1
|
Zhu Y, Zhang Y, He D, Yang H, Xue XS, Tang W. Rhodium-Catalyzed Asymmetric Reductive Hydroformylation of α-Substituted Enamides. J Am Chem Soc 2024. [PMID: 39568246 DOI: 10.1021/jacs.4c13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chiral γ-amino alcohols are prevalent structural motifs in natural products and bioactive compounds. Nevertheless, efficient and atom-economical synthetic methods toward enantiomerically enriched γ-amino alcohols are still lacking. In this study, a highly enantioselective rhodium-catalyzed reductive hydroformylation of readily available α-substituted enamides is developed, providing a series of pharmaceutically valuable chiral 1,3-amino alcohols in good yields and excellent enantioselectivities in a single step. The development of the 4,4'-bisarylamino-substituted BIBOP ligand is crucial for the success of this transformation. DFT calculations and experimental data have revealed the importance of hydrogen bonding between the N-H group in the structure of TFPNH-BIBOP and the enamide carbonyl group in promoting both high enantioselectivity and reactivity. This method has enabled the concise synthesis of several chiral pharmaceutical intermediates including a single-step synthesis of the key chiral intermediate of maraviroc.
Collapse
Affiliation(s)
- Yuxin Zhu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuchen Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,, Shanghai 200032, China
| | - Dongyang He
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - He Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Manisha M, Kumari S, Sharma D, Negi L, Joshi RK. Iron-Catalyzed Chemoselective Transfer Hydrogenation of α,β-Unsaturated Ketones Using H 2O as a Surrogate of Hydrogen. J Org Chem 2024; 89:11983-11993. [PMID: 39155442 DOI: 10.1021/acs.joc.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Sustainable and highly economical iron-catalyzed chemoselective reduction of C═C of α,β-unsaturated ketones has been established under mild reaction protocols. Water is used as a green and abundant surrogate of hydrogen and is scarcely used in organic synthetic transformations as a source of hydrogen. The developed protocol offers a broad spectrum for chemoselective transfer hydrogenation of α,β-unsaturated ketones. Moreover, the method was found to be highly effective for aryl and ferrocenyl α,β-unsaturated ketones consisting of one or two double bonds and with multiple functionalities. Moreover, the present method avoids prolonged reaction time, provides a wide range of substrates with excellent yield, and circumvents the tedious chromatographic workup.
Collapse
Affiliation(s)
- Manisha Manisha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Deepak Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Lalit Negi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Raj K Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| |
Collapse
|
3
|
Zhang X, Tang D, He L, Cao Y. Polyoxometalates Based Catalysts for Carbonylation Reactions: A Review. Chem Asian J 2024; 19:e202400464. [PMID: 38861115 DOI: 10.1002/asia.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
As a type of diverse and structurally adjustable metal-oxo clusters, polyoxometalates (POMs) based materials have been extensively applied as a catalysis in various valuable reactions. This review summarized recent progress in the application of POMs-based catalysts for various carbonylation reactions including (1). Carbonylation of olefins, (2). Carbonylation of formaldehyde, (3). Carbonylation of methanol or dimethyl ether, (4). Oxidative carbonylation of methane, (5). Oxidative carbonylation of phenol and (6). Reductive carbonylation of nitrobenzene. A brief perspective on POMs-based catalysts for the carbonylation reactions is proposed.
Collapse
Affiliation(s)
- Xuehua Zhang
- Yancheng Teachers University, School of Chemical and Environmental Engineering, No. 2 Hope Avenue South Road, Yancheng, 224007, China
| | - Dechang Tang
- CNSG ANHUI HONG SIFANG CO., LTD, No. 1084 Jinzhai South Road, Hefei, 230000, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| | - Yanwei Cao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
4
|
Fablet P, Fernandez-Martinez MD, Spannenberg A, Jiao H, Jackstell R, Beller M. Highly (regio)selective hydroformylation of olefins using self-assembling phosphines. Org Biomol Chem 2024; 22:5850-5855. [PMID: 38962995 DOI: 10.1039/d4ob00714j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
New phosphines with self-assembling 6-pyridinone moities were prepared, characterized, and examined in the hydroformylation of diverse olefins. Testing various known and novel ligands in the presence of [Rh(acac)(CO)2] under industrially relevant conditions, the hydroformylation of 1-octene proceeds best with 6,6'-(phenylphosphanediyl)bis(pyridin-2(1H)-one) (DPONP). Control experiments and modelling studies indicate dimerization of this ligand at higher temperatures (>100 °C). The optimal catalyst system is able to conserve high product linearity (>90%) for a broad range of olefins at industrially-employed temperatures at low ligand loading.
