1
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Trofimova A, White B, Diaz DB, Širvinskas MJ, Lough A, Dudding T, Yudin AK. A Boron Scan of Ethyl Acetoacetate Leads to Versatile Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202319842. [PMID: 38277239 DOI: 10.1002/anie.202319842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Discovered in the 19th century, ethyl acetoacetate has been central to the development of organic chemistry, including its pedagogy and applications. In this study, we present borylated derivatives of this venerable molecule. A boron handle has been installed at either α ${{\rm \alpha }}$ - or β ${\beta }$ -position of acetoacetate by homologation of acyl-MIDA (N-methyliminodiacetic acid) boronates with diazoacetates. Either alkyl or boryl groups were found to migrate with regiochemistry being a function of the steric bulk of the diazo species. Boryl β ${{\rm \beta }}$ -ketoesters can be further modified into borylated pyrazolones and oximes, thereby expanding the synthetic toolkit and offering opportunities for additional modifications.
Collapse
Affiliation(s)
- Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Brandon White
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Diego B Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Martynas J Širvinskas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Alan Lough
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
3
|
Lou X, Lin J, Kwok CY, Lyu H. Stereoselective Unsymmetrical 1,1-Diborylation of Alkynes with a Neutral sp 2 -sp 3 Diboron Reagent. Angew Chem Int Ed Engl 2023; 62:e202312633. [PMID: 37822069 DOI: 10.1002/anie.202312633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The incorporation of two distinct boryl groups at the same carbon center in organic molecules has attracted growing research interest due to its potential for facilitating controlled, precise synthesis through stepwise dual carbon-boron bond transformations. Here we report a method to access unsymmetrical 1,1-diborylalkene (UDBA) stereoselectively via the reaction of readily available alkynes with a neutral sp2 -sp3 diboron reagent (NHC)BH2 -Bpin (NHC=N-heterocyclic carbene). Attributing to the chemically easily distinguishable nature of the sp2 and sp3 boryl moieties, controllable stepwise derivatization of the resultant UDBAs is realized. This process leads to various multifunctionalized olefins and organoborons, such as acylboranes, which are difficult to prepare by other methods.
Collapse
Affiliation(s)
- Xiangyu Lou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiaxin Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Yin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hairong Lyu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
4
|
Qiao H, Michalland J, Huang Q, Zard SZ. A Versatile Route to Acyl (MIDA)Boronates. Chemistry 2023; 29:e202302235. [PMID: 37477346 DOI: 10.1002/chem.202302235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.
Collapse
Affiliation(s)
- Hui Qiao
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
5
|
LaPorte AJ, Feldner JE, Spies JC, Maher TJ, Burke MD. MIDA- and TIDA-Boronates Stabilize α-Radicals Through B-N Hyperconjugation. Angew Chem Int Ed Engl 2023; 62:e202309566. [PMID: 37540542 DOI: 10.1002/anie.202309566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3 -rich small molecules. The ability of boron-containing functional groups to modify the reactivity of α-radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p-orbitals have a significant stabilizing effect on α-radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N-methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α-radicals via σB-N hyperconjugation in a manner that allows site-selective C-H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α-radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p-orbitals, but that hyperconjugation of tetrahedral boron-containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α-carbon.
