1
|
Bilgin N, Tumber A, Dhingra S, Salah E, Al‐Salmy A, Martín SP, Wang Y, Schofield CJ, Mecinović J. Substrate selectivity and inhibition of the human lysyl hydroxylase JMJD7. Protein Sci 2024; 33:e5162. [PMID: 39276004 PMCID: PMC11400632 DOI: 10.1002/pro.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
Jumonji-C (JmjC) domain-containing protein 7 (JMJD7) is a human Fe(II) and 2-oxoglutarate dependent oxygenase that catalyzes stereospecific C3-hydroxylation of lysyl-residues in developmentally regulated GTP binding proteins 1 and 2 (DRG1/2). We report studies exploring a diverse set of lysine derivatives incorporated into the DRG1 peptides as potential human JMJD7 substrates and inhibitors. The results indicate that human JMJD7 has a relatively narrow substrate scope beyond lysine compared to some other JmjC hydroxylases and lysine-modifying enzymes. The geometrically constrained (E)-dehydrolysine is an efficient alternative to lysine for JMJD7-catalyzed C3-hydroxylation. γ-Thialysine and γ-azalysine undergo C3-hydroxylation, followed by degradation to formylglycine. JMJD7 also catalyzes the S-oxidation of DRG1-derived peptides possessing methionine and homomethionine residues in place of lysine. Inhibition assays show that DRG1 variants possessing cysteine/selenocysteine instead of the lysine residue efficiently inhibit JMJD7 via cross-linking. The overall results inform on the substrate selectivity and inhibition of human JMJD7, which will help enable the rational design of selective small-molecule and peptidomimetic inhibitors of JMJD7.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Siddhant Dhingra
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Aziza Al‐Salmy
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Sandra Pinzón Martín
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Yicheng Wang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Jasmin Mecinović
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Dhingra S, Zhang Z, Lohans CT, Brewitz L, Schofield CJ. Substitution of 2-oxoglutarate alters reaction outcomes of the Pseudomonas savastanoi ethylene-forming enzyme. J Biol Chem 2024; 300:107546. [PMID: 38992435 PMCID: PMC11345546 DOI: 10.1016/j.jbc.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: Pseudomonas syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding β-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.
Collapse
Affiliation(s)
- Siddhant Dhingra
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Zhihong Zhang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Mezhubeinuo, Mohanta R, Bordoloi H, Verma AK, Bez G. L-proline H 2SO 4 catalyzed synthesis of novel coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones: in vitro cytotoxic assay and molecular docking study. Mol Divers 2024:10.1007/s11030-024-10878-w. [PMID: 39030285 DOI: 10.1007/s11030-024-10878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 07/21/2024]
Abstract
Development of environmentally benign catalyst systems, especially those derived from readily available nature's pool, in multicomponent synthesis, consolidates multiple facets of green chemistry. Here, an L-proline derived green acid catalyst in the form of L-proline⋅H2SO4 was developed and employed for multicomponent synthesis of coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones from the reaction of 4-hydroxycoumarin, isatin and urea/thiourea. Preliminary cytotoxicity studies showed that a couple of compounds (M5 and M6) have good cytotoxicity (40-50%) against in Dalton's Lymphoma (DL) cells while demonstrating minimal cytotoxicity (10-12%) for normal non-cancerous cell lines. Molecular docking simulations for the least and most cytotoxic compounds, M3 and M6 respectively, against nineteen tumor target proteins were carried out, and seven of them were identified to test against all the sixteen compounds. Based on the estimated docking score and inhibition constants (Ki), the interaction of the compounds with the tumor target protein, beta-hexosaminidase B (PDB ID: 1NOW) matched closely with in vitro cytotoxicity data.
Collapse
Affiliation(s)
- Mezhubeinuo
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rahul Mohanta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Hemanta Bordoloi
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
4
|
Bonnici J, Oueini R, Salah E, Johansson C, Schofield CJ, Kawamura A. The catalytic domains of all human KDM5 JmjC demethylases catalyse N-methyl arginine demethylation. FEBS Lett 2023; 597:933-946. [PMID: 36700827 PMCID: PMC10952680 DOI: 10.1002/1873-3468.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023]
Abstract
The demethylation of Nε -methyllysine residues on histones by Jumonji-C lysine demethylases (JmjC-KDMs) has been established. A subset of JmjC-KDMs has also been reported to have Nω -methylarginine residue demethylase (RDM) activity. Here, we describe biochemical screening studies, showing that the catalytic domains of all human KDM5s (KDM5A-KDM5D), KDM4E and, to a lesser extent, KDM4A/D, have both KDM and RDM activities with histone peptides. Ras GTPase-activating protein-binding protein 1 peptides were shown to be RDM substrates for KDM5C/D. No RDM activity was observed with KDM1A and the other JmjC-KDMs tested. The results highlight the potential of JmjC-KDMs to catalyse reactions other than Nε -methyllysine demethylation. Although our study is limited to peptide fragments, the results should help guide biological studies investigating JmjC functions.
