1
|
Kaltsoyannis N, Kerridge A. Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry. Nat Rev Chem 2024; 8:701-712. [PMID: 39174633 DOI: 10.1038/s41570-024-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
One of the most intensely studied areas of f-block chemistry is the nature of the bonds between the f-element and another species, and in particular the role played by covalency. Computational quantum chemical methods have been at the forefront of this research for decades and have a particularly valuable role, given the radioactivity of the actinide series. The very strong agreement that has recently emerged between theory and the results of a range of spectroscopic techniques not only facilitates deeper insight into the experimental data, but it also provides confidence in the conclusions from the computational studies. These synergies are shining new light on the nature of the f element-other element bond.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, The University of Lancaster, Lancaster, UK.
| |
Collapse
|
2
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Quantifying Actinide-Carbon Bond Covalency in a Uranyl-Aryl Complex Utilizing Solution 13C NMR Spectroscopy. Inorg Chem 2024; 63:9427-9433. [PMID: 37788299 DOI: 10.1021/acs.inorgchem.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Reaction of [UO2Cl2(THF)2]2 with in situ generated LiFmes (FmesH = 1,3,5-(CF3)3C6H3) in Et2O resulted in the formation of the uranyl aryl complexes [Li(THF)3][UO2(Fmes)3] ([Li(THF)3][1]) and [Li(Et2O)3(THF)][UO2(Fmes)3] ([Li(Et2O)3(THF)][1]) in good to moderate yields after crystallization from hexanes and Et2O, respectively. Both complexes were characterized by X-ray crystallography and NMR spectroscopy. DFT calculations reveal that the Cispo resonance in [1]- exhibits a deshielding of 51 ppm from spin-orbit coupling effects originating at uranium, which indicates an appreciable covalency in the U-C bonding interaction.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Hertler PR, Yu X, Brower JD, Nguyen TAD, Wu G, Autschbach J, Hayton TW. Exploring Spin-Orbit Effects in a [Cu 6Tl] + Nanocluster Featuring an Uncommon Tl-H Interaction. Chemistry 2024; 30:e202400390. [PMID: 38381600 DOI: 10.1002/chem.202400390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Jordan D Brower
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Thuy-Ai D Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| |
Collapse
|
6
|
Baker CF, Seed JA, Adams RW, Lee D, Liddle ST. 13C carbene nuclear magnetic resonance chemical shift analysis confirms Ce IV[double bond, length as m-dash]C double bonding in cerium(iv)-diphosphonioalkylidene complexes. Chem Sci 2023; 15:238-249. [PMID: 38131084 PMCID: PMC10732143 DOI: 10.1039/d3sc04449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Diphosphonioalkylidene dianions have emerged as highly effective ligands for lanthanide and actinide ions, and the resulting formal metal-carbon double bonds have challenged and developed conventional thinking about f-element bond multiplicity and covalency. However, f-element-diphosphonioalkylidene complexes can be represented by several resonance forms that render their metal-carbon double bond status unclear. Here, we report an experimentally-validated 13C Nuclear Magnetic Resonance computational assessment of two cerium(iv)-diphosphonioalkylidene complexes, [Ce(BIPMTMS)(ODipp)2] (1, BIPMTMS = {C(PPh2NSiMe3)2}2-; Dipp = 2,6-diisopropylphenyl) and [Ce(BIPMTMS)2] (2). Decomposing the experimental alkylidene chemical shifts into their corresponding calculated shielding (σ) tensor components verifies that these complexes exhibit Ce[double bond, length as m-dash]C double bonds. Strong magnetic coupling of Ce[double bond, length as m-dash]C σ/π* and π/σ* orbitals produces strongly deshielded σ11 values, a characteristic hallmark of alkylidenes, and the largest 13C chemical shift tensor spans of any alkylidene complex to date (1, 801 ppm; 2, 810 ppm). In contrast, the phosphonium-substituent shielding contributions are much smaller than the Ce[double bond, length as m-dash]C σ- and π-bond components. This study confirms significant Ce 4f-orbital contributions to the Ce[double bond, length as m-dash]C bonding, provides further support for a previously proposed inverse-trans-influence in 2, and reveals variance in the 4f spin-orbit contributions that relate to the alkylidene hybridisation. This work thus confirms the metal-carbon double bond credentials of f-element-diphosphonioalkylidenes, providing quantified benchmarks for understanding diphosphonioalkylidene bonding generally.
