin
- Université
de Strasbourg, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Ivana Kovačević
- Faculty
of Sciences, Department of Chemistry, Biochemistry and Environmental
Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Davide Benedetto Tiz
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Durcik
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Federica Fulgheri
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Štefan Možina
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniela Secci
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Frédéric
R. Leroux
- Université
de Strasbourg, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Gilles Hanquet
- Université
de Strasbourg, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France
| | - Danijel Kikelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Rai V, Sorabad GS, Maddani MR. Facile and direct halogenation of 1,2,3-triazoles promoted by a KX–oxone system under transition metal free conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05170e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient and efficient oxidative halogenation of 4-aryl 1,2,3-triazoles is realized at ambient temperature under transition metal free conditions.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry
- Mangalore University
- Mangalore
- India
| | | | | |
Collapse
|
17
|
Chen FJ, Mamidipalli P, Sabbasani VR, Liu H, Xia Y, Lee D. Three-component coupling reaction for the synthesis of fully substituted triazoles: reactivity control of Cu-acetylide toward alkyl azides and diazo compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo01112j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a Cu-catalyzed three-component coupling reaction of alkynes, azides, and diazo compounds for the synthesis of fully substituted triazoles.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Phani Mamidipalli
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Venkata Reddy Sabbasani
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Huaqing Liu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Yuanzhi Xia
- Department College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| |
Collapse
|
18
|
Gharpure SJ, Naveen S, Chavan RS, Padmaja. Regioselective Synthesis of Halotriazoles and their Utility in Metal Catalyzed Coupling Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Sudi Naveen
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Rupali S. Chavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Padmaja
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
19
|
Fujita T, Takeishi M, Ichikawa J. Copper-Catalyzed [3 + 2] Annulation of Azides with a (Difluorovinyl)zinc Complex, Fluoroacetylene Equivalent. Org Lett 2020; 22:9253-9257. [PMID: 33226831 DOI: 10.1021/acs.orglett.0c03476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The copper-catalyzed [3 + 2] annulation of organic azides with (2,2-difluorovinyl)zinc chloride-TMEDA was achieved via C-F bond cleavage. Thus, a series of 1-substituted 4-fluorotriazoles was synthesized in high yields. In this reaction, the difluorovinylzinc complex functions as an easy-to-handle equivalent of fluoroacetylene (FC≡CH) to undergo cycloaddition with azides. This work offers a facile and practical method for the use of fluoroacetylene, which has been considered to be highly reactive and difficult to handle and control for synthetic applications.
Collapse
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masafumi Takeishi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
20
|
Reddy GS, Reddy LM, Kumar AS, Ramachary DB. Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. J Org Chem 2020; 85:15488-15501. [DOI: 10.1021/acs.joc.0c02247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- G. Surendra Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - L. Mallikarjuna Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - A. Suresh Kumar
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
21
|
Kotovshchikov YN, Latyshev GV, Kirillova EA, Moskalenko UD, Lukashev NV, Beletskaya IP. Assembly of Thiosubstituted Benzoxazoles via Copper-Catalyzed Coupling of Thiols with 5-Iodotriazoles Serving as Diazo Surrogates. J Org Chem 2020; 85:9015-9028. [PMID: 32508100 DOI: 10.1021/acs.joc.0c00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade approach to thiosubstituted benzoxazoles has been developed. The transformation starts with in situ generation of a diazo compound via annulation-triggered electrocyclic opening of the 1,2,3-triazole ring. The subsequent Cu-catalyzed trapping of diazo intermediates by various thiols affords the desired heterocycles in generally good yields of up to 91%. The protocol features very good functional group tolerance and is applicable to substrates with different electronic properties.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Elena A Kirillova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Uliana D Moskalenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nikolay V Lukashev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
22
|
Bunchuay T, Docker A, Eiamprasert U, Surawatanawong P, Brown A, Beer PD. Chalcogen Bond Mediated Enhancement of Cooperative Ion-Pair Recognition. Angew Chem Int Ed Engl 2020; 59:12007-12012. [PMID: 32307757 PMCID: PMC7383679 DOI: 10.1002/anie.202001125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 12/15/2022]
Abstract
A series of heteroditopic receptors containing halogen bond (XB) and unprecedented chalcogen bond (ChB) donors integrated into a 3,5-bis-triazole pyridine structure covalently linked to benzo-15-crown-5 ether motifs exhibit remarkable cooperative recognition of halide anions. Multi-nuclear 1 H, 13 C, 125 Te and 19 F NMR, ion pair binding investigations reveal sodium cation-benzo-crown ether binding dramatically enhances the recognition of bromide and iodide halide anions, with the chalcogen bonding heteroditopic receptor notably displaying the largest enhancement of halide binding strength of over two hundred-fold, in comparison to the halogen bonding and hydrogen bonding heteroditopic receptor analogues. DFT calculations suggest crown ether sodium cation complexation induces a polarisation of the sigma hole of ChB and XB heteroditopic receptor donors as a significant contribution to the origin of the unique cooperativity exhibited by these systems.
