1
|
Qi JC, Peng H, Xu ZK, Wang ZX, Tang YY, Liao WQ, Zou G, You YM, Xiong RG. Discovery of molecular ferroelectric catalytic annulation for quinolines. Nat Commun 2024; 15:6738. [PMID: 39112514 PMCID: PMC11306768 DOI: 10.1038/s41467-024-51106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ferroelectrics as emerging and attractive catalysts have shown tremendous potential for applications including wastewater treatment, hydrogen production, nitrogen fixation, and organic synthesis, etc. In this study, we demonstrate that molecular ferroelectric crystal TMCM-CdCl3 (TMCM = trimethylchloromethylammonium) with multiaxial ferroelectricity and superior piezoelectricity has an effective catalytic activity on the direct construction of the pharmacologically important substituted quinoline derivatives via one-pot [3 + 2 + 1] annulation of anilines and terminal alkynes by using N,N-dimethylformamide (DMF) as the carbon source. The recrystallized TMCM-CdCl3 crystals from DMF remain well ferroelectricity and piezoelectricity. Upon ultrasonic condition, periodic changes in polarization contribute to the release of free charges from the surface of the ferroelectric domains in nano size, which then quickly interacts with the substrates in the solution to trigger the pivotal redox process. Our work advances the molecular ferroelectric crystal as a catalytic route to organic synthesis, not only providing valuable direction for molecular ferroelectrics but also further enriching the executable range of ferroelectric catalysis.
Collapse
Affiliation(s)
- Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, People's Republic of China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
2
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Jiao R, Ren X, Li X, Sun S, Zhu H, Lin B, Hua H, Li D, He X. Divergent Synthesis of Quinolines: Exploiting the Duality of Free Radicals. Org Lett 2024; 26:51-56. [PMID: 38078673 DOI: 10.1021/acs.orglett.3c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we present a green scheme for the divergent synthesis of two polysubstituted quinolines from a singular substrate via exploiting free-radical duality. Photocatalytically generated imine radicals produce 3,4-disubstituted quinolines via a novel rearrangement in the presence of an inorganic base. Alternatively, they react in the presence of an organic base to furnish 2,3-disubstituted quinolines. Mechanism studies support the hypothesis that the electrophilic/nucleophilic bias of free radicals can be adjusted by altering the reaction conditions.
Collapse
Affiliation(s)
- Runwei Jiao
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| | - Xuhong Ren
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiheng Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| | - Shitao Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiming Hua
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhua He
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| |
Collapse
|
4
|
Wu Y, Zhang W, Ma S, Song C, Chang J. Copper-Catalyzed Synthesis of N-Fused Quinolines via C(sp 3)-H Activation-Radical Addition-Cyclization Cascade. J Org Chem 2023. [PMID: 38012068 DOI: 10.1021/acs.joc.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A novel copper-catalyzed cyclization reaction for the synthesis of pyrazolo[1,5-a]quinoline, triazolo[1,5-a]quinoline, and pyrrolo[1,2-a]quinoline derivatives is described. The process is initiated by di-tert-butyl peroxide-mediated C(sp3)-H activation to generate the α-functionalized radical, which supervenes a cascade radical addition/cyclization sequence to access the N-fused quinolines in good yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Yangang Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Zhang Z, Deng JT, Feng JY, Liang JY, Xu XT, Peng JB. Palladium Catalyzed Annulation of o-Iodo-Anilines with Propargyl Alcohols: Synthesis of Substituted Quinolines. J Org Chem 2023; 88:12054-12063. [PMID: 37507345 DOI: 10.1021/acs.joc.3c01451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A palladium catalyzed annulation of o-iodo-anilines with propargyl alcohols for the synthesis of substituted quinolines has been developed. The reaction tolerates diverse functional groups under mild conditions, providing direct access to 2,4-disubstituted quinolines from easily available starting materials. A broad range of 2,4-disubstituted quinolines were efficiently prepared in good to excellent yields.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jia-Yi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Yan Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
6
|
Diverse reactivity of the gem-difluorovinyl iodonium salt for direct incorporation of the difluoroethylene group into N- and O-nucleophiles. Commun Chem 2022; 5:167. [PMID: 36697903 PMCID: PMC9814539 DOI: 10.1038/s42004-022-00772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of gem-difluoroethylene compounds remains a difficult task in organic synthesis. Here, the direct difluoroethylation reactions of N- and O-nucleophiles including amides and acids were realized with a hypervalent iodine reagent: gem-difluorovinyl iodonium salt (DFVI). The reactions were accomplished via a neighbouring group rearrangement. The gem-difluorovinyl iodonium salt was found to display diverse reactivity due to its unique electronic effect and was applied to the incorporation of difluoroethylene group, including difluorovinylation of carboxylic acids, difluorovinylation and 1,3-cyclic fluorovinylation of amides and 1,1-cyclic difluoroethylation of amines.