Collapse
Affiliation(s)
- Antonio J LaPorte
- Department of Chemistry, University of Illinois, Urbana, IL, 61820, USA
| | - Jack E Feldner
- Department of Chemistry, University of Illinois, Urbana, IL, 61820, USA
| | - Jan C Spies
- Department of Chemistry, University of Illinois, Urbana, IL, 61820, USA
| | - Tom J Maher
- Department of Chemistry, University of Illinois, Urbana, IL, 61820, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois, Urbana, IL, 61820, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, 61820, USA
- Department of Biochemistry, University of Illinois, Urbana, IL, 61820, USA
- Arnold and Mable Beckman Institute, University of Illinois, Urbana, IL, 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61820, USA
| |
Collapse
|
6
|
Hou M, Wang Y, Li P, Ma X, Zhang G, Song Q. Divergent Synthesis of 1,1-Carbonyl Amino Alkyl Borons from Indoles. Org Lett 2023. [PMID: 37229694 DOI: 10.1021/acs.orglett.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
α-Boryl carbonyl species and α-boryl amino compounds are valuable and important frameworks in organic synthesis. However, the strategies that could merge the two scaffolds into one compound, named 1,1-carbonyl amino alkyl boron, are elusive and underdeveloped. Herein, we present an efficient method that could address this gap and produce 1,1-carbonyl amino alkyl borons from readily accessible indoles via oxidation by m-CPBA or oxone. This reaction features operational simplicity, divergent synthesis, broad substrate scope, and valuable products.
Collapse
Affiliation(s)
- Mengyuan Hou
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yahao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Puhui Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Hazra S, Mahato S, Kanti Das K, Panda S. Transition-Metal-Free Heterocyclic Carbon-Boron Bond Formation. Chemistry 2022; 28:e202200556. [PMID: 35438817 DOI: 10.1002/chem.202200556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Heteroaryl boronic acids and esters are extremely important and valuable intermediates because of their wide application in the synthesis of marketed drugs and bioactive compounds. Over the last couple of decades, the construction of highly important heteroaryl carbon-boron bonds has created huge attention. The transition-metal-free protocols are more green, less sensitive to air and moisture, and also economically advantageous over the transition-metal-based protocols. The transition-metal-free C-H borylation of heteroarenes and C-X (X=halogen) borylation of heteroaryl halides represents an excellent approach for their synthesis. Also, various cyclization and alkyne activation protocols have been recently established for their synthesis. The goal of this review article is to summarize the existing literature and the current state of the art for transition-metal-free synthesis of heteroaryl boronic acid and esters.
Collapse
Affiliation(s)
- Subrata Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Nakahara M, Kurahayashi K, Hanaya K, Sugai T, Higashibayashi S. One-Step Synthesis of Acylborons from Acyl Chlorides through Copper-Catalyzed Borylation with Polystyrene-Supported PPh 3 Ligand. Org Lett 2022; 24:5596-5601. [PMID: 35899907 DOI: 10.1021/acs.orglett.2c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a one-step synthesis of acylborons from both readily available acyl chlorides and bis(pinacolato)diboron through copper(I)-catalyzed borylation. Under the reaction conditions using tBuOLi, polystyrene-supported triphenylphosphine as a copper ligand was found to promote the borylation of acyl chlorides while suppressing alcoholysis. This method enables the facile synthesis of potassium acyltrifluoroborates.
Collapse
Affiliation(s)
- Masataka Nakahara
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
9
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Wang L, Lin S, Santos E, Pralat J, Spotton K, Sharma A. Boron-Promoted Deprotonative Conjugate Addition: Geminal Diborons as Soft Pronucleophiles and Acyl Anion Equivalents. J Org Chem 2022; 87:9896-9906. [PMID: 35819798 PMCID: PMC9509689 DOI: 10.1021/acs.joc.2c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conjugate addition of α-boron-stabilized carbanions is an underexplored reaction modality. Existing methods require deborylation of geminal di-/triboryl alkanes and/or the presence of additional activating groups. We report the 1,4-addition of α,α-diboryl carbanions generated via deprotonation of the corresponding geminal diborons. The methodology provided a general route to highly substituted and synthetically useful γ,γ-diboryl ketones. The development of geminal diborons as soft pronucleophiles also enabled their use as acyl anion equivalents via a one-pot tandem conjugate addition-oxidation sequence.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Shengjia Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Emmanuel Santos
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jenna Pralat
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kaylyn Spotton
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
11
|
Yang L, Liu Y, Fan WX, Tan DH, Li Q, Wang H. Regiocontrolled allylic functionalization of internal alkene via selenium-π-acid catalysis guided by boron substitution. Chem Sci 2022; 13:6413-6417. [PMID: 35733886 PMCID: PMC9159098 DOI: 10.1039/d2sc00954d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The selenium-π-acid-catalysis has received increasing attention as a powerful tool for olefin functionalization, but the regioselectivity is often problematic. Reported herein is a selenium-catalyzed regiocontrolled olefin transpositional chlorination and imidation reaction. The reaction outcome benefits from an allylic B(MIDA) substitution. And the stabilization of α-anion from a hemilabile B(MIDA) moiety was believed to be the key factor for selectivity. Broad substrate scope, good functional group tolerance and generally good yields were observed. The formed products were demonstrated to be valuable precursors for the synthesis of a wide variety of structurally complex organoborons.