Collapse
Affiliation(s)
- Thanthapatra Bunchuay
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUnited Kingdom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of ScienceMahidol University272 Thanon Rama VI, RatchathewiBangkok10400Thailand
| | - Andrew Docker
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUnited Kingdom
| | - Utt Eiamprasert
- Department of ChemistryFaculty of Science and TechnologyRajamangala University of Technology ThanyaburiThanyaburi Pathum Thani12110Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of ScienceMahidol University272 Thanon Rama VI, RatchathewiBangkok10400Thailand
| | - Asha Brown
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUnited Kingdom
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUnited Kingdom
| |
Collapse
|
23
|
Tatevosyan SS, Kotovshchikov YN, Latyshev GV, Erzunov DA, Sokolova DV, Beletskaya IP, Lukashev NV. A Route to Triazole-Fused Sultams via Metal-Free Base-Mediated Cyclization of Sulfonamide-Tethered 5-Iodotriazoles. J Org Chem 2020; 85:7863-7876. [PMID: 32438811 DOI: 10.1021/acs.joc.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient direct approach to triazole-fused sultams has been developed. The key step of the proposed strategy is base-mediated cyclization of sulfonamide-tethered 5-iodo-1,2,3-triazoles which are readily available via an improved protocol for Cu-catalyzed 1,3-dipolar cycloaddition. The annulation of the sultam fragment to the triazole ring proceeds smoothly under transition-metal-free conditions in the presence of Cs2CO3 in dioxane at 100 °C and affords fused heterocycles in high yields up to 99%. The favorability of an SNAr-like mechanism for the cyclization was supported by DFT calculations. The applicability of the developed procedure to modification of natural compounds was demonstrated by preparation of a deoxycholic acid derivative.
Collapse
Affiliation(s)
- Stepan S Tatevosyan
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry A Erzunov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Darina V Sokolova
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya str., Moscow 117198, Russia.,N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
24
|
Bunchuay T, Docker A, Eiamprasert U, Surawatanawong P, Brown A, Beer PD. Chalcogen Bond Mediated Enhancement of Cooperative Ion‐Pair Recognition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thanthapatra Bunchuay
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA United Kingdom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science Mahidol University 272 Thanon Rama VI, Ratchathewi Bangkok 10400 Thailand
| | - Andrew Docker
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA United Kingdom
| | - Utt Eiamprasert
- Department of Chemistry Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Thanyaburi Pathum Thani 12110 Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science Mahidol University 272 Thanon Rama VI, Ratchathewi Bangkok 10400 Thailand
| | - Asha Brown
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA United Kingdom
| | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA United Kingdom
| |
Collapse
|
25
|
Wang XX, Xin Y, Li Y, Xia WJ, Zhou B, Ye RR, Li YM. Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. J Org Chem 2020; 85:3576-3586. [PMID: 31984747 DOI: 10.1021/acs.joc.9b03285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A copper-catalyzed decarboxylative cycloaddition of propiolic acids, azides, and arylboronic acids is described. The present reaction provides an efficient and convenient method for the synthesis of various fully substituted 1,2,3-triazoles from readily available starting materials. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yangchun Xin
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bin Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
26
|
Abstract
:
Thio-, seleno-substituted triazoles are useful scaffolds employed in the fields of
organic synthesis, medicinal chemistry, and material science. A number of synthetic approaches
to efficient formation of thio- and seleno-triazoles have been disclosed, including
the interception of copper(I) triazolides generated in-situ, cycloaddition of internal alkynes
(thio-, halo-, and metalated alkynes) to azides, and the coupling of azides and nonalkyne
substrates. This mini-review intends to summarize the synthetic methods toward
thio-, seleno-1,2,3-triazoles and the relative reaction mechanisms.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qin-Pei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhi-Bin Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
27
|
Jana S, Adhikari S, Cox MR, Roy S. Regioselective synthesis of 4-fluoro-1,5-disubstituted-1,2,3-triazoles from synthetic surrogates of α-fluoroalkynes. Chem Commun (Camb) 2020; 56:1871-1874. [DOI: 10.1039/c9cc09216a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This TFA-catalyzed [3+2] cycloaddition of organic azides with α-fluoronitroalkenes, used as synthetic surrogates of α-fluoroalkynes, provides a new route to multi-substituted fluorotriazoles with broader substrate scopes and high regioselectivity.