Collapse
Affiliation(s)
- Pierre Fablet
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | | | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| |
Collapse
|
5
|
Huai M, Chen L, Dong W, Wang W, Qin Z, Dai K, Li Y, Zhang X, Tao C. Copper-catalyzed syn-hydroformylation of alkynes with silanes and N, N-dimethylformamide dimethylacetal. Org Biomol Chem 2024; 22:5385-5392. [PMID: 38869462 DOI: 10.1039/d4ob00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A copper-catalyzed syn-hydrocarbonization of internal alkynes with N,N-dimethylformamide dimethylacetal and silanes has been disclosed that offers an efficient and expedient access to (E)-α,β-unsaturated aldehydes. This highly selective process, which can be performed at gram-scale, enjoys operational simplicity, as well as syngas-free conditions.
Collapse
Affiliation(s)
- Menglin Huai
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Long Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wei Dong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Weijie Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Zhen Qin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Kaifeng Dai
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yuan Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xiulian Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Chuanzhou Tao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Province Engineering Research Center of Visible Light Catalytic Materials, Lianyungang Technical College, Lianyungang 222000, China
| |
Collapse
|
6
|
Liu J, Zhang Y, Peng C. Recent Advances Hydrogenation of Carbon Dioxide to Light Olefins over Iron-Based Catalysts via the Fischer-Tropsch Synthesis. ACS OMEGA 2024; 9:25610-25624. [PMID: 38911759 PMCID: PMC11191082 DOI: 10.1021/acsomega.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.
Collapse
Affiliation(s)
- Jiangtao Liu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Yongchun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Chong Peng
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| |
Collapse
|
7
|
Garhwal S, Dong Y, Mai BK, Liu P, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Formal Hydroformylation of Vinyl Arenes. J Am Chem Soc 2024; 146:13733-13740. [PMID: 38723265 PMCID: PMC11439487 DOI: 10.1021/jacs.4c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity. The acetal products could be converted to the corresponding aldehydes, alcohols, and amines with full preservation of the enantiomeric purity. Density functional theory studies support that the key C-C bond-forming event between the alkyl copper intermediate and the oxocarbenium electrophile takes place with inversion of configuration of the Cu-C bond in a backside SE2-type mechanism.
Collapse
Affiliation(s)
- Subhash Garhwal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Zhang X, Yan T, Hou H, Yin J, Wan H, Sun X, Zhang Q, Sun F, Wei Y, Dong M, Fan W, Wang J, Sun Y, Zhou X, Wu K, Yang Y, Li Y, Cao Z. Regioselective hydroformylation of propene catalysed by rhodium-zeolite. Nature 2024; 629:597-602. [PMID: 38658762 DOI: 10.1038/s41586-024-07342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.
Collapse
Affiliation(s)
- Xiangjie Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaming Hou
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Junqing Yin
- Institute of Advanced Study, Chengdu University, Chengdu, China
| | - Hongliu Wan
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
| | - Xiaodong Sun
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Qing Zhang
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Jianguo Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Zhang S, Li Z, Qi H, Zhao Y, Tang Y, Liu A, Pu M, Lei M. Theoretical study on hydroformylation catalyzed by cationic cobalt(II) complexes. Dalton Trans 2024; 53:6660-6666. [PMID: 38525801 DOI: 10.1039/d4dt00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Hydroformylation is one of the most important homogeneous reactions in industrial production. Herein, a density functional theory (DFT) method was employed to investigate two proposed reaction mechanisms of hydroformylation catalyzed by cationic cobalt(II) complexes, the carbonyl dissociative mechanism and the associative mechanism. The calculated results showed that the heterolytic H2 activation is the rate-determining step for both the dissociative mechanism and the associative mechanism, with energy barriers of 26.8 kcal mol-1 and 40.5 kcal mol-1, respectively. Meanwhile, the regioselectivity, the spin multiplicity of the catalyst and the substituent effects on the reaction were also investigated. The most stable cobalt(II) catalyst has a doublet state and the linear aldehyde is the dominant product. In addition, it was found that the energy barrier of the reaction decreased when the electron density of the Co center of the catalyst was increased by changing the ligand. The catalytic activity of the catalyst was proposed to be the best when the PEt2 group of the ligand is replaced by the P(tBu)2 group. This study might not only provide new insights for hydroformylation catalyzed by cobalt but also facilitate theory-guided design of novel transition metal catalysts for hydroformylation.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hexiang Qi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Rare Earth Materials Chemistry, College of Chemistry, Peking University, Beijing 100871, China
| | - Yanhui Tang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Anqi Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Pu Z, Zhao J, Yin H, Zhao J, Ma X, Zeng J. Efficient Interfacial Sites between Metallic and Oxidized Cobalt for Propene Hydroformylation. NANO LETTERS 2024; 24:852-858. [PMID: 38051031 DOI: 10.1021/acs.nanolett.3c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Currently, the hydroformylation of short olefins is operated almost exclusively by using Rh catalysts. Considering the high cost and scarcity of rhodium resources, it is important to develop non-noble metal catalysts toward hydroformylation. Herein, we report an efficient cobalt-based catalyst rich in interfacial sites between metallic and oxidized cobalt species for the hydroformylation of short olefin, propene, under a moderate syngas pressure. The catalyst exhibited a high specific activity of 252 mol molCo-1 h-1 in toluene under 2 bar of propene and 40 bar of CO/H2 mixed gas (CO/H2 = 1:1) at 160 °C. According to mechanistic studies, the interface of metallic and oxidized cobalt species promoted the adsorption of CO and propene. Moreover, the interfacial sites lowered the energy barrier for CO* hydrogenation and C-C coupling compared with metallic cobalt.