Collapse
|
7
|
Synthesis of pyrimidine-6-carbonitriles, pyrimidin-5-ones, and tetrahydroquinoline-3-carbonitriles by new superb oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) catalyst via anomeric based oxidation. Sci Rep 2022; 12:19537. [PMID: 36376379 PMCID: PMC9663709 DOI: 10.1038/s41598-022-23956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) [(VO)TPP][(TCM)4] was designed, synthesized and characterized by various techniques such as FT-IR, EDX, SEM equipped with EDX mappings, CHN elemental analysis, ICP-OES, XRD, SEM, TEM, TGA, DTA, DRS, Kubelka-Munk function (Tauc's plot), and UV-Vis analyses. Then, [(VO)TPP][(TCM)4] was used as a benign and expedient catalyst for the synthesis of numerous heterocyclic compounds such as 5-amino-7-(aryl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 5-amino-7-(aryl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 7-(aryl)-7,12-dihydro-5H-isochromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidin-5-ones, and 4-(aryl)-2-(1H-indol-3-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitriles under solvent-free conditions at 100 °C via a cooperative geminal-vinylogous anomeric based oxidation.
Collapse
|
8
|
Design, development and applications of copper-catalyzed regioselective (4 + 2) annulations between diaryliodonium salts and alkynes. Commun Chem 2022; 5:145. [PMID: 36697744 PMCID: PMC9814649 DOI: 10.1038/s42004-022-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Diaryliodonium salts have been extensively applied in organic synthesis as aryl cation equivalents. However, in the electrophilic reactions with alkenes or alkynes, only the electrophilic carbon of the diaryliodonium salts was involved while the other part of the aryl ring was not utilized. Herein, a reaction pattern of diaryliodonium was reported as oxa-1,4-dipoles to undergo (4 + 2) cycloaddition reactions with alkynes. Broad spectrum of the two reaction partners could be utilized in this protocol, enabling an operationally simple, high yielding, and regioselective synthetic approach to isocoumarins. Particularly, good to excellent regioselectivities were achieved for the sterically unbiased unsymmetrical diaryl acetylenes, which was challenging for other transition metal-catalyzed processes. The reaction could be scaled up with the ideal 1:1 stoichiometry and the isocoumarin type natural products Oospolactone and Thunberginol A could be obtained in one or three steps through this methodology.
Collapse
|
9
|
Bao Z, Chen C. Efficient synthesis of cyclic imides by the tandem N-arylation-acylation and rearrangement reaction of cyanoesters with diaryliodonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Wang W, Wang Y. Copper-Catalyzed Chemo-, Regio-, and Stereoselective Multicomponent 1,2,3-Trifunctionalization of Internal Alkynes. Org Lett 2022; 24:1871-1875. [PMID: 35238207 DOI: 10.1021/acs.orglett.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the first diaryliodonium salts promoted multicomponent 1,2,3-trifunctionalization of alkynes, where both the acetylenic bond and the adjacent nonactivated propargylic C(sp3)-H bond were functionalized synergistically to generate α-arylated enones with high chemo-, regio-, and stereoselectivity. A broad spectrum of diaryliodonium salts and internal alkynes could be utilized in this protocol, and a diverse collection of highly substituted and stereochemically defined linear and cyclic complex structures could be elaborated from the enone products.