Collapse
Affiliation(s)
- Sampad Jana
- Department of BioMolecular Sciences
- School of Pharmacy
- University of Mississippi
- University
- USA
| | - Sweta Adhikari
- Department of BioMolecular Sciences
- School of Pharmacy
- University of Mississippi
- University
- USA
| | - Michael R. Cox
- Department of BioMolecular Sciences
- School of Pharmacy
- University of Mississippi
- University
- USA
| | - Sudeshna Roy
- Department of BioMolecular Sciences
- School of Pharmacy
- University of Mississippi
- University
- USA
| |
Collapse
|
28
|
Deng L, Cao X, Liu Y, Wan JP. In-Water Synthesis of 5-Thiolated 1,2,3-Triazoles from β-Thioenaminones by Diazo Transfer Reaction. J Org Chem 2019; 84:14179-14186. [PMID: 31608630 DOI: 10.1021/acs.joc.9b01817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of 1,2,3-triazoles with a sulfur-based side chain has been accessed with the metal-free annulation reactions of readily available β-thiolated enaminones and tosyl hydrazine. By these reactions with water as the only medium, a broad array of 5-thiolated 1,2,3-triazoles have been synthesized with generally good to excellent yields. Except using TMEDA (N,N,N',N'-tetramethylethylenediamine) as the only base promoter, not any other catalyst or additive is required, thus providing an efficient and environmentally benign method for useful 1,2,3-triazole synthesis.
Collapse
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Xiaoji Cao
- Research Centre of Analysis and Measurement , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| |
Collapse
|
29
|
Song W, Li M, Dong K, Zheng Y. Ruthenium‐Catalyzed Highly Regioselective Azide‐Internal Thiocyanatoalkyne Cycloaddition under Mild Conditions: Experimental and Theoretical Studies. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wangze Song
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Ming Li
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Kun Dong
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|
30
|
Avula SK, Khan A, Halim SA, Al-Abri Z, Anwar MU, Al-Rawahi A, Csuk R, Al-Harrasi A. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors. Bioorg Chem 2019; 91:103182. [DOI: 10.1016/j.bioorg.2019.103182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023]
|
31
|
Somasundaram M, Garg JA, Naidu S, Ramkumar V, Saiganesh R, Kabilan S, Balasubramanian KK. Halogen-Exchange Fluorination of β-Chlorovinyl Aldehydes - Unexpected Cascade Transformations in the Fluorination of 4-Chloro-2 H
-chromene and 4-Chloro-2 H
-thiochromene-3-carbaldehydes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jai Anand Garg
- Department of Chemistry; Indian Institute of Technology-Madras; Adyar 600036 Chennai India
| | - Shivaji Naidu
- Strides-Shasun pharmaceuticals Ltd; Vandalur-Kelambakkan Rd. 600127 Chennai India
| | - Venkatachalam Ramkumar
- Department of Chemistry; Indian Institute of Technology-Madras; Adyar 600036 Chennai India
| | - Ramanathan Saiganesh
- Strides-Shasun pharmaceuticals Ltd; Vandalur-Kelambakkan Rd. 600127 Chennai India
| | | | | |
Collapse
|
32
|
Kaasik M, Metsala A, Kaabel S, Kriis K, Järving I, Kanger T. Halo-1,2,3-triazolium Salts as Halogen Bond Donors for the Activation of Imines in Dihydropyridinone Synthesis. J Org Chem 2019; 84:4294-4303. [DOI: 10.1021/acs.joc.9b00248] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Andrus Metsala
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Kadri Kriis
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| |
Collapse
|
33
|
Lim JYC, Liew JY, Beer PD. Thermodynamics of Anion Binding by Chalcogen Bonding Receptors. Chemistry 2018; 24:14560-14566. [PMID: 30063097 DOI: 10.1002/chem.201803393] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Indexed: 01/16/2023]
Abstract