Collapse
Affiliation(s)
- Zhengtian Pu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haibin Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jin Zhao
- Department of Physics, ICQD/Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xinlong Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
11
|
Yan X, Chen L, Wei H, Liu T, Li K, Li J. Enhancing stability via confining Rh-P species in ZIF-8 for hydroformylation of 1-octene. Dalton Trans 2023; 52:13955-13961. [PMID: 37728511 DOI: 10.1039/d3dt02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The stability of Rh-based heterogeneous catalysts is a key issue in the hydroformylation of olefins. Confinement of active Rh species has been considered an effective strategy to achieve stable catalysts. In this work, a phosphine ligand was successfully confined in ZIF-8 material and coordinated with Rh metal by a reduction procedure to develop an efficient and stable Rh-based catalyst for hydroformylation of 1-octene. The results indicate that the catalyst reduced at 300 °C under H2 atmosphere exhibits better stability than that with NaBH4 as reductant and undoped P catalyst. Various characterization studies demonstrate that the superior performance is due to the strong interaction between Rh metal and P, which inhibits the leaching of active Rh species. This work reveals an effective strategy for the synthesis of highly stable catalysts for use in the hydroformylation reaction.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Tiantian Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Kairui Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
12
|
Ren W, Huang J, Shi Y. Pd-Catalyzed Regioselective Hydroformylation of Olefins with HCO 2H and Its Derivatives. Org Lett 2023; 25:7176-7180. [PMID: 37755340 DOI: 10.1021/acs.orglett.3c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An effective Pd-catalyzed regioselective hydroformylation process with N-formylsaccharin or 2,4,6-trichlorophenyl formate along with formic acid is described. Linear aldehydes can be obtained in up to 83% yield and >20:1 l/b ratio. The reaction is operationally simple without the need for external CO and H2.
Collapse
Affiliation(s)
- Wenlong Ren
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Jinzi Huang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
13
|
Liu Y, Liu Z, Hui Y, Wang L, Zhang J, Yi X, Chen W, Wang C, Wang H, Qin Y, Song L, Zheng A, Xiao FS. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson's catalyst for hydroformylation of olefins. Nat Commun 2023; 14:2531. [PMID: 37137908 PMCID: PMC10156763 DOI: 10.1038/s41467-023-38181-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Hydroformylation is one of the largest industrially homogeneous processes that strongly relies on catalysts with phosphine ligands such as the Wilkinson's catalyst (triphenylphosphine coordinated Rh). Heterogeneous catalysts for olefin hydroformylation are highly desired but suffer from poor activity compared with homogeneous catalysts. Herein, we demonstrate that rhodium nanoparticles supported on siliceous MFI zeolite with abundant silanol nests are very active for hydroformylation, giving a turnover frequency as high as ~50,000 h-1 that even outperforms the classical Wilkinson's catalyst. Mechanism study reveals that the siliceous zeolite with silanol nests could efficiently enrich olefin molecules to adjacent rhodium nanoparticles, enhancing the hydroformylation reaction.