Collapse
Affiliation(s)
- Joanna Bonnici
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| | - Razanne Oueini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Catrine Johansson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Botnar Research Centre, NIHR Oxford Biomedical Research UnitUniversity of OxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| |
Collapse
|
5
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Brewitz L, Onisko BC, Schofield CJ. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. J Biol Chem 2022; 298:102129. [PMID: 35700824 PMCID: PMC9293771 DOI: 10.1016/j.jbc.2022.102129] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor-like domains (EGFDs) have important functions in cell-cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine-β-hydroxylase (AspH). Although genetic studies show AspH is important in human biology, studies on its physiological roles have been limited by incomplete knowledge of its substrates. Here, we redefine the consensus sequence requirements for AspH-catalyzed EGFD hydroxylation based on combined analysis of proteomic mass spectrometric data and mass spectrometry-based assays with isolated AspH and peptide substrates. We provide cellular and biochemical evidence that the preferred site of EGFD hydroxylation is embedded within a disulfide-bridged macrocycle formed of 10 amino acid residues. This definition enabled the identification of previously unassigned hydroxylation sites in three EGFDs of human fibulins as AspH substrates. A non-EGFD containing protein, lymphocyte antigen-6/plasminogen activator urokinase receptor domain containing protein 6B (LYPD6B) was shown to be a substrate for isolated AspH, but we did not observe evidence for LYPD6B hydroxylation in cells. AspH-catalyzed hydroxylation of fibulins is of particular interest given their important roles in extracellular matrix dynamics. In conclusion, these results lead to a revision of the consensus substrate requirements for AspH and expand the range of observed and potential AspH-catalyzed hydroxylation in cells, which will enable future study of the biological roles of AspH.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Leissing TM, Hardy AP, Chan H, Wang Y, Tumber A, Chowdhury R, Feng T, Coleman ML, Cockman ME, Kramer HB, Berridge G, Fischer R, Kessler BM, Ratcliffe PJ, Lu X, Schofield CJ. Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. J Biol Chem 2022; 298:102020. [PMID: 35537551 PMCID: PMC9189129 DOI: 10.1016/j.jbc.2022.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022] Open
Abstract
The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.
Collapse
Affiliation(s)
- Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Hokfung Chan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yihua Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Tianshu Feng
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; NDM Research Building, University of Oxford, Oxford, United Kingdom
| | - Mathew L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew E Cockman
- The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Roman Fischer
- NDM Research Building, University of Oxford, Oxford, United Kingdom
| | | | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Nakashima Y, Brewitz L, Tumber A, Salah E, Schofield CJ. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nat Commun 2021; 12:6478. [PMID: 34759269 PMCID: PMC8580996 DOI: 10.1038/s41467-021-26673-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
2-Oxoglutarate (2OG) oxygenases are validated agrochemical and human drug targets. The potential for modulating their activity with 2OG derivatives has not been explored, possibly due to concerns regarding selectivity. We report proof-of-principle studies demonstrating selective enhancement or inhibition of 2OG oxygenase activity by 2-oxo acids. The human 2OG oxygenases studied, factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH) and aspartate/asparagine-β-hydroxylase (AspH), catalyze C3 hydroxylations of Asp/Asn-residues. Of 35 tested 2OG derivatives, 10 enhance and 17 inhibit FIH activity. Comparison with results for AspH reveals that 2OG derivatives selectively enhance or inhibit FIH or AspH. Comparison of FIH structures complexed with 2OG derivatives to those for AspH provides insight into the basis of the observed selectivity. 2-Oxo acid derivatives have potential as drugs, for use in biomimetic catalysis, and in functional studies. The results suggest that the in vivo activity of 2OG oxygenases may be regulated by natural 2-oxo acids other than 2OG.