Collapse
Affiliation(s)
- Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
11
|
Niu Y, Cao CK, Ge C, Qu H, Chen C. The Pd-catalyzed synthesis of difluoroethyl and difluorovinyl compounds with a chlorodifluoroethyl iodonium salt (CDFI). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
You S, Ruan M, Lu C, Liu L, Weng Y, Yang G, Wang S, Alhumade H, Lei A, Gao M. Paired electrolysis enabled annulation for the quinolyl-modification of bioactive molecules. Chem Sci 2022; 13:2310-2316. [PMID: 35310496 PMCID: PMC8864700 DOI: 10.1039/d1sc06757e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
A paired electrolysis enabled cascade annulation that enables the efficient synthesis of highly functionalized quinoline-substituted bioactive molecules from readily available starting materials is reported. Using this methodology, two goals, namely, the direct synthesis of quinolines and the introduction of quinoline moieties to bioactive molecules, can be simultaneously achieved in one simple operation. The use of electroreduction for the activation of isatin, together with the further anodic oxidation of KI to catalytically result in a cascade annulation, highlight the unique possibilities associated with electrochemical activation methods. This transformation can tolerate a wide range of functional groups and can also be used as a functionalization tactic in pharmaceutical research as well as other areas.
Collapse
Affiliation(s)
- Shiqi You
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Mengyao Ruan
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Cuifen Lu
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Li Liu
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Yue Weng
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Guichun Yang
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences and the Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and the Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 Hubei P. R. China
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Meng Gao
- College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University Wuhan 430062 P. R. China
| |
Collapse
|
13
|
Liu L, Lin J, Pang M, Jin H, Yu X, Wang S. Photo-Thermo-Mechanochemical Approach to Synthesize Quinolines via Addition/Cyclization of Sulfoxonium Ylides with 2-Vinylanilines Catalyzed by Iron(II) Phthalocyanine. Org Lett 2022; 24:1146-1151. [PMID: 35112867 DOI: 10.1021/acs.orglett.1c04220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel photo-thermo-mechanochemical approach to assembling quinolines catalyzed by iron(II) phthalocyanine has been realized for the first time. This transformation features a cost-efficient catalytic system and operational simplicity, is free of solvent, and shows good substrate tolerance, providing a green alternative to existing thermal approaches. Mechanistic experiments demonstrate that the in-situ-formed secondary amine may be the key intermediate for the further cyclization/aromatization process.
Collapse
Affiliation(s)
- Luyao Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jingyang Lin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Mingxuan Pang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Huile Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaochun Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
14
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Yuan DF, Wang ZC, Geng RS, Ren GY, Wright JS, Ni SF, Li M, Wen LR, Zhang LB. Hypervalent iodine promoted the synthesis of cycloheptatrienes and cyclopropanes. Chem Sci 2022; 13:478-485. [PMID: 35126980 PMCID: PMC8729816 DOI: 10.1039/d1sc05429e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022] Open
Abstract
A new strategy is reported for intramolecular Buchner-type reactions using PIDA as a promotor. Traditionally, the Buchner reaction is achieved via Rh-carbenoids derived from RhII catalysts with diazo compounds. Herein, the first metal-free Buchner-type reaction to construct highly strained cycloheptatriene- and cyclopropane-fused lactams is presented. The advantage of these transformations is in their mild reaction conditions, simple operation, broad functional group compatibility and rapid synthetic protocol. In addition, scaled-up experiments and a series of follow-up synthetic procedures were performed to clarify the flexibility and practicability of this method. DFT calculations were carried out to clarify the mechanism. A new strategy is reported for intramolecular Buchner-type reactions using PIDA as a promotor.![]()
Collapse
Affiliation(s)
- Da-Fu Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zi-Chen Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Rui-Sen Geng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Guang-Yi Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey Guildford GU2 7XH Surrey UK
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| |
Collapse
|
16
|
Hess A, Guelen HC, Alandini N, Mourati A, Guersoy YC, Knochel P. Preparation of Polyfunctionalized Aromatic Nitriles from Aryl Oxazolines. Chemistry 2022; 28:e202103700. [PMID: 34766655 PMCID: PMC9300023 DOI: 10.1002/chem.202103700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/17/2022]
Abstract
A selective ortho,ortho'-functionalization of readily available aryl oxazolines by two successive magnesiations with sBu2 Mg in toluene followed by trapping reactions with electrophiles, such as (hetero)aryl iodides or bromides, iodine, tosyl cyanide, ethyl cyanoformate or allylic bromides (39 examples, 62-99 % yield) is reported. Treatment of these aryl oxazolines with excess oxalyl chloride and catalytic amounts of DMF (50 °C, 4 h) provided the corresponding nitriles (36 examples, 73-99 % yield). Conversions of these nitriles to valuable heterocycles are reported, and a tentative mechanism is proposed.