Collapse
Affiliation(s)
- Yifeng Liu
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiqiang Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Liang Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianfeng Yi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chengtao Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
De Leon E, Gonzalez F, Bauskar P, Gonzalez-Eymard S, De Los Santos D, Shoshani MM. Amplifying Reactivity of Metal Hydrides: A Heterotrimetallic NiAl 2(μ 2-H) 2 Catalyst for the Dearomatization of N-Heterocycles. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Edgardo De Leon
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Fernando Gonzalez
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Preetika Bauskar
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Sergio Gonzalez-Eymard
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - David De Los Santos
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| | - Manar M. Shoshani
- Department of Chemistry, University of Texas Rio Grande Valley, 1 W. University Blvd. Brownsville, Texas 78520, United States
| |
Collapse
|
15
|
Shahid N, Singh RK, Srivastava N, Singh AK. Base-free synthesis of benchtop stable Ru(III)-NHC complexes from RuCl 3·3H 2O and their use as precursors for Ru(II)-NHC complexes. Dalton Trans 2023; 52:4176-4185. [PMID: 36892246 DOI: 10.1039/d3dt00243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of Ru(III)-NHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1a-c), have been prepared, starting from RuCl3·3H2O following a base-free route. The Lewis acidic Ru(III) centre operates via a halide-assisted, electrophilic C-H activation for carbene generation. The best results were obtained with azolium salts having the I- anion, while ligand precursors with Cl-, BF4-, and PF6- gave no complex formation and those with Br- gave a product with mixed halides. The structurally simple, air and moisture-stable complexes represent rare examples of paramagnetic Ru(III)-NHC complexes. Furthermore, these benchtop stable Ru(III)-NHC complexes were shown to be excellent metal precursors for the synthesis of new [RuII(PyNHCR)(Cl)2(PPh3)2] (2a-c) and [RuII(PyNHCR)(CNCMe)I]PF6 (3a-c) complexes. All the complexes have been characterised using spectroscopic methods, and the structures of 1a, 1b, 2c, and 3a have been determined using the single-crystal X-ray diffraction technique. This work allows easy access to new Ru-NHC complexes for the study of new properties and novel applications.
Collapse
Affiliation(s)
- Nida Shahid
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Rahul Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Navdeep Srivastava
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
16
|
Liu D, Yang K, Fang D, Li SJ, Lan Y, Chen Y. Formyl Radical Generation from α-Chloro N-Methoxyphthalimides Enables Selective Aldehyde Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213686. [PMID: 36342432 DOI: 10.1002/anie.202213686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/09/2022]
Abstract
The aldehydes installation by radical formylation constitutes an attractive synthetic strategy. However, the generation of formyl radicals for organic synthesis applications remains unknown. Herein we report the first formyl radical generation from α-chloro N-methoxyphthalimides, which selectively synthesize aldehydes by alkene hydroformylation under mild photoredox conditions. The aldehydes can be installed on acrylates, acrylamides, vinyl sulfones, vinyl ketones, and complex steroids by radical hydroformylation in excellent chemoselectivity and regioselectivity. The concerted hydrochloride elimination for the formyl radical generation from α-chloro methoxy radicals is established by experimental and computational approaches.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Kai Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Di Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
17
|
Ranjan P, Saptal VB, Bera JK. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. CHEMSUSCHEM 2022; 15:e202201183. [PMID: 36036640 DOI: 10.1002/cssc.202201183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The inevitable emission of carbon dioxide (CO2 ) due to the burning of a substantial amount of fossil fuels has led to serious energy and environmental challenges. Metal-based catalytic CO2 transformations into commodity chemicals are a favorable approach in the CO2 mitigation strategy. Among these transformations, selective hydrogenation of CO2 to methanol is the most promising process that not only fulfils the energy demands but also re-balances the carbon cycle. The investigation of CO2 adsorption on the surface of heterogeneous catalyst is highly important because the formation of various intermediates which determines the selectivity of product. Transition metal carbides (TMCs) have received considerable attention in recent years because of their noble metal-like reactivity, ceramic-like properties, high chemical and thermal stability. These features make them excellent catalytic materials for a variety of transformations such as CO2 adsorption and its conversion into value-added chemicals. Herein, the catalytic properties of TMCs are summarize along with synthetic methods, CO2 binding modes, mechanistic studies, effects of dopant on CO2 adsorption, and carbon/metal ratio in the CO2 hydrogenation reaction to methanol using computational as well as experimental studies. Additionally, this Review provides an outline of the challenges and opportunities for the development of potential TMCs in CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Prabodh Ranjan
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B Saptal
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
18
|
Syntheses and Applications of Symmetrical Dinuclear Half-Sandwich Ruthenium(II)–Dipicolinamide Complexes as Catalysts in the Transfer Hydrogenation of Ketones. INORGANICS 2022. [DOI: 10.3390/inorganics10110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The treatment of [Ru(η6-p-cymene)Cl2]2 with N,N’-(1,2-phenylene)dipicolinamide (H2L1) afforded the double salt complex [{Ru(η6-p-cymene)2-µ-Cl}L1][Ru(η6-p-cymene)Cl3], (Ru1) in moderate yields. Separately, the reactions of ligands (H2L1), N,N’-(4,5 dimethyl-1,2-phenylene)dipicolinamide (H2L2), and N,N’-(4-methoxy-1,2-phenylene)dipicolinamide (H2L3) with the [Ru(η6-p-cymene)Cl2]2 in the presence of KPF6 afforded the respective dinuclear half-sandwich Ru(II) complexes [{(Ru(η6-p-cymene)2--µ-Cl}L1][PF6] (Ru2), [{(Ru(η6-p-cymene)2-µ-Cl}L2][PF6] (Ru3), and [{(Ru(η6-p-cymene)2-µ-Cl}L3][PF6] (Ru4). NMR and FT-IR spectroscopies, ESI-MS spectrometry, and elemental analyses were used to establish the molecular structures of the new dinuclear ruthenium(II) complexes. Single crystal X-ray crystallography was used to confirm the piano-stool geometry of the dinuclear complexes Ru1 and Ru4, as containing N^N chelated ligand and bridging chlorido ligands in each Ru(II) atom. The complexes (Ru1-Ru4) showed good catalytic activities at low catalyst concentrations of 0.005 mol% in the transfer hydrogenation of a wide range of ketone substrates.