Collapse
Affiliation(s)
- Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, 930-0194, Toyama, Japan
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.
| |
Collapse
|
9
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Brewitz L, Tumber A, Schofield CJ. Kinetic parameters of human aspartate/asparagine-β-hydroxylase suggest that it has a possible function in oxygen sensing. J Biol Chem 2020; 295:7826-7838. [PMID: 32107312 PMCID: PMC7278358 DOI: 10.1074/jbc.ra119.012202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of Asp and Asn residues in epidermal growth factor-like domains (EGFDs). Despite its biomedical significance, studies on AspH have long been limited by a lack of assays for its isolated form. Recent structural work has revealed that AspH accepts substrates with a noncanonical EGFD disulfide connectivity (i.e. the Cys 1-2, 3-4, 5-6 disulfide pattern). We developed stable cyclic thioether analogues of the noncanonical EGFD AspH substrates to avoid disulfide shuffling. We monitored their hydroxylation by solid-phase extraction coupled to MS. The extent of recombinant AspH-catalyzed cyclic peptide hydroxylation appears to reflect levels of EGFD hydroxylation observed in vivo, which vary considerably. We applied the assay to determine the kinetic parameters of human AspH with respect to 2OG, Fe(II), l-ascorbic acid, and substrate and found that these parameters are in the typical ranges for 2OG oxygenases. Of note, a relatively high Km for O2 suggested that O2 availability may regulate AspH activity in a biologically relevant manner. We anticipate that the assay will enable the development of selective small-molecule inhibitors for AspH and other human 2OG oxygenases.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, OX1 3TA Oxford, United Kingdom
| | | |
Collapse
|
12
|
Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. A human protein hydroxylase that accepts D-residues. Commun Chem 2020; 3:52. [PMID: 36703414 PMCID: PMC9814778 DOI: 10.1038/s42004-020-0290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a 2-oxoglutarate-dependent protein hydroxylase that catalyses C3 hydroxylations of protein residues. We report FIH can accept (D)- and (L)-residues for hydroxylation. The substrate selectivity of FIH differs for (D) and (L) epimers, e.g., (D)- but not (L)-allylglycine, and conversely (L)- but not (D)-aspartate, undergo monohydroxylation, in the tested sequence context. The (L)-Leu-containing substrate undergoes FIH-catalysed monohydroxylation, whereas (D)-Leu unexpectedly undergoes dihydroxylation. Crystallographic, mass spectrometric, and DFT studies provide insights into the selectivity of FIH towards (L)- and (D)-residues. The results of this work expand the potential range of known substrates hydroxylated by isolated FIH and imply that it will be possible to generate FIH variants with altered selectivities.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Philip A Gerken
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Helen Thorbjornsrud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
13
|
Pickel C, Günter J, Ruiz-Serrano A, Spielmann P, Fabrizio JA, Wolski W, Peet DJ, Wenger RH, Scholz CC. Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biol 2019; 26:101265. [PMID: 31299612 PMCID: PMC6624438 DOI: 10.1016/j.redox.2019.101265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase. FIH forms a (likely amide) bond with client proteins. Bond formation is highly hypoxia sensitive and occurs co-translationally. FIH forms a heterotrimer with the client protein OTUB1 (FIH2OTUB11). Complex formation between OTUB1 and FIH regulates OTUB1 deubiquitinase activity. Bond formation by hydroxylases is an alternative mechanism for hypoxia adaptation.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland
| | | | - Patrick Spielmann
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| |
Collapse
|
14
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
Hopkinson RJ, Langley GW, Belle R, Walport LJ, Dunne K, Münzel M, Salah E, Kawamura A, Claridge TDW, Schofield CJ. Human histone demethylase KDM6B can catalyse sequential oxidations. Chem Commun (Camb) 2018; 54:7975-7978. [PMID: 29961803 PMCID: PMC6044289 DOI: 10.1039/c8cc04057e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
Jumonji domain-containing demethylases (JmjC-KDMs) catalyse demethylation of Nε-methylated lysines on histones and play important roles in gene regulation. We report selectivity studies on KDM6B (JMJD3), a disease-relevant JmjC-KDM, using synthetic lysine analogues. The results unexpectedly reveal that KDM6B accepts multiple Nε-alkylated lysine analogues, forming alcohol, aldehyde and carboxylic acid products.