Collapse
Affiliation(s)
- A. Hess
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - H. C. Guelen
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - N. Alandini
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - A. Mourati
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Y. C. Guersoy
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - P. Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
17
|
Yan K, Liu M, Wen J, Liu X, Wang X, Sui X, Shang W, Wang X. Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. NEW J CHEM 2022. [DOI: 10.1039/d2nj00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
18
|
Liu X, Wang L, Han J. ortho-Nitro-substituted diaryliodonium salts enabled regioselective cyclization of arylcarboxylic acids toward 3,4-naphthocoumarins. Org Biomol Chem 2022; 20:8628-8632. [DOI: 10.1039/d2ob01783k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We herein report an efficient regioselective cascade of arylation and cyclization of arylcarboxylic acids via Pd(ii)-activation of both C–I and vicinal C–NO2 bonds of ortho-nitro-substituted diaryliodonium salts.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
20
|
Yang M, Jian Y, Zhang W, Sun H, Zhang G, Wang Y, Gao Z. Synthesis of quinolines via sequential addition and I 2-mediated desulfurative cyclization. RSC Adv 2021; 11:38889-38893. [PMID: 35493239 PMCID: PMC9044151 DOI: 10.1039/d1ra06976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient one-pot approach for the synthesis of quinolines from o-aminothiophenol and 1,3-ynone under mild conditions is disclosed. With the aid of ESI-MS analysis and parallel experiments, a three-step mechanism is proposed-a two-step Michael addition-cyclization condensation step leading to intermediate 1,5-benzothiazepine catalyzed by zirconocene amino acid complex Cp2Zr(η1-C9H10NO2)2, followed by I2-mediated desulfurative step.
Collapse
Affiliation(s)
- Mingming Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
- A School of Chemistry & Chemical Engineering, Xinjiang Normal University Urumqi 830054 P. R. China
| |
Collapse
|
21
|
Hu QQ, Gao YT, Sun JC, Gao JJ, Mu HX, Li YM, Zheng YN, Yang KR, Zhu YP. Iodine-imine Synergistic Promoted Povarov-Type Multicomponent Reaction for the Synthesis of 2,2'-Biquinolines and Their Application to a Copper/Ligand Catalytic System. Org Lett 2021; 23:9000-9005. [PMID: 34748354 DOI: 10.1021/acs.orglett.1c03546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient iodine-imine synergistic promoted Povarov-type multicomponent reaction was reported for the synthesis of a practical 2,2'-biquinoline scaffold. The tandem annulation has reconciled iodination, Kornblum oxidation, and Povarov aromatization, where the methyl group of the methyl azaarenes represents uniquely reactive input in the Povarov reaction. This method has broad substrate scope and mild conditions. Furthermore, these 2,2'-biquinoline derivatives had been directly used as bidentate ligands in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Qi-Qi Hu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ting Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jia-Chen Sun
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jing-Jing Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Hong-Xiao Mu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yi-Ming Li
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Ya-Nan Zheng
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Kai-Rui Yang
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| |
Collapse
|
22
|
Pan C, Wang L, Han J. Palladium‐Catalyzed Annulation of Arylbenzamides with Diaryliodonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
23
|
Yoo HS, Yang YS, Kim SL, Son SH, Jang YH, Shin JW, Kim NJ. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions. Chem Asian J 2021; 16:3469-3475. [PMID: 34494376 DOI: 10.1002/asia.202100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Aromatic N-heterocycle-fused scaffolds such as indoles and quinolines are important core structures found in various bioactive natural products and synthetic compounds. Recently, various dehydrogenation methods with the help of alkoxides, known to significantly promote dihydro- or tetrahydro-heterocycles to be oxidized, were developed for the heterocycle synthesis. However, these approaches are sometimes unsuitable due to resulting undesired side reactions such as reductive dehalogenation. Herein, expedient syntheses of 1H-indoles, quinolines, and 6-membered N-heterocycle-fused scaffolds from their hydrogenated forms through palladium(II)-catalyzed aerobic dehydrogenation under alkoxide-free conditions are reported. A total of 48 compounds were successfully synthesized with a wide range of functional groups including halogens (up to 99% yield). These methodologies provide facile routes for various privileged structures possessing aromatic N-heterocycles without the help of alkoxides, in highly efficient manners.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yo-Sep Yang
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
24
|
Ali S, Khan AT. An environmentally benign regioselective synthesis of 2-benzyl-4-arylquinoline derivatives using aryl amines, styrene oxides and aryl acetylenes. Org Biomol Chem 2021; 19:8772-8782. [PMID: 34591056 DOI: 10.1039/d1ob01699g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel and an expedient metal- and solvent-free synthesis of a wide variety of 2-benzyl-4-arylquinoline derivatives is described from readily available aryl amines, styrene oxides and aryl acetylenes in the presence of 10 mol% molecular iodine. This domino reaction occurs under metal- and solvent-free conditions at 120 °C, which avoids the usage of metal catalyst and as a consequence generation of metal waste. The salient features of this methodology are the use of simple starting materials, ease of handling, high regioselectivity, shorter reaction time, atom-economical, step-economical, the formation of one C-N and two C-C bonds and a wide range of functional groups tolerance.