The application of chalcogen bonding (ChB) to anion recognition is an underdeveloped area of host-guest supramolecular chemistry. The chemical instability of heavier chalcogen derivatives may in part be responsible for the lack of progress. Herein, the synthesis of a new structurally simple, tellurium-based ChB binding motif is reported, the robust stability of which has enabled the thermodynamic properties for ChB halide anion binding in polar aprotic and wet protic organic solvent media to be elucidated. The thermodynamic data reveals how the subtle interplay between ChB host, anion guest and solvent dictates halide binding selectivity and affinity trends. These findings help to provide a deeper insight into the nature of the ChB-anion interaction.
Collapse
Affiliation(s)
- Jason Y C Lim
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jane Y Liew
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
34
|
Kotovshchikov YN, Latyshev GV, Navasardyan MA, Erzunov DA, Beletskaya IP, Lukashev NV. Annulation-Induced Cascade Transformation of 5-Iodo-1,2,3-triazoles to 2-(1-Aminoalkyl)benzoxazoles. Org Lett 2018; 20:4467-4470. [PMID: 30040429 DOI: 10.1021/acs.orglett.8b01755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Base-mediated cyclization of (5-iodo-1,2,3-triazolyl)phenols was proposed as a new synthetic strategy for the in situ generation of diazoimines via electrocyclic ring opening of the fused heterocycle. Cu-catalyzed amination of the intermediate diazoalkanes was employed to develop an efficient cascade approach to functionalized benzoxazoles.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| | - Gennadij V Latyshev
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| | - Mger A Navasardyan
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| | - Dmitry A Erzunov
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| | - Irina P Beletskaya
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| | - Nikolay V Lukashev
- Chemistry Department , M. V. Lomonosov Moscow State University , 1/3 Leninskiye Gory , Moscow 119991 , Russia
| |
Collapse
|
35
|
Chung R, Vo A, Fokin VV, Hein JE. Catalyst Activation, Chemoselectivity, and Reaction Rate Controlled by the Counterion in the Cu(I)-Catalyzed Cycloaddition between Azide and Terminal or 1-Iodoalkynes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ryan Chung
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Anh Vo
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Valery V. Fokin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jason E. Hein
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
36
|
Ahamad S, Kumar A, Kant R, Mohanan K. Metal-Free Three-Component Assembly of Fully Substituted 1,2,3-Triazoles. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shakir Ahamad
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| | - Anuj Kumar
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Ruchir Kant
- Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi India
| |
Collapse
|
37
|
Wang W, Lin Y, Ma Y, Tung CH, Xu Z. Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. Org Lett 2018; 20:2956-2959. [DOI: 10.1021/acs.orglett.8b01002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weiguo Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Yunzhi Lin
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Yudao Ma
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
38
|
Das P, Gondo S, Nagender P, Uno H, Tokunaga E, Shibata N. Access to benzo-fused nine-membered heterocyclic alkenes with a trifluoromethyl carbinol moiety via a double decarboxylative formal ring-expansion process under palladium catalysis. Chem Sci 2018; 9:3276-3281. [PMID: 29732106 PMCID: PMC5915791 DOI: 10.1039/c7sc05447e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/17/2018] [Indexed: 12/31/2022] Open
Abstract
Direct access to pharmaceutically attractive benzo-fused nine-membered heterocyclic alkenes 3 with a trifluoromethyl carbinol moiety was achieved via a palladium-catalyzed double-decarboxylative formal ring-expansion process from six-membered trifluoromethyl benzo[d][1,3]oxazinones 1 to nine-membered trifluoromethyl benzo[c][1,5]oxazonines 3 in the presence of vinylethylene carbonates 2. Generation of a Pd-π-allyl zwitterionic intermediate was proposed in the catalytic cycle. The trifluoromethyl group in the benzoxazinanones 1 plays an important role throughout the transformation. Diastereoselective chemical transformations of products 3 were also demonstrated.