Collapse
Affiliation(s)
- Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Wen-Xin Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Dong-Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
12
|
Qian J, Chen ZH, Liu Y, Li Y, Li Q, Huang SL, Wang H. Synthesis of allenyl-B(MIDA) via hydrazination/fragmentation reaction of B(MIDA)-propargylic alcohol. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Gurubasavaraj PM, Sajjan VP, Muñoz-Flores BM, Jiménez Pérez VM, Hosmane NS. Recent Advances in BODIPY Compounds: Synthetic Methods, Optical and Nonlinear Optical Properties, and Their Medical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061877. [PMID: 35335243 PMCID: PMC8949266 DOI: 10.3390/molecules27061877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Organoboron compounds are attracting immense research interest due to their wide range of applications. Particularly, low-coordinate organoboron complexes are receiving more attention due to their improbable optical and nonlinear optical properties, which makes them better candidates for medical applications. In this review, we summarize the various synthetic methods including multicomponent reactions, microwave-assisted and traditional pathways of organoboron complexes, and their optical and nonlinear properties. This review also includes the usage of organoboron complexes in various fields including biomedical applications.
Collapse
Affiliation(s)
- Prabhuodeyara M. Gurubasavaraj
- Department of Chemistry, Rani Channamma University, Belagavi 591156, India;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | | | - Blanca M. Muñoz-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Víctor M. Jiménez Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| |
Collapse
|
14
|
|
15
|
Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copper‐Catalyzed Borylation of Mixed Anhydrides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pinku Tung
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago Il 60607 USA
| | - Anne Schuhmacher
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Philipp E. Schilling
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago Il 60607 USA
| |
Collapse
|
16
|
Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copper-Catalyzed Borylation of Mixed Anhydrides. Angew Chem Int Ed Engl 2021; 61:e202114513. [PMID: 34913236 DOI: 10.1002/anie.202114513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/28/2022]
Abstract
We report the preparation of potassium acyltrifluoroborates (KATs) from widely available carboxylic acids. Mixed anhydrides of carboxylic acids were prepared using isobutyl chloroformate and transformed to the corresponding KATs using a commercial copper catalyst, B2 (pin)2 , and aqueous KHF2 . This method allows for the facile preparation of aliphatic, aromatic, and amino acid-derived KATs and is compatible with a variety of functional groups including alkenes, esters, halides, nitriles, and protected amines.
Collapse
Affiliation(s)
- Pinku Tung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Il 60607, USA
| | - Anne Schuhmacher
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Philipp E Schilling
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Il 60607, USA
| |
Collapse
|
17
|
Lai S, Takaesu N, Lin WX, Perrin DM. Suzuki coupling of aroyl-MIDA boronate esters – A preliminary report on scope and limitations. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Trofimova A, Holownia A, Tien CH, Širvinskas MJ, Yudin AK. Acylboronates in Polarity-Reversed Generation of Acyl Palladium(II) Intermediates. Org Lett 2021; 23:3294-3299. [PMID: 33848176 DOI: 10.1021/acs.orglett.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a catalytic cross-coupling process between aryl (pseudo)halides and boron-based acyl anion equivalents. This mode of acylboronate reactivity represents polarity reversal, which is supported by the observation of tetracoordinated boronate and acyl palladium(II) species by 11B, 31P NMR, and mass spectrometry. A broad scope of aliphatic and aromatic acylboronates has been examined, as well as a variety of aryl (pseudo)halides.