Collapse
Affiliation(s)
- Saghir Ali
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu T Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
25
|
Liu Y, Wang C, Tong Y, Ling Y, Zhou C, Xiong B. Cascade Reaction of α, β‐Unsaturated Ketones and 2‐Aminoaryl Alcohols for the Synthesis of 3‐Acylquinolines by a Copper Nanocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuan Liu
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Chen Wang
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yixin Tong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yong Ling
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 People's Republic of China
| | - Biao Xiong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| |
Collapse
|
26
|
Zhou J, Bao Z, Wu P, Chen C. Preparation and Synthetic Application of Naproxen-Containing Diaryliodonium Salts. Molecules 2021; 26:3240. [PMID: 34071240 PMCID: PMC8198133 DOI: 10.3390/molecules26113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of naproxen-containing diaryliodonium salts has been realized from naproxen methyl ester and ArI(OH)OTs activated by trimethylsilyl trifluoromethanesulfonate (TMSOTf) in a solvent mixture comprising dichloromethane and 2,2,2-trifluoroethanol (TFE). Those iodonium salts have been successfully used in the functionalization of an aromatic ring of naproxen methyl ester, including fluorination, iodination, alkynylation, arylation, thiophenolation, and amination and esterification reactions. Moreover, further hydrolysis of the obtained 5-iodo-naproxen methyl ester afforded 5-iodo-naproxen.
Collapse
Affiliation(s)
- Jun Zhou
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529000, China;
| | - Zhiyuan Bao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Panpan Wu
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529000, China;
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China;
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Ali B, Khalid M, Asim S, Usman Khan M, Iqbal Z, Hussain A, Hussain R, Ahmed S, Ali A, Hussain A, Imran M, Assiri MA, Fayyaz ur Rehman M, Wang C, Lu C. Key Electronic, Linear and Nonlinear Optical Properties of Designed Disubstituted Quinoline with Carbazole Compounds. Molecules 2021; 26:2760. [PMID: 34067122 PMCID: PMC8125273 DOI: 10.3390/molecules26092760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (β) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.
Collapse
Affiliation(s)
- Bakhat Ali
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Zahid Iqbal
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Sarfraz Ahmed
- KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Akbar Ali
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (A.A.); (M.F.u.R.)