Collapse
|
19
|
Zhou Y, Qin JL, Xu W, Yu ZX. Total Synthesis of Clovan-2,9-dione via [3 + 2 + 1] Cycloaddition and Hydroformylation/Aldol Reaction. Org Lett 2022; 24:5902-5906. [PMID: 35939530 DOI: 10.1021/acs.orglett.2c02111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report the total synthesis of clovan-2,9-dione via Rh-catalyzed [3 + 2 + 1] cycloaddition/hydroformylation/aldol reaction. The [3 + 2 + 1] reaction of 1-yne-vinylcyclopropane and CO was used for the generation of a 5/6 bicyclic skeleton with a bridgehead vinyl group. The hydroformylation reaction converted the congested olefin of the [3 + 2 + 1] cycloadduct to a one-carbon elongated aldehyde, which underwent in situ aldol reaction, with the carbonyl group in the [3 + 2 + 1] cycloadduct, to generate the tricyclic bridged-ring skeleton of the target molecule.
Collapse
Affiliation(s)
- Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jun-Long Qin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wenbo Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Fraser DAX, Turner ZR, Cooper RT, Buffet JC, Green JC, O'Hare D. Multimetallic Permethylpentalene Hydride Complexes. Inorg Chem 2022; 61:12207-12218. [PMID: 35878422 PMCID: PMC9367693 DOI: 10.1021/acs.inorgchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of group 4 permethylpentalene (Pn* = C8Me6) hydride complexes are explored; in all cases, multimetallic hydride clusters were obtained. Group 4 lithium metal hydride clusters were obtained when reacting the metal dihalides with hydride transfer reagents such as LiAlH4, and these species featured an unusual hexagonal bipyramidal structural motif. Only the zirconium analogue was found to undergo hydride exchange in the presence of deuterium. In contrast, a trimetallic titanium hydride cluster was isolated on reaction of the titanium dialkyl with hydrogen. This diamagnetic, mixed valence species was characterized in the solid state, as well as by solution electron paramagnetic resonance and nuclear magnetic resonance spectroscopy. The structure was further probed and corroborated by density functional theory calculations, which illustrated the formation of a metal-cluster bonding orbital responsible for the diamagnetism of the complex. These permethylpentalene hydride complexes have divergent structural motifs and reactivity in comparison with related classical cyclopentadienyl analogues.
Collapse
Affiliation(s)
- Duncan A X Fraser
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zoë R Turner
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert T Cooper
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jean-Charles Buffet
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jennifer C Green
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Dermot O'Hare
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
21
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
Affiliation(s)
- T R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - D S Verdoorn
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - P Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - E Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - B U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R V A Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
| |
Collapse
|
22
|
Highly regioselective tandem hydroformylation of substituted styrene using Iminophosphine rhodium complex immobilized on carbon. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide-Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202116406. [PMID: 35170175 DOI: 10.1002/anie.202116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/10/2022]
Abstract
Isobutanal is a high value bulk material that, in principle, could be produced with 100 % atom-economy by isoselective hydroformylation of propylene with syngas. However, leading industrial Rh- and Co-catalyzed hydroformylation methods preferentially form n-butanal over the iso-product, and methods offering isoselectivity remain underdeveloped. Here we report an iodide-assisted Pd-catalyzed hydroformylation of propylene that produces isobutanal with unprecedented levels of selectivity. The method involves PdI2 , simple alkyl monophosphines, such as tricyclohexylphosphine, and common green solvents, enabling the title reaction to occur with isoselectivity in up to 50 : 1 iso/n product ratios under industrially relevant conditions (80-120 °C). The catalytic and preliminary mechanistic experiments indicate a key role of the iodide anions in both the catalytic activity and the isoselectivity.