Collapse
Affiliation(s)
- Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Chieh-Hung Tien
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Martynas J Širvinskas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
19
|
Wang L, Lin S, Zhu Y, Ferrante D, Ishak T, Baba Y, Sharma A. α-Hydroxy boron-enabled regioselective access to bifunctional halo-boryl alicyclic ethers and α-halo borons. Chem Commun (Camb) 2021; 57:4564-4567. [PMID: 33955990 DOI: 10.1039/d1cc00336d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
α-Hydroxy borons are an underutilized class of compounds and their only previous application involved oxidation into acylborons. Herein, we describe the synthesis of functionalized olefinic α-hydroxy borons and their utility to enable a novel and regioselective route to hitherto unknown bifunctional halo-boryl tetrahydrofurans/tetrahydropyrans and α-halo MIDA boronates. The orthogonally functionalized alicyclic ethers provided a building block-based approach for diversification of the tetrahydrofuran core.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin S, Wang L, Sharma A. Acrylic boronate: a multifunctional C3 building block for catalytic synthesis of rare organoborons and chemoselective heterobifunctional ligations. Chem Sci 2021; 12:7924-7929. [PMID: 34168846 PMCID: PMC8188605 DOI: 10.1039/d1sc00905b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
A novel C3 acylboron building block; acrylic boronate was successfully prepared and its versatility for catalytic synthesis of several previously inaccessible organoborons is described. Cross-metathesis and Pd-catalyzed coupling of acrylic boronate enabled two complementary routes to highly functionalized α,β-unsaturated acylborons and two new types of conjugated borylated products: α,β,γ,δ-unsaturated and bis-α,β unsaturated acylborons. The synthetic application of α,β-unsaturated acylborons was demonstrated for the first time, thereby providing a general and highly regioselective route to medicinally important 3-boryl pyrazoles. Acrylic boronate also provided a unique bis-electrophilic platform for rapid and chemoselective labeling of cysteines with acylboron tags which are potentially useful for site-selective functionalization and orthogonal ligation of proteins.
Collapse
Affiliation(s)
- Shengjia Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07030 USA
| |
Collapse
|
21
|
Holownia A, Apte CN, Yudin AK. Acyl metalloids: conformity and deviation from carbonyl reactivity. Chem Sci 2021; 12:5346-5360. [PMID: 34163766 PMCID: PMC8179550 DOI: 10.1039/d1sc00077b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Once considered as mere curiosities, acyl metalloids are now recognized for their utility in enabling chemical synthesis. This perspective considers the reactivity displayed by acylboron, -silicon, -germanium, and tellurium species. By highlighting the role of these species in various transformations, we demonstrate how differences between the comprising elements result in varied reaction outcomes. While acylboron compounds are primarily used in polar transformations, germanium and tellurium species have found utility as radical precursors. Applications of acylsilanes are comparatively more diverse, owing to the possibility to access both radical and polar chemistry.