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | | | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
28
|
Cheng HC, Zhou L, Zhou X, Ma JL, Guo P, Zhang Y, Ji HB. Ligand-free copper-catalyzed direct amidation of diaryliodonium salts using nitriles as amidation reagents. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Sallio R, Payard PA, Pakulski P, Diachenko I, Fabre I, Berteina-Raboin S, Colas C, Ciofini I, Grimaud L, Gillaizeau I. Copper-catalyzed transformation of alkyl nitriles to N-arylacetamide using diaryliodonium salts. RSC Adv 2021; 11:15885-15889. [PMID: 35481165 PMCID: PMC9036411 DOI: 10.1039/d1ra02305e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
This work reports a simple and efficient method for the copper-catalyzed redox-neutral transformation of alkyl nitriles using eco-friendly diaryliodonium salts and leading to N-arylacetamides. The method features high efficiency, broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Romain Sallio
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| | - Pierre-Adrien Payard
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Paweł Pakulski
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| | - Iryna Diachenko
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| | - Indira Fabre
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Sabine Berteina-Raboin
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| | - Cyril Colas
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| | - Ilaria Ciofini
- Institute of Chemistry for Health and Life Sciences, I-CLeHS, Chimie ParisTech, PSL University, CNRS 75005 Paris France
| | - Laurence Grimaud
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS, Université d'Orléans rue de Chartres 45100 Orléans France
| |
Collapse
|
30
|
|
31
|
Kumar Mehra M, Malik M, Kumar B, Kumar D. Chemoselective Cu-catalyzed synthesis of diverse N-arylindole carboxamides, β-oxo amides and N-arylindole-3-carbonitriles using diaryliodonium salts. Org Biomol Chem 2021; 19:1109-1114. [PMID: 33434249 DOI: 10.1039/d0ob02247k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective copper-catalyzed synthesis of diverse N-arylindole-3-carboxamides, β-oxo amides and N-arylindole-3-carbonitriles from readily accessible indole-3-carbonitriles, α-cyano ketones and diaryliodonium salts has been developed. Diverse N-arylindole-3-carboxamides and β-oxo amides were successfully achieved in high yields under copper-catalyzed neutral reaction conditions, and the addition of an organic base (DIPEA) resulted in a completely different selectivity pattern to produce N-arylindole-3-carbonitriles. Moreover, the importance of the developed methodology was realized by the synthesis of indoloquinolones and N-((1H-indol-3-yl)methyl)aniline and by a single-step gram-scale synthesis of the naturally occurring cephalandole A analogue.
Collapse
Affiliation(s)
- Manish Kumar Mehra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Monika Malik
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
32
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
33
|
Zhang Y, Chen L, Shao Y, Zhang F, Chen Z, Lv N, Chen J, Li R. Palladium(ii)-catalyzed three-component tandem reactions: synthesis of multiply substituted quinolines. Org Chem Front 2021. [DOI: 10.1039/d0qo01179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The three-component tandem reaction of 2-aminobenzonitriles, arylboronic acids and ketones as available reagents allowing the synthesis of polysubstitution quinolines is reported.
Collapse
Affiliation(s)
- Yetong Zhang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
- College of Chemistry & Materials Engineering
| | - Lepeng Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Ningning Lv
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Renhao Li
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
| |
Collapse
|
34
|
Sun Y, Song J, Qin Q, Zhang E, Han Q, Yang S, Wang Z, Yue S, Dong D. Recent Progress in Radical Arylation Reaction with Diaryliodonium Salts under Photocatalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Yan T, Chen C, Wen L. Study on the Selective Difluorochloroethylation Reactions of Amides with Hypervalent Iodine Reagent. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Varaprasad B, Bharat Kumar K, Siddaiah V, Shyamala P, Chinnari L. Copper-catalyzed efficient access to 2,4,6-triphenyl pyridines via oxidative decarboxylative coupling of aryl acetic acids with oxime acetates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01987b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient strategy for the synthesis of 2,4,6- triphenyl pyridines has been developed through copper-catalysed oxidative decarboxylative coupling of C(sp3) aryl acetic acids with oxime acetates using oxygen as a sole terminal oxidant.