Collapse
Affiliation(s)
- Cameron F Baker
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
7
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
8
|
Nguyen TH, Paul EL, Lukens WW, Hayton TW. Evaluating f-Orbital Participation in the U V═E Multiple Bonds of [U(E)(NR 2) 3] (E = O, NSiMe 3, NAd; R = SiMe 3). Inorg Chem 2023; 62:6447-6457. [PMID: 37053543 DOI: 10.1021/acs.inorgchem.3c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The reaction of 1 equiv of 1-azidoadamantane with [UIII(NR2)3] (R = SiMe3) in Et2O results in the formation of [UV(NR2)3(NAd)] (1, Ad = 1-adamantyl) in good yields. The electronic structure of 1, as well as those of the related U(V) complexes, [UV(NR2)3(NSiMe3)] (2) and [UV(NR2)3(O)] (3), were analyzed with EPR spectroscopy, SQUID magnetometry, NIR-visible spectroscopy, and crystal field modeling. This analysis revealed that, within this series of complexes, the steric bulk of the E2- (E═O, NR) ligand is the most important factor in determining the electronic structure. In particular, the increasing steric bulk of this ligand, on moving from O2- to [NAd]2-, results in increasing U═E distances and E-U-Namide angles. These changes have two principal effects on the resulting electronic structure: (1) the increasing U═E distances decreases the energy of the fσ orbital, which is primarily σ* with respect to the U═E bond, and (2) the increasing E-U-Namide angles increases the energy of fδ, due to increasing antibonding interactions with the amide ligands. As a result of the latter change, the electronic ground state for complexes 1 and 2 is primarily fφ in character, whereas the ground state for complex 3 is primarily fδ.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Edward L Paul
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Assessing the 4f Orbital Participation in the Ln–C Bonds of [Li(THF) 4][Ln(C 6Cl 5) 4] (Ln = La, Ce). Inorg Chem 2022; 61:15138-15143. [DOI: 10.1021/acs.inorgchem.2c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Kent G, Yu X, Wu G, Autschbach J, Hayton TW. Ring-opening of a Thorium Cyclopropenyl Complex Generates a Transient Thorium-bound Carbene. Chem Commun (Camb) 2022; 58:6805-6808. [DOI: 10.1039/d2cc01780f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Cp3ThCl] with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [Cp3Th(3,3-diphenylcyclopropenyl)] (1), in good yields. Thermolysis of 1 results in isomerization to the ring-opened product, [Cp3Th(3-phenyl-1H-inden-1-yl)]...
Collapse
|
11
|
Maria L, Bandeira NAG, Marçalo J, Santos IC, Ferreira ASD, Ascenso JR. Experimental and Computational Study of a Tetraazamacrocycle Bis(aryloxide) Uranyl Complex and of the Analogues {E═U═NR} 2+ (E = O and NR). Inorg Chem 2021; 61:346-356. [PMID: 34898186 DOI: 10.1021/acs.inorgchem.1c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction of [U(κ6-{(t-Bu2ArO)2Me2-cyclam})I][I] (H2{(t-Bu2ArO)2Me2-cyclam} = 1,8-bis(2-hydroxy-3,5-di-tert-butyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane) with 2 equiv of NaNO2 in acetonitrile results in the isolation of the uranyl complex [UO2{(t-Bu2ArO)2Me2-cyclam}] (3) in 31% yield, which was fully characterized, including by single-crystal X-ray diffraction. Density functional theory (DFT) computations were performed to evaluate and compare the level of covalency within the U═E bonds in 3 and in the analogous trans-bis(imido) [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(NPh)2] (1) and trans-oxido-imido [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(NPh)] (2) complexes. Natural bond orbital (NBO) analysis allowed us to determine the mixing covalency parameter λ, showing that in 2, where both U-Ooxido and U-Nimido bonds are present, the U-Nimido bond registers more covalency with regard to 1, and the opposite is seen for U-Ooxido with respect to 3. However, the covalency driven by orbital overlap in the U-Nimido bond is slightly higher in 1 than in 2. The 15N-labeled complexes [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(15NPh)2] (1-15N) and [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(15NPh)] (2-15N) were prepared and analyzed by solution 15N NMR spectroscopy. The calculated and experimental 15N chemical shifts are in good agreement, displaying the same trend of δN (1-15N) > δN (2-15N) and reveal that the 15N chemical shift may serve as a probe for the covalency of the U═NR bond.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Nuno A G Bandeira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Ana S D Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José R Ascenso
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1000-049 Lisboa, Portugal
| |
Collapse
|
12
|
Kent GT, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and electronic structure analysis of the actinide allenylidenes, [{(NR 2) 3}An(CCCPh 2)] - (An = U, Th; R = SiMe 3). Chem Sci 2021; 12:14383-14388. [PMID: 34880989 PMCID: PMC8580070 DOI: 10.1039/d1sc04666g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