Collapse
Affiliation(s)
- Aleksandra Holownia
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Chirag N Apte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrei K Yudin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
22
|
Liu Y, Li JL, Liu XG, Wu JQ, Huang ZS, Li Q, Wang H. Radical Borylative Cyclization of Isocyanoarenes with N-Heterocyclic Carbene Borane: Synthesis of Borylated Aza-arenes. Org Lett 2021; 23:1891-1897. [PMID: 33591193 DOI: 10.1021/acs.orglett.1c00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Borylated aza-arenes are of great importance in the area of organic synthesis. A radical borylative cyclization of isocyanoarenes with N-heterocyclic carbene borane (NHC-BH3) under metal-free conditions was developed. The reaction allows the efficient assembly of several types of borylated aza-arenes (phenanthridines, benzothiazoles, etc.), which are difficult to access using alternative methods. Mild reaction conditions, a good functional-group tolerance, and generally good efficiencies were observed. The utility of these products is demonstrated, and the mechanism is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Qiang Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Deng X, Zhou G, Han X, Ullah K, Srinivasan R. Rapid Access to Diverse Potassium Acyltrifluoroborates (KATs) through Late-Stage Chemoselective Cross-Coupling Reactions. Org Lett 2021; 23:1886-1890. [PMID: 33591764 DOI: 10.1021/acs.orglett.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potassium acyltrifluoroborates (KATs) are opening up new avenues in chemical biology, materials science, and synthetic organic chemistry due to their intriguing reactivities. However, the synthesis of these compounds remains mostly complicated and time-consuming. Herein, we have developed chemoselective Pd-catalyzed approaches for the late-stage diversification of arenes bearing prefunctionalized KATs. These approaches feature chemoselective cross-coupling, rapid diversification, functional group tolerance, mild reaction conditions, simple operation, and high yields.
Collapse
Affiliation(s)
- Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xiao Han
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Khadim Ullah
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856
| |
Collapse
|
24
|
Schuhmacher A, Ryan SJ, Bode JW. Katalytische Synthese von Kaliumacyltrifluoroboraten (KATs) aus Boronsäuren und dem Thioimidat‐KAT‐Transferreagenz. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anne Schuhmacher
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | | | - Jeffrey W. Bode
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
25
|
Schuhmacher A, Ryan SJ, Bode JW. Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) from Boronic Acids and the Thioimidate KAT Transfer Reagent. Angew Chem Int Ed Engl 2021; 60:3918-3922. [PMID: 33231353 DOI: 10.1002/anie.202014581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis of potassium acyltrifluoroborates (KATs) by a palladium-catalyzed cross-coupling of boronic acids and the thioimidate KAT transfer reagent. The combination of widely available aryl- and vinylboronic acids with commercially available thioimidate 1 using catalytic PdII and a CuII additive enables the preparation of KATs in high yields and with good functional group tolerance. This formal insertion of CO into organoboronic acids can also be applied to boronic acid pinacol esters and potassium organotrifluoroborates using a slightly modified procedure. The cross-coupling can be telescoped into the one-pot synthesis of amides and α-aminotrifluoroborates by exploiting the unique chemistry of KATs and their trifluoroborate iminium (TIM) derivatives.
Collapse
Affiliation(s)
- Anne Schuhmacher
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Sarah J Ryan
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| |
Collapse
|
26
|
Cheng LJ, Zhao S, Mankad NP. One-Step Synthesis of Acylboron Compounds via Copper-Catalyzed Carbonylative Borylation of Alkyl Halides*. Angew Chem Int Ed Engl 2021; 60:2094-2098. [PMID: 33090619 DOI: 10.1002/anie.202012373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/11/2023]
Abstract
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
27
|
Cheng L, Zhao S, Mankad NP. One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Jie Cheng
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Siling Zhao
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
28
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to α-Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020; 59:18016-18022. [PMID: 32621386 DOI: 10.1002/anie.202007651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Formyl MIDA boronate has been known to be an elusive type of acylboronate that has not been obtained to date. In this work, an approach to the one-pot preparation and chemical transformations of formyl MIDA boronate were developed to provide new types of α-functionalized organoboron compounds. Among them are acylboronate reagents which present boron-substituted analogues of ynones and β-dicarbonyl compounds. The developed synthetic procedures, utilizing formyl MIDA boronate, are tolerant to diverse functional groups, making this reagent an advantageous C1 building block for extending the scope of organoboron chemistry.