Collapse
Affiliation(s)
- Pulakesh Das
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Satoshi Gondo
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Punna Nagender
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Hiroto Uno
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
- Institute of Advanced Fluorine-Containing Materials , Zhejiang Normal University , 688 Yingbin Avenue , 321004 Jinhua , China
| |
Collapse
|
39
|
Paparella AS, Lee KJ, Hayes AJ, Feng J, Feng Z, Cini D, Deshmukh S, Booker GW, Wilce MCJ, Polyak SW, Abell AD. Halogenation of Biotin Protein Ligase Inhibitors Improves Whole Cell Activity against Staphylococcus aureus. ACS Infect Dis 2018; 4:175-184. [PMID: 29131575 DOI: 10.1021/acsinfecdis.7b00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the synthesis and evaluation of 5-halogenated-1,2,3-triazoles as inhibitors of biotin protein ligase from Staphylococcus aureus. The halogenated compounds exhibit significantly improved antibacterial activity over their nonhalogenated counterparts. Importantly, the 5-fluoro-1,2,3-triazole compound 4c displays antibacterial activity against S. aureus ATCC49775 with a minimum inhibitory concentration (MIC) of 8 μg/mL.
Collapse
Affiliation(s)
- Ashleigh S. Paparella
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Kwang Jun Lee
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Andrew J. Hayes
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Jiage Feng
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
- Centre
for Nanoscale BioPhotonics (CNBP), University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Zikai Feng
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Danielle Cini
- School of Biomedical Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sonali Deshmukh
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Grant W. Booker
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Matthew C. J. Wilce
- School of Biomedical Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Steven W. Polyak
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
- Centre
for Nanoscale BioPhotonics (CNBP), University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| |
Collapse
|
40
|
Wei F, Wang W, Ma Y, Tung CH, Xu Z. Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide-alkyne cycloaddition. Chem Commun (Camb) 2018; 52:14188-14199. [PMID: 27711308 DOI: 10.1039/c6cc06194j] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) is an essential "click chemistry" reaction that is widely used in chemical biology, medicinal chemistry and materials science. The CuAAC reaction of terminal alkynes provides a mild and efficient synthesis of 1,4-disubstituted 1,2,3-triazoles. However, the click reaction of internal alkynes with azides, giving trisubstituted triazoles, is very challenging. This feature article highlights the recent progress addressing this fundamental problem. Particular emphasis is on the current and emerging strategies to introduce functional groups to the C-5 position of triazoles in a regioselective manner.
Collapse
Affiliation(s)
- Fang Wei
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China.
| | - Weiguo Wang
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China.
| | - Yudao Ma
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China.
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China.