Collapse
Affiliation(s)
- Richard J. Hopkinson
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry
, University of Leicester
,
Lancaster Road
, Leicester
, LE1 7RH
, UK
.
| | - Gareth W. Langley
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Roman Belle
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Louise J. Walport
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Kate Dunne
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
- Radcliffe Department of Medicine
, Division of Cardiovascular Medicine
, BHF Centre of Research Excellence
, Wellcome Trust Centre for Human Genetics
,
Roosevelt Drive
, Oxford
, OX3 7BN
, UK
| | - Martin Münzel
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Eidarus Salah
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Akane Kawamura
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
- Radcliffe Department of Medicine
, Division of Cardiovascular Medicine
, BHF Centre of Research Excellence
, Wellcome Trust Centre for Human Genetics
,
Roosevelt Drive
, Oxford
, OX3 7BN
, UK
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| | - Christopher J. Schofield
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
| |
Collapse
|
16
|
Bonnici J, Tumber A, Kawamura A, Schofield CJ. Inhibitors of both the N-methyl lysyl- and arginyl-demethylase activities of the JmjC oxygenases. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170071. [PMID: 29685975 PMCID: PMC5915715 DOI: 10.1098/rstb.2017.0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Jumonji C (JmjC) family of 2-oxoglutarate (2OG)-dependent oxygenases have established roles in the regulation of transcription via the catalysis of demethylation of Nε-methylated lysine residues in histone tails, especially the N-terminal tail of histone H3. Most human JmjC Nɛ -methyl lysine demethylases (KDMs) are complex enzymes, with 'reader domains' in addition to their catalytic domains. Recent biochemical evidence has shown that some, but not all, JmjC KDMs also have Nω-methyl arginyl demethylase (RDM) activity. JmjC KDM activity has been linked to multiple cancers and some JmjC proteins are therapeutic targets. It is, therefore, important to test not only whether compounds in development inhibit the KDM activity of targeted JmjC demethylases, but also whether they inhibit other activities of these proteins. Here we report biochemical studies on the potential dual inhibition of JmjC KDM and RDM activities using a model JmjC demethylase, KDM4E (JMJD2E). The results reveal that all of the tested compounds inhibit both the KDM and RDM activities, raising questions about the in vivo effects of the inhibitors.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Joanna Bonnici
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Anthony Tumber
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
17
|
Wu Y, Jiang Z, Li Z, Gu J, You Q, Zhang X. Click Chemistry-Based Discovery of [3-Hydroxy-5-(1H-1,2,3-triazol-4-yl)picolinoyl]glycines as Orally Active Hypoxia-Inducing Factor Prolyl Hydroxylase Inhibitors with Favorable Safety Profiles for the Treatment of Anemia. J Med Chem 2018; 61:5332-5349. [DOI: 10.1021/acs.jmedchem.8b00549] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Wu
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihong Li
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Gu
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metab 2018; 27:898-913.e7. [PMID: 29617647 PMCID: PMC5887987 DOI: 10.1016/j.cmet.2018.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/29/2017] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia.
Collapse
|
19
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
20
|
Wang J, Kou J, Hou X, Zhao Z, Chao H. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1α inhibition. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
22
|
Abstract
Hydroxylation is an emerging modification generally catalyzed by a family of ∼70 enzymes that are dependent on oxygen, Fe(II), ascorbate, and the Kreb's cycle intermediate 2-oxoglutarate (2OG). These "2OG oxygenases" sit at the intersection of nutrient availability and metabolism where they have the potential to regulate gene expression and growth in response to changes in co-factor abundance. Characterized 2OG oxygenases regulate fundamental cellular processes by catalyzing the hydroxylation or demethylation (via hydroxylation) of DNA, RNA, or protein. As such they have been implicated in various syndromes and diseases, but particularly cancer. In this review we discuss the emerging role of 2OG oxygenases in gene expression control, examine the regulation of these unique enzymes by nutrient availability and metabolic intermediates, and describe these properties in relation to the expanding role of these enzymes in cancer.
Collapse
|
23
|
Tarhonskaya H, Hardy AP, Howe EA, Loik ND, Kramer HB, McCullagh JSO, Schofield CJ, Flashman E. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. J Biol Chem 2015; 290:19726-42. [PMID: 26112411 PMCID: PMC4528135 DOI: 10.1074/jbc.m115.653014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Indexed: 01/23/2023] Open
Abstract
The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors.