Collapse
Affiliation(s)
- Michel Sigrist
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Yang Zhang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Cyril Antheaume
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
24
|
Yang B, Lu S, Wang Y, Zhu S. Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nat Commun 2022; 13:1858. [PMID: 35388000 PMCID: PMC8986794 DOI: 10.1038/s41467-022-29556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gaseous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two cascade transformations follow. One involves a double addition for the formation of 1,4-diketones and the other where the intermediate vinyl ketone is intercepted by a radical formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are also created in two mechanistically distinct ways: one via a C-H abstraction and the other via protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into fine chemicals and expands the utility of acetylene in organic synthesis. Although acetylene is an ideal two-carbon building block, very few catalytic methods can be applied to incorporate acetylene into fine chemicals. Here, the authors show photoredox-catalyzed syntheses of C2- linked molecules with gaseous acetylene under mild conditions.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shaodong Lu
- Singfar Laboratories, Guangzhou, 510670, China
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
25
|
Escobar-Bedia FJ, Lopez-Haro M, Calvino JJ, Martin-Diaconescu V, Simonelli L, Perez-Dieste V, Sabater MJ, Concepción P, Corma A. Active and Regioselective Ru Single-Site Heterogeneous Catalysts for Alpha-Olefin Hydroformylation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco Javier Escobar-Bedia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Miguel Lopez-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - Jose Juan Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - Vlad Martin-Diaconescu
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Virginia Perez-Dieste
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Maria J. Sabater
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
26
|
|
27
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide‐Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michel Sigrist
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Yang Zhang
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
28
|
Gao P, Ke M, Ru T, Liang G, Chen FE. Synthesis of rac- α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
|
30
|
Shen C, Dong K, Wei Z, Tian X. In Silico Investigation of Ligand-Regulated Palladium-Catalyzed Formic Acid Dehydrative Decomposition under Acidic Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chaoren Shen
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhihong Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
31
|
Affiliation(s)
- Naofumi Hara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Semba
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
32
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
33
|
Zhang J, Li J, Li K, Zhao J, Yang Z, Zong L, Chen J, Xie CX, Zhao XX, Jia X. A heterogeneous Rh/CPOL-BINAPa&PPh 3 catalyst for hydroformylation of olefins: chemical and DFT insights into active species and the roles of BINAPa and PPh 3. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00370h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable Rh/CPOL-BINAPa&PPh3 catalyst was used for heterogeneous hydroformylation of olefins, affording the corresponding linear aldehydes with excellent regioselectivities and high TON values. The active Rh–H species were studied in detail.
Collapse
Affiliation(s)
- Jinrong Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kechao Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jinyu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhengyi Yang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Cong-Xia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiu-Xiu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
34
|
Timmermann C, Thiem P, Wanitschke D, Hüttenschmidt M, Romischke J, Villinger A, Seidel WW. Migratory insertion of isocyanide into a ketenyl-tungsten bond as key step in cyclization reactions. Chem Sci 2021; 13:123-132. [PMID: 35059160 PMCID: PMC8694283 DOI: 10.1039/d1sc06149f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
Treatment of the side-on tungsten alkyne complex of ethinylethyl ether [Tp*W(CO)2(η2-C,C'-HCCOCH2CH3)]+ {Tp* = hydridotris(3,4,5-trimethylpyrazolyl)borate} (2a) with n-Bu4NI afforded the end-on ketenyl complex [Tp*W(CO)2(κ1-HCCO)] (4a). This formal 16 ve complex bearing the prototype of a ketenyl ligand is surprisingly stable and converts only under activation by UV light or heat to form a dinuclear complex [Tp*2W2(CO)4(μ-CCH2)] (6). The ketenyl ligand in complex 4a underwent a metal template controlled cyclization reaction upon addition of isocyanides. The oxametallacycles [Tp*W(CO)2{κ2-C,O-C(NHXy)C(H)C(Nu)O}] {Nu = OMe (7), OEt (8), N(i-Pr)2 (9), OH (10), O1/2 (11)} were formed by coordination of Xy-NC (Xy = 2,6-dimethylphenyl) at 4a and subsequent migratory insertion (MI) into the W-ketenyl bond. The resulting intermediate is susceptible to addition reactions with protic nucleophiles. Compounds 2a-PF6, 4a/b, and 7-11 were fully characterized including XRD analysis. The cyclization mechanism has been confirmed both experimentally and by DFT calculations. In cyclic voltammetry, complexes 7-9 are characterized by a reversible W(ii)/W(iii) redox process. The dinuclear complex 11 however shows two separated redox events. Based on cyclic voltammetry measurements with different conducting electrolytes and IR spectroelectrochemical (SEC) measurements the W(ii)/W(iii) mixed valent complex 11+ is assigned to class II in terms of the Robin-Day classification.