The reaction of [AnCl(NR2)3] (An = U, Th, R = SiMe3) with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [{(NR2)3}An(CH[double bond, length as m-dash]C[double bond, length as m-dash]CPh2)] (An = U, 1; Th, 2) in good yields after work-up. Deprotonation of 1 or 2 with LDA/2.2.2-cryptand results in formation of the anionic allenylidenes, [Li(2.2.2-cryptand)][{(NR2)3}An(CCCPh2)] (An = U, 3; Th, 4). The calculated 13C NMR chemical shifts of the Cα, Cβ, and Cγ nuclei in 2 and 4 nicely reproduce the experimentally assigned order, and exhibit a characteristic spin-orbit induced downfield shift at Cα due to involvement of the 5f orbitals in the Th-C bonds. Additionally, the bonding analyses for 3 and 4 show a delocalized multi-center character of the ligand π orbitals involving the actinide. While a single-triple-single-bond resonance structure (e.g., An-C[triple bond, length as m-dash]C-CPh2) predominates, the An[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CPh2 resonance form contributes, as well, more so for 3 than for 4.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
13
|
Kent GT, Yu X, Pauly C, Wu G, Autschbach J, Hayton TW. Synthesis of Parent Acetylide and Dicarbide Complexes of Thorium and Uranium and an Examination of Their Electronic Structures. Inorg Chem 2021; 60:15413-15420. [PMID: 34585570 DOI: 10.1021/acs.inorgchem.1c02064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reaction of [AnCl(NR2)3] (An = U or Th; R = SiMe3) with NaCCH and tetramethylethylenediamine (TMEDA) results in the formation of [An(C≡CH)(NR2)3] (1, An = U; 2, An = Th), which can be isolated in good yields after workup. Similarly, the reaction of 3 equiv of NaCCH and TMEDA with [AnCl(NR2)3] results in the formation of [Na(TMEDA)][An(C≡CH)2(NR2)3] (4, An = U; 5, An = Th), which can be isolated in fair yields after workup. The reaction of 1 with 2 equiv of KC8 and 1 equiv of 2.2.2-cryptand in tetrahydrofuran results in formation of the uranium(III) acetylide complex [K(2.2.2-cryptand)][U(C≡CH)(NR2)3] (3). Thermolysis of 1 or 2 results in formation of the bimetallic dicarbide complexes [{An(NR2)3}2(μ,η1:η1-C2)] (6, An = U; 7, An = Th), whereas the reaction of 1 with [Th{N(R)(SiMe2CH2)}(NR2)2] results in the formation of [U(NR2)3(μ,η1:η1-C2)Th(NR2)3] (8). The 13C NMR chemical shifts of the α-acetylide carbon atoms in 2, 5, and 7 exhibit a characteristic spin-orbit-induced downfield shift, due to participation of the 5f orbitals in the Th-C bonds. Magnetism measurements demonstrate that 6 displays weak ferromagnetic coupling between the uranium(IV) centers (J = 1.78 cm-1).
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Christophe Pauly
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, Münster 48149, Germany
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Du J, Seed JA, Berryman VEJ, Kaltsoyannis N, Adams RW, Lee D, Liddle ST. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat Commun 2021; 12:5649. [PMID: 34561448 PMCID: PMC8463702 DOI: 10.1038/s41467-021-25863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
16
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Homoleptic Perchlorophenyl "Ate" Complexes of Thorium(IV) and Uranium(IV). Inorg Chem 2021; 60:12436-12444. [PMID: 34328317 DOI: 10.1021/acs.inorgchem.1c01686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reaction of AnCl4(DME)n (An = Th, n = 2; U, n = 0) with 5 equiv of LiC6Cl5 in Et2O resulted in the formation of homoleptic actinide-aryl "ate" complexes [Li(DME)2(Et2O)]2[Li(DME)2][Th(C6Cl5)5]3 ([Li][1]) and [Li(Et2O)4][U(C6Cl5)5] ([Li][2]). Similarly, the reaction of AnCl4(DME)n (An = Th, n = 2; U, n = 0) with 3 equiv of LiC6Cl5 in Et2O resulted in the formation of heteroleptic actinide-aryl "ate" complexes [Li(DME)2(Et2O)][Li(Et2O)2][ThCl3(C6Cl5)3] ([Li][3]) and [Li(Et2O)3][UCl2(C6Cl5)3] ([Li][4]). Density functional calculations show that the An-Cipso σ-bonds are considerably more covalent for the uranium complexes vs the thorium analogues, in line with past results. Additionally, good agreement between experiment and calculations is obtained for the 13Cipso NMR chemical shifts in [Li][1] and [Li][3]. The calculations demonstrate a deshielding by ca. 29 ppm from spin-orbit coupling effects originating at Th, which is a direct consequence of 5f orbital participation in the Th-C bonds.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Réant BLL, Berryman VEJ, Basford AR, Nodaraki LE, Wooles AJ, Tuna F, Kaltsoyannis N, Mills DP, Liddle ST. 29Si NMR Spectroscopy as a Probe of s- and f-Block Metal(II)-Silanide Bond Covalency. J Am Chem Soc 2021; 143:9813-9824. [PMID: 34169713 DOI: 10.1021/jacs.1c03236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Annabel R Basford
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lydia E Nodaraki
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
18
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and Characterization of Two Uranyl-Aryl "Ate" Complexes. Chemistry 2021; 27:5885-5889. [PMID: 33270947 DOI: 10.1002/chem.202005078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/10/2022]
Abstract