Collapse
Affiliation(s)
- Yevhen M Ivon
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Ivan V Mazurenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Yuliya O Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Zoya V Voitenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
29
|
Wu D, Taguchi J, Tanriver M, Bode JW. Synthesis of Acylboron Compounds. Angew Chem Int Ed Engl 2020; 59:16847-16858. [PMID: 32510826 DOI: 10.1002/anie.202005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
30
|
Kelly AM, Chen PJ, Klubnick J, Blair DJ, Burke MD. A Mild Method for Making MIDA Boronates. Org Lett 2020; 22:9408-9414. [DOI: 10.1021/acs.orglett.0c02449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan M. Kelly
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Peng-Jui Chen
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jenna Klubnick
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, 807 South Wright Street, Urbana, Illinois 61820, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801, United States
- Arnold and Mabel Beckman Institute, University of Illinois at Urbana−Champaign, 405 North Mathews Ave., Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C
1
Building Block Enables Straightforward Access to α‐Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yevhen M. Ivon
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Ivan V. Mazurenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Zoya V. Voitenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
32
|
Šterman A, Sosič I, Gobec S, Časar Z. Recent Advances in the Synthesis of Acylboranes and Their Widening Applicability. ACS OMEGA 2020; 5:17868-17875. [PMID: 32743157 PMCID: PMC7391254 DOI: 10.1021/acsomega.0c02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 05/27/2023]
Abstract
The most common types of acylboranes are acyltrifluoroborates, acyl MIDA-boronates, and monofluoroacylboronates. Because of the increasing importance of these compounds in the past decade, we highlight the recently reported synthetic strategies to access acylboranes. In addition, an expanding array of their applications has been discovered, based on either the ability of acylboranes to enter rapid amide-forming ligations or the retained ketone-like character of the carbonyl group. Therefore, we also describe ground-breaking achievements where acylboranes were successfully put to use, such as their utility in biochemical, material, and medicinal sciences.
Collapse
Affiliation(s)
- Andrej Šterman
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Zdenko Časar
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
- Lek
Pharmaceuticals d.d., Sandoz Development Center Slovenia, Verovškova ulica 57, 1526 Ljubljana, Slovenia
| |
Collapse
|
33
|
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
34
|
Kleban I, Radchenko DS, Tymtsunik AV, Shuvakin S, Konovets AI, Rassukana Y, Grygorenko OO. Cyclopropyl boronic derivatives in parallel synthesis of sp3-enriched compound libraries. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02619-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Schuhmacher A, Shiro T, Ryan SJ, Bode JW. Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs). Chem Sci 2020; 11:7609-7614. [PMID: 34094137 PMCID: PMC8152719 DOI: 10.1039/d0sc01330g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although highly effective for most amide syntheses, the activation of carboxylic acids requires the use of problematic coupling reagents and is often poorly suited for challenging cases such as N-methyl amino acids. As an alternative to both secondary and tertiary amides, we report their convenient synthesis by the rapid oxidation of trifluoroborate iminiums (TIMs). TIMs are easily prepared by acid-promoted condensation of potassium acyltrifluoroborates (KATs) and amines and are cleanly and rapidly oxidized to amides with hydrogen peroxide. The overall transformation can be conducted either as a one-pot procedure or via isolation of the TIM. The unique nature of the neutral, zwitterionic TIMs makes possible the preparation of tertiary amides via an iminium species that would not be accessible from other carbonyl derivatives and can be conducted in the presence of unprotected functional groups including acids, alcohols and thioethers. In preliminary studies, this approach was applied to the late-stage modifications of long peptides and the iterative synthesis of short, N-methylated peptides without the need for coupling agents. Oxidative amidation of potassium acyltrifluoroborates (KATs) and amines via trifluoroborate iminiums (TIMs) delivers amides without coupling agents. This unusual approach to amides can be applied for the late-stage modification of bioactive molecules and for solid-phase peptide synthesis.![]()
Collapse
Affiliation(s)
- Anne Schuhmacher
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Tomoya Shiro
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Sarah J Ryan
- Small Molecule Design and Development, Eli Lilly and Company Indianapolis IN 46285 USA
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
36
|
Ivon YM, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Aliphatic α-Boryl-α-bromoketones: Synthesis and Reactivity. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yevhen M. Ivon
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Zoya V. Voitenko
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
37
|