Collapse
Affiliation(s)
- Bodala Varaprasad
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
- Department of Physical Nuclear and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - Karasala Bharat Kumar
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| | - Vidavalur Siddaiah
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| | - Pulipaka Shyamala
- Department of Physical Nuclear and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - Lekkala Chinnari
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
37
|
Nagata T, Obora Y. Transition‐Metal‐Mediated/Catalyzed Synthesis of Pyridines, Pyrimidines, and Triazines by [2+2+2] Cycloaddition Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatsuki Nagata
- Department of Chemistry and Materials Engineering Kansai University Suita Osaka 564-8680 Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering Kansai University Suita Osaka 564-8680 Japan
| |
Collapse
|
38
|
Peng X, Sun Z, Kuang P, Li L, Chen J, Chen J. Copper-Catalyzed Selective Arylation of Nitriles with Cyclic Diaryl Iodonium Salts: Direct Access to Structurally Diversified Diarylmethane Amides with Potential Neuroprotective and Anticancer Activities. Org Lett 2020; 22:5789-5795. [PMID: 32677838 DOI: 10.1021/acs.orglett.0c01829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel, simple, and high-yielding approach for the preparation of diarylmethane amide derivatives has been developed by reacting cyclic diaryl iodonium salts with nitriles using CuCl as a catalyst. The procedure is efficient with high atom economy and a wide substrate range. Importantly, selective arylation of nitriles was obtained without affecting the phenyl amino/hydroxyl groups. Furthermore, two of the diarylmethane amides (3k, 3s) displayed excellent neuroprotective and anticancer activities.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Peihua Kuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| |
Collapse
|
39
|
A Heck reaction/photochemical alkene isomerization sequence to prepare functionalized quinolines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Wu C, Zhao C, Zhou J, Hu HS, Li J, Wu P, Chen C. Wet carbonate-promoted radical arylation of vinyl pinacolboronates with diaryliodonium salts yields substituted olefins. Commun Chem 2020; 3:92. [PMID: 36703314 PMCID: PMC9814134 DOI: 10.1038/s42004-020-00343-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/22/2020] [Indexed: 01/29/2023] Open
Abstract
Since the landmark work of Heck, Negishi and Suzuki on Pd-catalyzed crossing coupling reactions, innovative discovery of new reactions forming C-C bonds and constructing functional olefins via nonmetal catalysts remains an imperative area in organic chemistry. Herein, we report a transition-metal-free arylation method of vinyl pinacolboronates with diaryliodonium salts to form C(sp2)-C(sp2) bond and provide trans-arylvinylboronates. The resulting vinylboronates can further react with the remaining aryl iodides (generated from diaryliodonium salts) via Suzuki coupling to afford functional olefins, offering an efficient use of aryliodonium salts. Computational mechanistic studies suggest radical-pair pathway of the diaryliodonium salts promoted by the multi-functional wet carbonate.
Collapse
Affiliation(s)
- Chao Wu
- grid.12527.330000 0001 0662 3178Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, and the Graduate School at Shenzhen, Tsinghua University, 100084 Beijing, China
| | - Chongyang Zhao
- grid.12527.330000 0001 0662 3178Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084 Beijing, China
| | - Jun Zhou
- grid.500400.10000 0001 2375 7370Environmental Engineering, Wuyi University, Jiangmen, 529000 China ,International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529000 China
| | - Han-Shi Hu
- grid.12527.330000 0001 0662 3178Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084 Beijing, China
| | - Jun Li
- grid.12527.330000 0001 0662 3178Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, 100084 Beijing, China
| | - Panpan Wu
- grid.500400.10000 0001 2375 7370Environmental Engineering, Wuyi University, Jiangmen, 529000 China ,International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529000 China
| | - Chao Chen
- grid.12527.330000 0001 0662 3178Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, and the Graduate School at Shenzhen, Tsinghua University, 100084 Beijing, China ,grid.500400.10000 0001 2375 7370Environmental Engineering, Wuyi University, Jiangmen, 529000 China ,International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529000 China
| |
Collapse
|
41
|
Chen XJ, Gui QW, Yi R, Yu X, Wu ZL, Huang Y, Cao Z, He WM. Copper(i)-catalyzed intermolecular cyanoarylation of alkenes: convenient access to α-alkylated arylacetonitriles. Org Biomol Chem 2020; 18:5234-5237. [PMID: 32602499 DOI: 10.1039/d0ob01055c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu(i)-catalyzed intermolecular cyanoarylation of alkenes with diaryliodonium salts as a radical arylating reagent and tetra-butylammonium cyanide as an electrophilic cyanating reagent was established. A broad range of α-alkylated arylacetonitriles were efficiently constructed in good to excellent yields under base- and oxidant-free and mild conditions.