Reaction of [UO2 Cl2 (THF)3 ] with 3 equivalents of LiC6 Cl5 in Et2 O resulted in the formation of first uranyl aryl complex [Li(Et2 O)2 (THF)][UO2 (C6 Cl5 )3 ] ([Li][1]) in good yields. Subsequent dissolution of [Li][1] in THF resulted in conversion into [Li(THF)4 ][UO2 (C6 Cl5 )3 (THF)] ([Li][2]), also in good yields. DFT calculations reveal that the U-C bonds in [Li][1] and [Li][2] exhibit appreciable covalency. Additionally, the 13 C NMR chemical shifts for their Cipso environments are strongly affected by spin-orbit coupling-a consequence of 5f orbital participation in the U-C bonds.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
19
|
Panetti GB, Sergentu DC, Gau MR, Carroll PJ, Autschbach J, Walsh PJ, Schelter EJ. Isolation and characterization of a covalent Ce IV-Aryl complex with an anomalous 13C chemical shift. Nat Commun 2021; 12:1713. [PMID: 33731719 PMCID: PMC7969749 DOI: 10.1038/s41467-021-21766-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
The synthesis of bona fide organometallic CeIV complexes is a formidable challenge given the typically oxidizing properties of the CeIV cation and reducing tendencies of carbanions. Herein, we report a pair of compounds comprising a CeIV - Caryl bond [Li(THF)4][CeIV(κ2-ortho-oxa)(MBP)2] (3-THF) and [Li(DME)3][CeIV(κ2-ortho-oxa)(MBP)2] (3-DME), ortho-oxa = dihydro-dimethyl-2-[4-(trifluoromethyl)phenyl]-oxazolide, MBP2- = 2,2'-methylenebis(6-tert-butyl-4-methylphenolate), which exhibit CeIV - Caryl bond lengths of 2.571(7) - 2.5806(19) Å and strongly-deshielded, CeIV - Cipso 13C{1H} NMR resonances at 255.6 ppm. Computational analyses reveal the Ce contribution to the CeIV - Caryl bond of 3-THF is ~12%, indicating appreciable metal-ligand covalency. Computations also reproduce the characteristic 13C{1H} resonance, and show a strong influence from spin-orbit coupling (SOC) effects on the chemical shift. The results demonstrate that SOC-driven deshielding is present for CeIV - Cipso 13C{1H} resonances and not just for diamagnetic actinide compounds.
Collapse
Affiliation(s)
- Grace B Panetti
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael R Gau
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Carroll
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Eric J Schelter
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Kretzschmar J, Tsushima S, Drobot B, Steudtner R, Schmeide K, Stumpf T. Trimeric uranyl(vi)-citrate forms Na +, Ca 2+, and La 3+ sandwich complexes in aqueous solution. Chem Commun (Camb) 2020; 56:13133-13136. [PMID: 33006343 DOI: 10.1039/d0cc05460g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
M. Basile, et al., Chem. Commun., 2015, 51, 5306-5309, showed that a sodium ion is sandwiched by uranyl(vi) oxygen atoms of two 3 : 3 uranyl(vi)-citrate complex molecules in single-crystals. By means of NMR spectroscopy supported by DFT calculations we provide unambiguous evidence for this complex to persist in aqueous solution above a critical concentration of 3 mM uranyl citrate. Unprecedented Ca2+ and La3+ coordination by a bis-(η3-uranyl(vi)-oxo) motif advances the understanding of uranium's aqueous chemistry. As determined from 17O NMR, Ca2+ and more distinctly La3+ cause strong O[double bond, length as m-dash]U[double bond, length as m-dash]O polarization, which opens up new ways for uranyl(vi)-oxygen activation and functionalization.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstr. 400, 01328 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Dračínský M, Vícha J, Bártová K, Hodgkinson P. Towards Accurate Predictions of Proton NMR Spectroscopic Parameters in Molecular Solids. Chemphyschem 2020; 21:2075-2083. [PMID: 32691463 DOI: 10.1002/cphc.202000629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/20/2020] [Indexed: 12/18/2022]
Abstract
The factors contributing to the accuracy of quantum-chemical calculations for the prediction of proton NMR chemical shifts in molecular solids are systematically investigated. Proton chemical shifts of six solid amino acids with hydrogen atoms in various bonding environments (CH, CH2 , CH3 , OH, SH and NH3 ) were determined experimentally using ultra-fast magic-angle spinning and proton-detected 2D NMR experiments. The standard DFT method commonly used for the calculations of NMR parameters of solids is shown to provide chemical shifts that deviate from experiment by up to 1.5 ppm. The effects of the computational level (hybrid DFT functional, coupled-cluster calculation, inclusion of relativistic spin-orbit coupling) are thoroughly discussed. The effect of molecular dynamics and nuclear quantum effects are investigated using path-integral molecular dynamics (PIMD) simulations. It is demonstrated that the accuracy of the calculated proton chemical shifts is significantly better when these effects are included in the calculations.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo nám. 2, Prague, CZ-16610, Czech Republic
| | - Jan Vícha
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo nám. 2, Prague, CZ-16610, Czech Republic.,Centre of Polymer Systems, Tomas Bata University in Zlín, Tomáše Bati 5678, Zlín, CZ-760 01, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo nám. 2, Prague, CZ-16610, Czech Republic