Zeng YF, Liu XG, Tan DH, Fan WX, Li YN, Guo Y, Wang H. Halohydroxylation of alkenyl MIDA boronates: switchable stereoselectivity induced by B(MIDA) substituent. Chem Commun (Camb) 2020; 56:4332-4335. [DOI: 10.1039/d0cc00722f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A switchable stereoselectivity in the halohydroxylation of alkenyl MIDA boronates was found. C–B(MIDA) bond hyperconjugation plays the key role.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- Institute of Pharmacy and Pharmacology
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- P. R. China
| | - Xu-Ge Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Dong-Hang Tan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Wen-Xin Fan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Yi-Na Li
- Institute of Pharmacy and Pharmacology
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- P. R. China
| | - Yu Guo
- Institute of Pharmacy and Pharmacology
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- P. R. China
| | - Honggen Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
38
|
Tan DH, Cai YH, Zeng YF, Lv WX, Yang L, Li Q, Wang H. Diversity-Oriented Synthesis of α-Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of α-Chloroepoxyboronates. Angew Chem Int Ed Engl 2019; 58:13784-13788. [PMID: 31347254 DOI: 10.1002/anie.201907349] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/24/2019] [Indexed: 12/22/2022]
Abstract
The ring-opening reactions of N-methyliminodiacetyl (MIDA) α-chloroepoxyboronates with different nucleophiles allow the modular synthesis of a diverse array of organoboronates. These include seven types of α-functionalized acylboronates and seven types of borylated heteroarenes, some of which are difficult-to-access products using alternative methods. The common synthons, α-chloroepoxyboronates, could be viably synthesized by a two-step procedure from the corresponding alkenyl MIDA boronates. Mild reaction conditions, good functional-group tolerance, and generally good efficiency were observed. The utility of the products was also demonstrated.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan-Hong Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yao-Fu Zeng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xin Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
39
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019; 58:15148-15153. [DOI: 10.1002/anie.201907486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/31/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
40
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
41
|
Tappin NDC, Michalska W, Rohrbach S, Renaud P. Cyclopropanation of Terminal Alkenes through Sequential Atom‐Transfer Radical Addition/1,3‐Elimination. Angew Chem Int Ed Engl 2019; 58:14240-14244. [DOI: 10.1002/anie.201907962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas D. C. Tappin
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Weronika Michalska
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Simon Rohrbach
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Philippe Renaud
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
42
|
Tappin NDC, Michalska W, Rohrbach S, Renaud P. Cyclopropanation of Terminal Alkenes through Sequential Atom‐Transfer Radical Addition/1,3‐Elimination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicholas D. C. Tappin
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Weronika Michalska
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Simon Rohrbach
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Philippe Renaud
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
43
|
Tan D, Cai Y, Zeng Y, Lv W, Yang L, Li Q, Wang H. Diversity‐Oriented Synthesis of α‐Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of α‐Chloroepoxyboronates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong‐Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Yuan‐Hong Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Yao‐Fu Zeng
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Wen‐Xin Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 China
| |
Collapse
|
44
|
Wu D, Fohn NA, Bode JW. Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) through Chemoselective Cross-Coupling with a Bifunctional Reagent. Angew Chem Int Ed Engl 2019; 58:11058-11062. [PMID: 31070291 DOI: 10.1002/anie.201904576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Potassium acyltrifluoroborates (KATs) are increasingly important functional groups, and general methods for their preparation are of great current interest. We report a bifunctional iminium reagent bearing both a tin nucleophile and a trifluoroborate, which was applied in chemoselective Pd0 -catalyzed Migita-Kosugi-Stille cross-coupling reactions owith aryl and vinyl halides. This method gives access to previously inaccessible aromatic and α,β-unsaturated acyltrifluoroborates, including precursors to amino-acid derived KATs.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nicole A Fohn
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
45
|
Wu D, Fohn NA, Bode JW. Katalytische Synthese von Kaliumacyltrifluoroboraten mithilfe chemoselektiver Kreuzkupplung eines bifunktionalen Reagenzes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dino Wu
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicole A. Fohn
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Jeffrey W. Bode
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
46
|
Lin S, Wang L, Aminoleslami N, Lao Y, Yagel C, Sharma A. A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: unlocking access to a novel class of acylborons. Chem Sci 2019; 10:4684-4691. [PMID: 31123579 PMCID: PMC6495705 DOI: 10.1039/c9sc00378a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
Novel and mild synthesis of MIDA acylboronates including a novel class of acylborons and first chemoselective oxidation of geminal diborylalkanes.