Collapse
Affiliation(s)
- Xin-Jie Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qing-Wen Gui
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Rongnan Yi
- Department of Chemistry, Hunan University, Changsha 410082, China
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| |
Collapse
|
42
|
Pan C, Wang L, Han J. Palladium-Catalyzed Site-Selective Benzocylization of Aromatic Acids with o-Fluoro-Substituted Diaryliodonium Salts toward 3,4-Benzocoumarins. Org Lett 2020; 22:4776-4780. [DOI: 10.1021/acs.orglett.0c01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
43
|
Vázquez-Galiñanes N, Andón-Rodríguez M, Gómez-Roibás P, Fañanás-Mastral M. Copper-catalyzed O-alkenylation of phosphonates. Beilstein J Org Chem 2020; 16:611-615. [PMID: 32280389 PMCID: PMC7136550 DOI: 10.3762/bjoc.16.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Copper catalysis allows the direct oxygen alkenylation of dialkyl phosphonates with alkenyl(aryl)iodonium salts with selective transfer of the alkenyl group. This novel methodology proceeds with a wide range of phosphonates under mild conditions and gives straightforward access to valuable enol phosphonates in very good yields.
Collapse
Affiliation(s)
- Nuria Vázquez-Galiñanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mariña Andón-Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricia Gómez-Roibás
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
44
|
Peng X, Li L, Ren Y, Xue H, Liu J, Wen S, Chen J. Synthesis of
N
‐Carbonyl Acridanes as Highly Potent Inhibitors of Tubulin Polymerization
via
One‐Pot Copper‐Catalyzed Dual Arylation of Nitriles with Cyclic Diphenyl Iodoniums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Ling Li
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Yichang Ren
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Huanxin Xue
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Jin Liu
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer MedicineSun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Jianjun Chen
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| |
Collapse
|
45
|
Liu J, Gao Y, Zhu Y, Zhu J, Wang C, Rui X, Yang K, Si D, Lin J, Yuan D, Wen H, Li W. Rhodium(III)-Catalyzed Oxidative Annulation of 4-Aminoquinolines and Acrylate through Two Consecutive C(sp 2)-H Activations. Org Lett 2020; 22:2657-2662. [PMID: 32186885 DOI: 10.1021/acs.orglett.0c00630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The C-H annulation of the five-position of quinolines and acrylates to afford heterocycles is an active field of research in organic synthesis. Herein the annulation of 4-aminoquinolines with acrylates through two consecutive C-H activations catalyzed by Rh(III) is described. The reaction proceeds with high atom efficiency under mild reaction conditions, and this protocol will provide appealing strategies for the synthesis of fused quinoline heterocycles.
Collapse
Affiliation(s)
- Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiamin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
46
|
Dai L, Yu S, Xiong W, Chen Z, Xu T, Shao Y, Chen J. Divergent Palladium‐Catalyzed Tandem Reaction of Cyanomethyl Benzoates with Arylboronic Acids: Synthesis of Oxazoles and Isocoumarins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Dai
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Shuling Yu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Wenzhang Xiong
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Zhongyan Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Tong Xu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Yinlin Shao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Jiuxi Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
47
|
Gao Y, Nie J, Li Y, Li X, Chen Q, Huo Y, Hu XQ. Rh-Catalyzed C-H Amination/Annulation of Acrylic Acids and Anthranils by Using -COOH as a Deciduous Directing Group: An Access to Diverse Quinolines. Org Lett 2020; 22:2600-2605. [PMID: 32208620 DOI: 10.1021/acs.orglett.0c00539] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A method for the synthesis of diverse polysubstituted quinolines from readily available acrylic acids and anthranils has been developed. The weakly coordinating -COOH directing group, which can be tracelessly removed in the cascade cyclization, is essential for this reaction. Diverse polysubstituted quinolines were obtained under mild reaction conditions with simple H2O and CO2 as byproducts. More importantly, 1,2,3,4-tetrahydroacridine, which is the core skeleton of tacrine (an Alzheimer's disease drug), was conveniently synthesized.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
48
|
Visible‐Light‐Assisted Gold‐Catalyzed Fluoroarylation of Allenoates. Angew Chem Int Ed Engl 2020; 59:5242-5247. [DOI: 10.1002/anie.201916471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Indexed: 01/17/2023]
|
49
|
Tang H, Zhang X, Zhang Y, Feng C. Visible‐Light‐Assisted Gold‐Catalyzed Fluoroarylation of Allenoates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hai‐Jun Tang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xinggui Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yu‐Feng Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chao Feng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
50
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|