| | - Paul Hodgkinson
- Department of Chemistry, Durham University, South Road, DH1 3LE, Durham, UK
| |
Collapse
|
22
|
Vı́cha J, Novotný J, Komorovsky S, Straka M, Kaupp M, Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table. Chem Rev 2020; 120:7065-7103. [DOI: 10.1021/acs.chemrev.9b00785] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Vı́cha
- Centre of Polymer Systems, Tomas Bata University in Zlı́n, tř. Tomáše Bati 5678, CZ-76001 Zlı́n, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czechia
| | - Martin Kaupp
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
23
|
Kent GT, Murillo J, Wu G, Fortier S, Hayton TW. Coordination of Uranyl to the Redox-Active Calix[4]pyrrole Ligand. Inorg Chem 2020; 59:8629-8634. [PMID: 32492338 DOI: 10.1021/acs.inorgchem.0c01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reaction of [Li(THF)]4[L] (L = Me8-calix[4]pyrrole]) with 0.5 equiv of [UVIO2Cl2(THF)2]2 results in formation of the oxidized calix[4]pyrrole product, [Li(THF)]2[LΔ] (1), concomitant with formation of reduced uranium oxide byproducts. Complex 1 can also be generated by reaction of [Li(THF)]4[L] with 1 equiv of I2. We hypothesize that formation of 1 proceeds via formation of a highly oxidizing cis-uranyl intermediate, [Li]2[cis-UVIO2(calix[4]pyrrole)]. To test this hypothesis, we explored the reaction of 1 with either 0.5 equiv of [UVIO2Cl2(THF)2]2 or 1 equiv of [UVIO2(OTf)2(THF)3], which affords the isostructural uranyl complexes, [Li(THF)][UVIO2(LΔ)Cl(THF)] (2) and [Li(THF)][UVIO2(LΔ)(OTf)(THF)] (3), respectively. In the solid state, 2 and 3 feature unprecedented uranyl-η5-pyrrole interactions, making them rare examples of uranyl organometallic complexes. In addition, 2 and 3 exhibit some of the smallest O-U-O angles reported to date (2: 162.0(7) and 162.7(7)°; 3: 164.5(5)°). Importantly, the O-U-O bending observed in these complexes suggests that the oxidation of [Li(THF)]4[L] does indeed occur via an unobserved cis-uranyl intermediate.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jesse Murillo
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Vícha J, Švec P, Růžičková Z, Samsonov MA, Bártová K, Růžička A, Straka M, Dračínský M. Experimental and Theoretical Evidence of Spin‐Orbit Heavy Atom on the Light Atom
1
H NMR Chemical Shifts Induced through H⋅⋅⋅I
−
Hydrogen Bond. Chemistry 2020; 26:8698-8702. [DOI: 10.1002/chem.202001532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Jan Vícha
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
- Centre of Polymer SystemsTomas Bata University in Zlín Tomáše Bati 5678 Zlín 760 01 Czech Republic
| | - Petr Švec
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Maksim A. Samsonov
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| |
Collapse
|
25
|
Maity AK, Ward RJ, Rupasinghe DMRYP, Zeller M, Walensky JR, Bart SC. Organometallic Uranyl Complexes Featuring a Carbodicarbene Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab K. Maity
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Réant BLL, Berryman VEJ, Seed JA, Basford AR, Formanuik A, Wooles AJ, Kaltsoyannis N, Liddle ST, Mills DP. Polarised covalent thorium(iv)– and uranium(iv)–silicon bonds. Chem Commun (Camb) 2020; 56:12620-12623. [DOI: 10.1039/d0cc06044e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report thorium- and uranium–silicon bonds in structurally analogous complexes with surprisingly similar actinide–silicon bonding regimes.
Collapse
Affiliation(s)
- Benjamin L. L. Réant
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | | | - John A. Seed
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Annabel R. Basford
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Alasdair Formanuik
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Ashley J. Wooles
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Stephen T. Liddle
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - David P. Mills
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
27
|
Cowie BE, Purkis JM, Austin J, Love JB, Arnold PL. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [UVIO2]2+. Chem Rev 2019; 119:10595-10637. [DOI: 10.1021/acs.chemrev.9b00048] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bradley E. Cowie
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jamie M. Purkis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jonathan Austin
- National Nuclear Laboratory, Chadwick House,
Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Polly L. Arnold
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
28
|
Staun SL, Sergentu DC, Wu G, Autschbach J, Hayton TW. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem Sci 2019; 10:6431-6436. [PMID: 31367305 PMCID: PMC6615217 DOI: 10.1039/c9sc01960j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 01/29/2023] Open
Abstract
The first isolable molecular thorium nitride, [(NR2)3Th(μ-N)Th(NR2)3]–, was synthesized by reaction of [Th{N(R)(SiMe2)CH2}(NR2)2] with NaNH2 and characterized by X-ray crystallography, 15N NMR spectroscopy, and DFT calculations.