Collapse
Affiliation(s)
- Hanna Tarhonskaya
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Adam P Hardy
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Emily A Howe
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Nikita D Loik
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Holger B Kramer
- the OXION Proteomics Facility, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - James S O McCullagh
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Christopher J Schofield
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Emily Flashman
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| |
Collapse
|
24
|
Yang M, Su H, Soga T, Kranc KR, Pollard PJ. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. HYPOXIA 2014; 2:127-142. [PMID: 27774472 PMCID: PMC5045062 DOI: 10.2147/hp.s47968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes (PHDs) regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2) availability enables its association with the von Hippel-Lindau (VHL) tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites) that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism.
Collapse
Affiliation(s)
- Ming Yang
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Huizhong Su
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Patrick J Pollard
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Hangasky JA, Ivison GT, Knapp MJ. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Biochemistry 2014; 53:5750-8. [PMID: 25119663 PMCID: PMC4165446 DOI: 10.1021/bi500703s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonheme Fe(II)/αKG-dependent
oxygenases catalyze diverse
reactions, typically inserting an O atom from O2 into a
C–H bond. Although the key to their catalytic cycle is the
fact that binding and positioning of primary substrate precede O2 activation, the means by which substrate binding stimulates
turnover is not well understood. Factor Inhibiting HIF (FIH) is a
Fe(II)/αKG-dependent oxygenase that acts as a cellular oxygen
sensor in humans by hydroxylating the target residue Asn803, found in the C-terminal transactivation domain (CTAD) of hypoxia
inducible factor-1. FIH-Gln239 makes two hydrogen bonds
with CTAD-Asn803, positioning this target residue over
the Fe(II). We hypothesized the positioning of the side chain of CTAD-Asn803 by FIH-Gln239 was critical for stimulating O2 activation and subsequent substrate hydroxylation. The steady-state
characterization of five FIH-Gln239 variants (Ala, Asn,
Glu, His, and Leu) tested the role of hydrogen bonding potential and
sterics near the target residue. Each variant exhibited a 20–1200-fold
decrease in kcat and kcat/KM(CTAD), but no change
in KM(CTAD), indicating that the step
after CTAD binding was affected by point mutation. Uncoupled O2 activation was prominent in these variants, as shown by large
coupling ratios (C = [succinate]/[CTAD-OH] = 3–5)
for each of the FIH-Gln239 → X variants. The coupling
ratios decreased in D2O, indicating an isotope-sensitive
inactivation for variants, not observed in the wild type. The data
presented indicate that the proper positioning of CTAD-Asn803 by FIH-Gln239 is necessary to suppress uncoupled turnover
and to support substrate hydroxylation, suggesting substrate positioning
may be crucial for directing O2 reactivity within the broader
class of αKG hydroxylases.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts at Amherst , Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
26
|
Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 2014; 510:422-426. [PMID: 24814345 PMCID: PMC4066111 DOI: 10.1038/nature13263] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/14/2014] [Indexed: 12/24/2022]
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases play important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2, hydroxylation of transcription factors3, and of splicing factor proteins4. Recently, 2OG-oxygenases that catalyze hydroxylation of tRNA5-7 and ribosomal proteins8, have been shown to play roles in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9-12. The finding that the ribosomal oxygenases (ROX) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, ycfD catalyzes arginine-hydroxylation in the ribosomal protein L16; in humans, Mina53 (MYC-induced nuclear antigen) and NO66 (Nucleolar protein 66) catalyze histidine-hydroxylation in ribosomal proteins rpL27a and rpL8, respectively. The functional assignments of the ROX open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in residue- and protein-selectivities of prokaryotic and eukaryotic ROX, crystal structures of ycfD and ycfDRM from E. coli and Rhodothermus marinus with those of human Mina53 and NO66 (hROX) reveal highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-oxygenases. ROX structures in complex with/without their substrates, support their functional assignments as hydroxylases, but not demethylases and reveal how the subfamily has evolved to catalyze the hydroxylation of different residue sidechains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-hydroxylases including the hypoxia-inducible factor asparaginyl-hydroxylase (FIH) and histone Nε-methyl lysine demethylases (KDMs) identifies branchpoints in 2OG-oxygenase evolution and distinguishes between JmjC-hydroxylases and -demethylases catalyzing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate oxidizing species reacts. This coordination flexibility has likely contributed to the evolution of the wide range of reactions catalyzed by iron-oxygenases.