Acylboronates represent a very intriguing and rare class of organoboronates. Synthesis of these compounds from readily available substrates under mild conditions and access to novel classes of acylborons has been challenging. We report a novel and concise route to various MIDA acylboronates from terminal alkynes/alkenes or vinyl boronic esters using unsymmetrical geminal diborylalkanes as key intermediates. The high modularity and mild conditions of this strategy allowed a facile access to acylboronates possessing aliphatic, aromatic as well as the rarer heteroaromatic, alkynyl and α,β-unsaturated scaffolds. To the best of our knowledge, this is the first report of chemoselective oxidation of geminal diborons as well as synthesis of an α,β-unsaturated acylboronate.
Collapse
Affiliation(s)
- Shengjia Lin
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Lucia Wang
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Negin Aminoleslami
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Yanting Lao
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Chelsea Yagel
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| |
Collapse
|
47
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)-Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019; 58:7299-7303. [PMID: 30844125 DOI: 10.1002/anie.201901748] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Potassium acyltrifluoroborates (KATs) were prepared through copper(I)-catalyzed borylation of aldehydes and subsequent oxidation. This synthetic route is characterized by the wide range of aldehydes accessible, favorable step economy, mild reaction conditions, and tolerance of various functional groups, and it enables the facile generation of a range of KATs, for example, bearing halide, sulfide, acetal, or ester moieties. Moreover, this method was applied to the three-step synthesis of various α-amino acid analogues that bear a KAT moiety on the C-terminus by using naturally occurring amino acids as the starting material.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takumi Takeuchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Rina Takahashi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Fabio Masero
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Bioscience, ETH Zürich, 8093, Zürich, Switzerland
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
48
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)‐Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jumpei Taguchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Takumi Takeuchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Rina Takahashi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Fabio Masero
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BioscienceETH Zürich 8093 Zürich Switzerland
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
49
|
Soor HS, Hansen J, Diaz DB, Appavoo S, Yudin AK. Solid-phase synthesis of peptide β-aminoboronic acids. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Harjeet S. Soor
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; Toronto M5S 3H6 Canada
| | - Jonas Hansen
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; Toronto M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; Toronto M5S 3H6 Canada
| | - Solomon Appavoo
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; Toronto M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; Toronto M5S 3H6 Canada
| |
Collapse
|
50
|
Corless VB, Holownia A, Foy H, Mendoza-Sanchez R, Adachi S, Dudding T, Yudin AK. Synthesis of α-Borylated Ketones by Regioselective Wacker Oxidation of Alkenylboronates. Org Lett 2018; 20:5300-5303. [DOI: 10.1021/acs.orglett.8b02234] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria B. Corless
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Hayden Foy
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catherines, ON L2S 3A1, Canada
| | - Rodrigo Mendoza-Sanchez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Shinya Adachi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catherines, ON L2S 3A1, Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|