Reaction of the thorium metallacycle, [Th{N(R)(SiMe2)CH2}(NR2)2] (R = SiMe3) with 1 equiv. of NaNH2 in THF, in the presence of 18-crown-6, results in formation of the bridged thorium nitride complex, [Na(18-crown-6)(Et2O)][(R2N)3Th(μ-N)(Th(NR2)3] ([Na][1]), which can be isolated in 66% yield after work-up. Complex [Na][1] is the first isolable molecular thorium nitride complex. Mechanistic studies suggest that the first step of the reaction is deprotonation of [Th{N(R)(SiMe2)CH2}(NR2)2] by NaNH2, which results in formation of the thorium bis(metallacycle) complex, [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)], and NH3. NH3 then reacts with unreacted [Th{N(R)(SiMe2)CH2}(NR2)2], forming [Th(NR2)3(NH2)] (2), which protonates [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)] to give [Na][1]. Consistent with hypothesis, addition of excess NH3 to a THF solution of [Th{N(R)(SiMe2)CH2}(NR2)2] results in formation of [Th(NR2)3(NH2)] (2), which can be isolated in 51% yield after work-up. Furthermore, reaction of [K(DME)][Th{N(R)(SiMe2CH2)}2(NR2)] with 2, in THF-d8, results in clean formation of [K][1], according to 1H NMR spectroscopy. The electronic structures of [1]– and 2 were investigated by 15N NMR spectroscopy and DFT calculations. This analysis reveals that the Th–Nnitride bond in [1]– features more covalency and a greater degree of bond multiplicity than the Th–NH2 bond in 2. Similarly, our analysis indicates a greater degree of covalency in [1]–vs. comparable thorium imido and oxo complexes.
Collapse
Affiliation(s)
- Selena L Staun
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Guang Wu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Jochen Autschbach
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| |
Collapse
|
29
|
Mullane KC, Hrobárik P, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. 13C NMR Shifts as an Indicator of U-C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. Inorg Chem 2019; 58:4152-4163. [PMID: 30848588 DOI: 10.1021/acs.inorgchem.8b03175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of uranium(VI)-acetylide complexes of the general formula UVI(O)(C≡C-C6H4-R)[N(SiMe3)2]3, with variation of the para substituent (R = NMe2, OMe, Me, Ph, H, Cl) on the aryl(acetylide) ring, was prepared. These compounds were analyzed by 13C NMR spectroscopy, which showed that the acetylide carbon bound to the uranium(VI) center, U- C≡C-Ar, was shifted strongly downfield, with δ(13C) values ranging from 392.1 to 409.7 ppm for Cl and NMe2 substituted complexes, respectively. These extreme high-frequency 13C resonances are attributed to large negative paramagnetic (σpara) and relativistic spin-orbit (σSO) shielding contributions, associated with extensive U(5f) and C(2s) orbital contributions to the U-C bonding in title complexes. The trend in the 13C chemical shift of the terminal acetylide carbon is opposite that observed in the series of parent (aryl)acetylenes, due to shielding effects of the para substituent. The 13C chemical shifts of the acetylide carbon instead correlate with DFT computed U-C bond lengths and corresponding QTAIM delocalization indices or Wiberg bond orders. SQUID magnetic susceptibility measurements were indicative of the Van Vleck temperature independent paramagnetism (TIP) of the uranium(VI) complexes, suggesting a magnetic field-induced mixing of the singlet ground-state (f0) of the U(VI) ion with low-lying (thermally inaccessible) paramagnetic excited states (involved also in the perturbation-theoretical treatment of the unusually large paramagnetic and SO contributions to the 13C shifts). Thus, together with reported data, we demonstrate that the sensitive 13C NMR shifts serve as a direct, simple, and accessible measure of uranium(VI)-carbon bond covalency.