Collapse
Affiliation(s)
- Christopher Timmermann
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Paula Thiem
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Dominik Wanitschke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Johanna Romischke
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a D-18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a D-18059 Rostock Germany
| |
Collapse
|
35
|
Püschel S, Störtte S, Topphoff J, Vorholt AJ, Leitner W. Green Process Design for Reductive Hydroformylation of Renewable Olefin Cuts for Drop-In Diesel Fuels. CHEMSUSCHEM 2021; 14:5226-5234. [PMID: 34145781 PMCID: PMC9291018 DOI: 10.1002/cssc.202100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Indexed: 06/12/2023]
Abstract
CO2 -neutral fuels are a way to cleaner and more sustainable mobility. Utilization of bio-syngas via Fischer-Tropsch (FT) synthesis represents an interesting route for the production of tailormade biofuels. Recent developments in FT catalyst research led to olefin-enriched products, enabling the synthesis of alcohol-enriched fuels by reductive hydroformylation of the C=C bond. Several alcohols have already proven to be suitable fuel additives with favorable combustion behavior. Here, a hydroformylation-hydrogenation sequence of FT-olefin-paraffin mixtures was investigated as a potential route to alcohols. A liquid-liquid biphasic system with a rhodium/3,3',3''-phosphanetriyltris(benzenesulfonic acid) trisodium salt (TPPTS) catalyst system was chosen for effective catalyst recycling. After optimizing reaction conditions with a model substrate consisting of 1-octene and n-heptane the conversion of an actual olefin-containing C5 -C10 FT product fraction to alcohols in continuously operated processes for 37 h was achieved with a total turnover number of 23679.
Collapse
Affiliation(s)
- Sebastian Püschel
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Sven Störtte
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Johanna Topphoff
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Andreas J. Vorholt
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Walter Leitner
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH AachenWorringerweg 252074AachenGermany
| |
Collapse
|
36
|
Abstract
AbstractHydroformylation is one of the most important homogeneously catalyzed reactions on an industrial scale. The manufacture of bulk chemicals clearly dominates. Large cobalt- and rhodium-based processes are mature technologies that have been developed over the past 80 years. Meanwhile, the potential of hydroformylation for the production of fine chemicals (perfumes, pharmaceuticals) has also been recognized. This review gives insight into the state-of-the-art of the reaction and its development. It commences with some remarks on the accidental discovery by the German chemist Otto Roelen within the historical and personal framework of the Fischer–Tropsch process, followed by the mechanistic basics of the catalytic cycle, metals used for the catalyst as well as their organic ligands. In addition, the stability of ligands and catalysts is addressed. The huge potential of this transformation is demonstrated using a variety of substrates. Finally, the use of some surrogates for syngas is discussed.
Collapse
|
37
|
Li Y, Zhao Z, Lu W, Jiang M, Li C, Zhao M, Gong L, Wang S, Guo L, Lyu Y, Yan L, Zhu H, Ding Y. Highly Selective Conversion of Syngas to Higher Oxygenates over Tandem Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihui Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Wei Lu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Miao Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cunyao Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Min Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Leifeng Gong
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shiyi Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| | - Luyao Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| | - Yuan Lyu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| |
Collapse
|
38
|
Mao Z, Xie Z, Chen JG. Comparison of Heterogeneous Hydroformylation of Ethylene and Propylene over RhCo 3/MCM-41 Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongtian Mao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jingguang G. Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
39
|
Ru T, Liang G, Zhang L, Ning Y, Chen F. Linear Selective Hydroformylation of 2‐Arylpropenes Using Water‐Soluble Rh‐PNP Complex: Straightforward Access to 3‐Aryl‐Butyraldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Guanfeng Liang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Luyun Zhang
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| |
Collapse
|
40
|
Zhang Y, Sigrist M, Dydio P. Palladium‐Catalyzed Hydroformylation of Alkenes and Alkynes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Zhang
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Michel Sigrist
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
41
|
Omosun NN, Smith GS. Monometallic and bimetallic sulfonated Rh(I) complexes: Synthesis and evaluation as recyclable hydroformylation catalysts. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Wang J, Fu X, Yan N, Zhang Y. Molecular Design of 3D Porous Carbon Framework via One-Step Organic Synthesis. CHEMSUSCHEM 2021; 14:3806-3809. [PMID: 34263532 DOI: 10.1002/cssc.202101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
A new practical method for construction of 3D porous carbon was developed through molecular design via one-step synthesis from commercially available carbon tetrabromide and bis(trimethylsilyl)acetylene on a gram-scale, and the obtained porous carbon has a well-defined sp1 -sp3 all-carbon structure (C13 ), high stability, and high surface area.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
| | - Xinpu Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
| |
Collapse
|
43
|
Yuvaraj K, Jones C. Reductive coupling of CO with magnesium anthracene complexes: formation of magnesium enediolates. Chem Commun (Camb) 2021; 57:9224-9227. [PMID: 34519307 DOI: 10.1039/d1cc03890g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two β-diketiminato-magnesium anthracene complexes, [{(ArNacnac)Mg}2(μ-C14H10)] (ArNacnac = [HC(MeCNAr)2]-, Ar = mesityl (Mes) or 2,6-diethylphenyl (Dep)) react with 1 atm. CO at room temperature to give tetra-magnesium enediolate complexes [{(ArNacnac)Mg}4(O2C16H10)2] via coupling of two molecules of CO with the anthracenediyl fragment. Similarly, reaction of magnesium anthracene, [Mg(THF)3(C14H10)], with CO afforded a low isolated yield of a tetra-magnesium complex bearing both dianthraceneylenediolate and dibenzocyclohepteneolateyl ligands. The presented reactions represent very rare examples of magnesium alkyl carbonylations that occur under mild conditions, and in the absence of catalysts.