Collapse
|
27
|
Tarhonskaya H, Rydzik AM, Leung IKH, Loik ND, Chan MC, Kawamura A, McCullagh JSO, Claridge TDW, Flashman E, Schofield CJ. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nat Commun 2014; 5:3423. [PMID: 24594748 PMCID: PMC3959194 DOI: 10.1038/ncomms4423] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 01/08/2023] Open
Abstract
Accumulation of (R)-2-hydroxyglutarate in cells results from mutations to isocitrate dehydrogenase that correlate with cancer. A recent study reports that (R)-, but not (S)-2-hydroxyglutarate, acts as a co-substrate for the hypoxia-inducible factor prolyl hydroxylases via enzyme-catalysed oxidation to 2-oxoglutarate. Here we investigate the mechanism of 2-hydroxyglutarate-enabled activation of 2-oxoglutarate oxygenases, including prolyl hydroxylase domain 2, the most important human prolyl hydroxylase isoform. We observe that 2-hydroxyglutarate-enabled catalysis by prolyl hydroxylase domain 2 is not enantiomer-specific and is stimulated by ferrous/ferric ion and reducing agents including L-ascorbate. The results reveal that 2-hydroxyglutarate is oxidized to 2-oxoglutarate non-enzymatically, likely via iron-mediated Fenton-chemistry, at levels supporting in vitro catalysis by 2-oxoglutarate oxygenases. Succinic semialdehyde and succinate are also identified as products of 2-hydroxyglutarate oxidation. Overall, the results rationalize the reported effects of 2-hydroxyglutarate on catalysis by prolyl hydroxylases in vitro and suggest that non-enzymatic 2-hydroxyglutarate oxidation may be of biological interest.
Collapse
Affiliation(s)
- Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Anna M. Rydzik
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Nikita D. Loik
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Mun Chiang Chan
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - James S. O. McCullagh
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
28
|
Neue Mitglieder der Royal Society: H. L. Anderson, G. C. Lloyd-Jones, P. O'Brien, C. J. Schofield, D. W.Stephan, K. C. Nicolaou / Lavoisier-Medaille: G. Férey / Richard-Willstätter-Vorlesung: K. Meerholz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
New Fellows of The Royal Society: H. L. Anderson, G. C. Lloyd-Jones, P. O'Brien, C. J. Schofield, D. W. Stephan, K. C. Nicolaou / Lavoisier Medal: G. Férey / Richard Willstätter Lectureship: K. Meerholz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201304013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Revisiting the biosynthesis of dehydrophos reveals a tRNA-dependent pathway. Proc Natl Acad Sci U S A 2013; 110:10952-7. [PMID: 23776232 DOI: 10.1073/pnas.1303568110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bioactive natural products containing a C-P bond act as mimics of phosphate esters and carboxylic acids, thereby competing with these compounds for active sites of enzymes. Dehydrophos (DHP), a broad-spectrum antibiotic, is a phosphonotripeptide produced by Streptomyces luridus, in which glycine and leucine are linked to an aminophosphonate analog of dehydroalanine, ΔAla(P). This unique feature, in combination with the monomethylation of the phosphonic acid, renders DHP a Trojan horse type antibiotic because peptidase-mediated hydrolysis will release methyl acetylphosphonate, a potent inhibitor of pyruvate dehydrogenase. Bioinformatic analysis of the biosynthetic gene cluster suggested that ΔAla(P) would be generated from Ser(P), the phosphonate analog of Ser, by phosphorylation and subsequent elimination, and that ΔAla(P) would be condensed with Leu-tRNA(Leu). DhpH was anticipated to carry out this elimination/ligation cascade. DhpH is a multidomain protein, in which a pyridoxal phosphate binding domain is fused to an N-acetyltransferase domain related to the general control nonderepressible-5 (GCN5) family. In this work, the activity of DhpH was reconstituted in vitro. The enzyme was able to catalyze the β-elimination reaction of pSer(P) to generate ΔAla(P), but it was unable to condense ΔAla(P) with Leu. Instead, ΔAla(P) is hydrolyzed to acetyl phosphonate, which is converted to Ala(P) by a second pyridoxal phosphate-dependent enzyme, DhpD. Ala(P) is the substrate for the condensation with Leu-tRNA(Leu) catalyzed by the C-terminal domain of DhpH. DhpJ, a 2-oxoglutarate/Fe(II)-dependent enzyme, introduces the vinyl functionality into Leu-Ala(P) acting as a desaturase, and addition of Gly by DhpK in a Gly-tRNA(Gly)-dependent manner completes the in vitro biosynthesis of dehydrophos.
Collapse
|