Collapse
Affiliation(s)
- Kimberly C Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences , Comenius University , SK-84215 Bratislava , Slovakia.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
30
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
31
|
Assefa MK, Pedrick EA, Wakefield ME, Wu G, Hayton TW. Oxidation of the 14-Membered Macrocycle Dibenzotetramethyltetraaza[14]annulene upon Ligation to the Uranyl Ion. Inorg Chem 2018; 57:8317-8324. [DOI: 10.1021/acs.inorgchem.8b00966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikiyas K. Assefa
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Elizabeth A. Pedrick
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Megan E. Wakefield
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Rungthanaphatsophon P, Huang P, Walensky JR. Phosphorano-Stabilized Carbene Complexes with Short Thorium(IV)– and Uranium(IV)–Carbon Bonds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
33
|
Cobb PJ, Moulding DJ, Ortu F, Randall S, Wooles AJ, Natrajan LS, Liddle ST. Uranyl-tri-bis(silyl)amide Alkali Metal Contact and Separated Ion Pair Complexes. Inorg Chem 2018; 57:6571-6583. [DOI: 10.1021/acs.inorgchem.8b00715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Philip J. Cobb
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David J. Moulding
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Fabrizio Ortu
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Simon Randall
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashley J. Wooles
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Louise S. Natrajan
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen T. Liddle
- Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
34
|
Vícha J, Komorovsky S, Repisky M, Marek R, Straka M. Relativistic Spin–Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained. J Chem Theory Comput 2018; 14:3025-3039. [DOI: 10.1021/acs.jctc.8b00144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Vícha
- Center of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati, 5678, CZ-76001, Zlín, Czech Republic
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Michal Repisky
- Center for Theoretical and Computational Chemistry, Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic
| |
Collapse
|
35
|
|
36
|
Pindwal A, Yan K, Patnaik S, Schmidt BM, Ellern A, Slowing II, Bae C, Sadow AD. Homoleptic Trivalent Tris(alkyl) Rare Earth Compounds. J Am Chem Soc 2017; 139:16862-16874. [PMID: 28991458 DOI: 10.1021/jacs.7b09521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe2)3}3 (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI3THFn and 3 equiv of KC(SiHMe2)3. X-ray diffraction studies reveal 1a-d are isostructural, pseudo-C3-symmetric molecules that contain two secondary Ln↼HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe2)3}3 and DFT calculations. The Ln↼HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activation parameters for the exchange process in 1a (ΔH⧧ = 8.2(4) kcal·mol-1; ΔS⧧ = -1(2) cal·mol-1K-1) and 1a-d9 (ΔH⧧ = 7.7(3) kcal·mol-1; ΔS⧧ = -4(2) cal·mol-1K-1). Comparisons of lineshapes, rate constants (kH/kD), and slopes of ln(k/T) vs 1/T plots for 1a and 1a-d9 reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five β-Si-H⇀Ln and one γ-C-H⇀Ln. The calculations also suggest the pathway for Ln↼HSi/SiH exchange involves rotation of a single C(SiHMe2)3 ligand that is coordinated to the Ln center through the Ln-C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 °C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe2)3}3 and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(OxMe2)2) give {MeC(OxMe2)2}Ln{C(SiHMe2)3}2, and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).
Collapse
Affiliation(s)
- Aradhana Pindwal
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - KaKing Yan
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Smita Patnaik
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Bradley M Schmidt
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Arkady Ellern
- Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Igor I Slowing
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| | - Cheolbeom Bae
- Kumho Petrochemical R&D Center , Daejeon 34044, Republic of Korea
| | - Aaron D Sadow
- U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University , 1605 Gilman Hall, Ames, Iowa 50011, United States
| |
Collapse
|
37
|
Schöne S, Radoske T, März J, Stumpf T, Patzschke M, Ikeda-Ohno A. [UO2
Cl2
(phen)2
], a Simple Uranium(VI) Compound with a Significantly Bent Uranyl Unit (phen=1,10-phenanthroline). Chemistry 2017; 23:13574-13578. [DOI: 10.1002/chem.201703009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Schöne
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| | - Thomas Radoske
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| | - Juliane März
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| | - Michael Patzschke
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR); Institute of Resource Ecology; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
38
|
Greif AH, Hrobárik P, Kaupp M. Insights into trans-Ligand and Spin-Orbit Effects on Electronic Structure and Ligand NMR Shifts in Transition-Metal Complexes. Chemistry 2017; 23:9790-9803. [PMID: 28338246 DOI: 10.1002/chem.201700844] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 11/05/2022]
Abstract
Surprisingly general effects of trans ligands L on the ligand NMR shifts in third-row transition-metal complexes have been found by quasi-relativistic computations, encompassing 5d10 , 5d8 , and to some extent even 5d6 situations. Closer analysis, with emphasis on 1 H shieldings in a series of linear HAuI Lq complexes, reveals a dominance of spin-orbit (SO) effects, which can change sign from appreciably shielding for weak trans ligands to appreciably deshielding for ligands with strong trans influence. This may be traced back to increasing destabilization of a σ-type MO at scalar relativistic level, which translates into very different σ-/π-mixing if SO coupling is included. For the strongest trans ligands, the σ-MO may move above the highest occupied π-type MOs, thereby dramatically reducing strongly shielding contributions from predominantly π-type spinors. The effects of SO-mixing are in turn related to angular momentum admixture from atomic spinors at the metal center. These SO-induced trends hold for other nuclei and may also be used to qualitatively predict shifts in unknown complexes.
Collapse
Affiliation(s)
- Anja H Greif
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Hrobárik
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany.,Faculty of Natural Sciences, Comenius University, Department of Inorganic Chemistry, Mlynská dolina CH-2, 84215, Bratislava, Slovakia
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
39
|
Pedrick EA, Assefa MK, Wakefield ME, Wu G, Hayton TW. Uranyl Coordination by the 14-Membered Macrocycle Dibenzotetramethyltetraaza[14]annulene. Inorg Chem 2017; 56:6638-6644. [DOI: 10.1021/acs.inorgchem.7b00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth A. Pedrick
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Mikiyas K. Assefa
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Megan E. Wakefield
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Smiles DE, Wu G, Hrobárik P, Hayton TW. Synthesis, Thermochemistry, Bonding, and 13C NMR Chemical Shift Analysis of a Phosphorano-Stabilized Carbene of Thorium. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danil E. Smiles
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Peter Hrobárik
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 135, D-10623 Berlin, Germany
- Department
of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Trevor W. Hayton
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
41
|
Kiernicki JJ, Zeller M, Bart SC. Facile Reductive Silylation of UO 22+ to Uranium(IV) Chloride. Angew Chem Int Ed Engl 2016; 56:1097-1100. [PMID: 27990733 DOI: 10.1002/anie.201609838] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/19/2016] [Indexed: 11/08/2022]
Abstract
General reductive silylation of the UO22+ cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO2 X2 (L)2 (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R3 Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R3 SiO)2 UX2 (L)2 in high yields. Support is included for the key step in the process, reduction of UVI to UV . This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl4 or two equivalents of Me2 SiCl2 results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported.