Collapse
Affiliation(s)
- K Yuvaraj
- School of Chemistry, PO Box 23, Monash Uniersity, VIC, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, PO Box 23, Monash Uniersity, VIC, 3800, Australia.
| |
Collapse
|
44
|
Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Belkova NV, Filippov OA, Osipova ES, Safronov SV, Epstein LM, Shubina ES. Influence of phosphine (pincer) ligands on the transition metal hydrides reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Huang N, Liu B, Lan X, Yan B, Wang T. Promotion of diphosphine ligands (PPh2(CH2) PPh2, n = 1, 2, 3, 5, 6) for supported Rh/SiO2 catalysts in heterogeneous ethene hydroformylation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Tay DWP, Nobbs JD, Aitipamula S, Britovsek GJP, van Meurs M. Directing Selectivity to Aldehydes, Alcohols, or Esters with Diphobane Ligands in Pd-Catalyzed Alkene Carbonylations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dillon W. P. Tay
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Jurong Island, Singapore 627833
| | - James D. Nobbs
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Jurong Island, Singapore 627833
| | - Srinivasulu Aitipamula
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Jurong Island, Singapore 627833
| | - George J. P. Britovsek
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Martin van Meurs
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Jurong Island, Singapore 627833
| |
Collapse
|
48
|
Tewari T, Kumar R, Chandanshive AC, Chikkali SH. Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account. CHEM REC 2021; 21:1182-1198. [PMID: 33734560 DOI: 10.1002/tcr.202100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023]
Abstract
Metal-catalyzed hydroformylation and hydrogenation heavily rely on ligands, among which phosphorous ligands play a pivotal role. This personal account presents a selection of three distinct classes of phosphorous ligands, namely, monodentate meta-substituted phosphinites, bis-phosphites, and P-chiral supramolecular phosphines, developed in our group. The synthesis of these ligands, isolation, characterization, and their performance in transition metal-catalyzed hydroformylation, isomerizing hydroformylation, and asymmetric hydrogenation of olefins is summarized. The state of the art development in iron-catalyzed hydroformylation of alkenes and our contributions to the field is discussed. Use of phosphines enabled iron-catalyzed hydroformylation of alkenes under mild conditions. Thus, this account demonstrates the central role of phosphorus ligands in industrially relevant transformations such as hydrogenation and hydroformylation. The seemingly matured field of ligand discovery still holds significant potential and will steer the field of homogeneous catalysis.
Collapse
Affiliation(s)
- Tanuja Tewari
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rohit Kumar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Amol C Chandanshive
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Samir H Chikkali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| |
Collapse
|
49
|
Alsalahi W, Trzeciak A. Rhodium-catalyzed hydroformylation under green conditions: Aqueous/organic biphasic, “on water”, solventless and Rh nanoparticle based systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Abstract
Formic acid (HCOOH) as an inexpensive and versatile reagent has gained broad
attention in the field of green synthesis and chemical industry. Formic acid acts not only as a
convenient and less toxic CO surrogate, but also as an excellent formylative reagent, C1
source and hydrogen donor in organic reactions. Over the past decades, many exciting contributions
have been made which have helped chemists to understand the mechanisms of these
reactions. The review will examine recent advances in the utilization of formic acid as an
economical, practical and multipurpose reactant in synthetic transformations.
Collapse
Affiliation(s)
- Xiao-Hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Su-qian Cai
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Bing Xie
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|