| | - Zhenghu Xu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
41
|
Yu X, Xu J, Zhou Y, Song Q. A facile synthesis of diverse 5-arylated triazoles via a Cu-catalyzed oxidative interrupted click reaction with arylboronic acids in air. Org Chem Front 2018. [DOI: 10.1039/c8qo00590g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Cu-catalyzed synthesis of 5-arylsubstituted 1,2,3-triazoles via an oxidative interrupted click reaction with arylboronic acids in air at room temperature is disclosed.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- P. R. China
- College of Materials Science & Engineering at Huaqiao University
- Xiamen
| | - Jian Xu
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- P. R. China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- P. R. China
| |
Collapse
|
42
|
Motornov VA, Tabolin AA, Novikov RA, Nelyubina YV, Ioffe SL, Smolyar IV, Nenajdenko VG. Synthesis and Regioselective N-2 Functionalization of 4-Fluoro-5-aryl-1,2,3-NH
-triazoles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir A. Motornov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
- Higher Chemical College; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya sq. 9 125047 Moscow Russia
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
- V. A. Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
| | - Ivan V. Smolyar
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russia
| |
Collapse
|
43
|
Song W, Zheng N. Iridium-Catalyzed Highly Regioselective Azide–Ynamide Cycloaddition to Access 5-Amido Fully Substituted 1,2,3-Triazoles under Mild, Air, Aqueous, and Bioorthogonal Conditions. Org Lett 2017; 19:6200-6203. [DOI: 10.1021/acs.orglett.7b03123] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wangze Song
- School
of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Nan Zheng
- School
of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
44
|
Gribanov PS, Topchiy MA, Karsakova IV, Chesnokov GA, Smirnov AY, Minaeva LI, Asachenko AF, Nechaev MS. General Method for the Synthesis of 1,4-Disubstituted 5-Halo-1,2,3-triazoles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Lenynsky Prospect 29 119991 Moscow Russian Federation
| | - Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Lenynsky Prospect 29 119991 Moscow Russian Federation
| | - Iuliia V. Karsakova
- M. V. Lomonosov Moscow State University; Leninskie Gory 1 (3) 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- M. V. Lomonosov Moscow State University; Leninskie Gory 1 (3) 119991 Moscow Russian Federation
| | - Alexander Yu. Smirnov
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Lenynsky Prospect 29 119991 Moscow Russian Federation
| | - Lidiya I. Minaeva
- Peoples' Friendship University of Russia; Miklukho-Maklay St., 6 117198 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Lenynsky Prospect 29 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia; Miklukho-Maklay St., 6 117198 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Lenynsky Prospect 29 119991 Moscow Russian Federation
- M. V. Lomonosov Moscow State University; Leninskie Gory 1 (3) 119991 Moscow Russian Federation
| |
Collapse
|
45
|
Barlow TMA, Tourwé D, Ballet S. Cyclisation To Form Small, Medium and Large Rings by Use of Catalysed and Uncatalysed Azide-Alkyne Cycloadditions (AACs). European J Org Chem 2017. [DOI: 10.1002/ejoc.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas M. A. Barlow
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry; Departments of Bioengineering Sciences and Chemistry; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
46
|
Zheng X, Wan Y, Ling F, Ma C. Copper-Catalyzed Tandem Reaction of Terminal Alkynes and Sulfonyl Azides for the Assembly of Substituted Aminotriazoles. Org Lett 2017; 19:3859-3862. [DOI: 10.1021/acs.orglett.7b01729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuchun Zheng
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Yanjun Wan
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Fei Ling
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Cheng Ma
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| |
Collapse
|
47
|
Wang X, Wang X, Wang X, Zhang J, Liu C, Hu Y. In‐situ
Generated and Premade 1‐Copper(I) Alkynes in Cycloadditions. CHEM REC 2017. [DOI: 10.1002/tcr.201700011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| | - Xingyong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| | - Xuesong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| | - Jianlan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| | - Chulong Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
48
|
Cheung KPS, Tsui GC. Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF3: Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Org Lett 2017; 19:2881-2884. [DOI: 10.1021/acs.orglett.7b01116] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
49
|
Kaasik M, Kaabel S, Kriis K, Järving I, Aav R, Rissanen K, Kanger T. Synthesis and Characterisation of Chiral Triazole-Based Halogen-Bond Donors: Halogen Bonds in the Solid State and in Solution. Chemistry 2017; 23:7337-7344. [DOI: 10.1002/chem.201700618] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Sandra Kaabel
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Kadri Kriis
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| | - Kari Rissanen
- Department of Chemistry; University of Jyvaskula; Nanoscience Center, P.O. Box 35; 40014 Jyvaskyla Finland
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology; Tallinn University of Technology; Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
50
|
Barve IJ, Thikekar TU, Sun CM. Silver(I)-Catalyzed Regioselective Synthesis of Triazole Fused-1,5-Benzoxazocinones. Org Lett 2017; 19:2370-2373. [DOI: 10.1021/acs.orglett.7b00907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Indrajeet J. Barve
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Tushar Ulhas Thikekar
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|