Collapse
Affiliation(s)
- John J Kiernicki
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Chemistry, Youngstown State University, Youngstown, OH, 44555, USA
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
42
|
Kiernicki JJ, Zeller M, Bart SC. Facile Reductive Silylation of UO2
2+
to Uranium(IV) Chloride. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John J. Kiernicki
- H. C. Brown Laboratory, Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
- Department of Chemistry; Youngstown State University; Youngstown OH 44555 USA
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| |
Collapse
|
43
|
Pedrick EA, Hrobárik P, Seaman LA, Wu G, Hayton TW. Synthesis, structure and bonding of hexaphenyl thorium(IV): observation of a non-octahedral structure. Chem Commun (Camb) 2016; 52:689-92. [PMID: 26569166 DOI: 10.1039/c5cc08265j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the synthesis of the first structurally characterized homoleptic actinide aryl complexes, [Li(DME)3]2[Th(C6H5)6] (1) and [Li(THF)(12-crown-4)]2[Th(C6H5)6] (2), which feature an anion possessing a regular octahedral (1) or a severely distorted octahedral (2) geometry. The solid-state structure of 2 suggests the presence of pseudo-agostic ortho C-H···Th interactions, which arise from σ(C-H) → Th(5f) donation. The non-octahedral structure is also favoured in solution at low temperatures.
Collapse
Affiliation(s)
- Elizabeth A Pedrick
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Lani A Seaman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
44
|
Dau PD, Rios D, Gong Y, Michelini MC, Marçalo J, Shuh DK, Mogannam M, Van Stipdonk MJ, Corcovilos TA, Martens JK, Berden G, Oomens J, Redlich B, Gibson JK. Synthesis and Hydrolysis of Uranyl, Neptunyl, and Plutonyl Gas-Phase Complexes Exhibiting Discrete Actinide–Carbon Bonds. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong D. Dau
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Rios
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yu Gong
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maria C. Michelini
- Dipartimento
di Chimica, Università della Calabria, 87030 Arcavacata
di Rende, Italy
| | - Joaquim Marçalo
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mejdi Mogannam
- Skyline College, San Bruno, California 94066, United States
| | - Michael J. Van Stipdonk
- Department
of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Theodore A. Corcovilos
- Department
of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jonathan K. Martens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - John K. Gibson
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Vícha J, Marek R, Straka M. High-Frequency 13C and 29Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TlI and PbII: Decisive Role of Relativistic Effects. Inorg Chem 2016; 55:1770-81. [DOI: 10.1021/acs.inorgchem.5b02689] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Vícha
- Center of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati, 5678, CZ-76001, Zlín, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of
Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague, Czech Republic
| |
Collapse
|
46
|
Smiles DE, Wu G, Hrobárik P, Hayton TW. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners. J Am Chem Soc 2016; 138:814-25. [PMID: 26667146 DOI: 10.1021/jacs.5b07767] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(η(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (δ((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ∼3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier.
Collapse
Affiliation(s)
- Danil E Smiles
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
47
|
Greif AH, Hrobárik P, Autschbach J, Kaupp M. Giant spin–orbit effects on 1H and 13C NMR shifts for uranium(vi) complexes revisited: role of the exchange–correlation response kernel, bonding analyses, and new predictions. Phys Chem Chem Phys 2016; 18:30462-30474. [DOI: 10.1039/c6cp06129j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visiting the previously predicted giant spin–orbit-induced 1H and 13C shifts in U(vi) complexes with improved methodology retains the reported unusual shift ranges, provides better understanding of the observations and gives improved confidence in the predictions.
Collapse
Affiliation(s)
- Anja H. Greif
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Peter Hrobárik
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Martin Kaupp
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| |
Collapse
|
48
|
Casella G, Bagno A, Komorovsky S, Repisky M, Saielli G. Four-Component Relativistic DFT Calculations of 13
C Chemical Shifts of Halogenated Natural Substances. Chemistry 2015; 21:18834-40. [DOI: 10.1002/chem.201502252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/05/2022]
|
49
|
Liddle ST. The Renaissance of Non-Aqueous Uranium Chemistry. Angew Chem Int Ed Engl 2015; 54:8604-41. [PMID: 26079536 DOI: 10.1002/anie.201412168] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all-important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single-molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes.
Collapse
Affiliation(s)
- Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
50
|
|