1
|
Liang Y, Liu X, Hu X, Li X, Liu N, Xiao Y. Terminal halogen-containing rod-like liquid crystals: Synthesis, self-assembly, photophysical and mechanochromism properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124676. [PMID: 38909400 DOI: 10.1016/j.saa.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Five series of cyanostilbene-based rod-like liquid crystals containing one different terminal atom (H, F, Cl, Br and I) at one end and one terminal aliphatic chain with different numbers of carbon atoms at the other end were reported by Suzuki coupling and Knoevenagel reactions. The influence of terminal halogen atoms and terminal chain length on the self-assembly, AIE behavior, temperature-dependent emission and mechanochromism behavior was explored by POM, DSC, XRD, SEM, absorption spectra and emission spectra. All the compounds are enantiotropic liquid crystals. The lowest non-halogen substituted homologue exhibited solo N phase, but the higher non-halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature. All the lowest halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature and all the higher homologues only exhibited SmA. The distinct mesogenic phase transition could be attributed to the intermolecular interaction produced by terminal halogen and the rigidity of the terminal aliphatic chain. All the non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom) exhibited AIE behaviors, whereas the iodinated compounds exhibited extremely weak emission in solution and aggregated states due to the heavy atoms effect. These compounds also exhibited distinct solid-state emission with blue or cyan fluorescence, which could be quenched by increasing temperature. The reversible mechanochromism behavior was also achieved in all the compounds. The mechanical force induced quench in emission in non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom), whereas enhancement in iodinated compounds. The reversible mechanochromism behavior endowed these compounds with potential applications in rewritable paper and anti-counterfeiting. The interesting properties in these liquid crystals would be attributed to the balance of the halogen-halogen interactions, heavy atom effect, steric-hindrance effect and chain length. These investigations would be helpful to understand the relationship between chemical structures and properties.
Collapse
Affiliation(s)
- Yurun Liang
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiaotong Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiuning Hu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xuehong Li
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Nana Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Yulong Xiao
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China.
| |
Collapse
|
2
|
Zhang L, Yang Z, Xia W, Li J, Yang H, Yang S, Chen EQ. Liquid Crystal Promoted Self-Assembly of Statistical Copolymers into Diverse Nanostructures with Precise Dimensions. J Am Chem Soc 2024. [PMID: 39487966 DOI: 10.1021/jacs.4c11649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In both natural and synthetic systems, the segregation of multicomponent entities is vital for regulating functions and the ultimate usage of materials. To accomplish the desired properties via nanosegregation or microphase separation, great effort is usually demanded in the synthesis. For example, microphase-separated block copolymers rely on the delicate controlled/living polymerization of different monomers in sequence. Here, we demonstrate that a facile one-pot copolymerization can generate statistical side-chain copolymers exhibiting well-defined and diverse nanostructures. Two hemiphasmidic (or wedge-shaped) cyclooctene monomers were designed, differing in the peripheral tails of the wedges (dodecyl vs. tetraethylene glycol), with lengths of ca. 1 nm. When combining the two monomers together, the statistical copolymers can show columnar liquid crystal (LC) phase and microphase-separated structures of the two monomers, including sphere, cylinder, double gyroid, and lamella. To the best of our knowledge, this is the first time the gyroid phase has been achieved in statistical copolymers. We further demonstrate that changing the side chains to calamitic (or rod-like) mesogens or the backbone to less flexible polynorbornene, the statistical copolymers can also undergo microphase separation of the side chains. The intrinsic self-assembly scheme of statistical copolymers with mesogenic side chains, which are chemically accurate, affords the resultant nanostructures with precise periodicities at the 10- or sub-10-nm scale. Given the small chemical difference between the side-chain tails, microphase separation is promoted by the anisotropic packing of mesogens. It is validated that the statistical side-chain LC copolymers can be a versatile platform for creating nanostructured materials with tailored functionalities.
Collapse
Affiliation(s)
- Longlong Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Wei Xia
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Jiahua Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
3
|
Marín I, Castillo-Vallés M, Merino RI, Folcia CL, Barberá J, Ros MB, Serrano JL. Ionic Bent-Core Pillar[ n]arenes: From Liquid Crystals to Nanoaggregates and Functional Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9793-9805. [PMID: 39398374 PMCID: PMC11468781 DOI: 10.1021/acs.chemmater.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report the first examples of supramolecular systems from bent-core-based pillar[n]arenes through ionic bonds. These ionic materials have been prepared by the interaction of an amino-ended pillar[5]arene (P5N10) and three different carboxylic acids, including bent-core moieties. The bent-core units are based on ester, biphenyl, and azobenzene structures bearing two different flexible spacers between the carboxyl group and the central bent-core aromatic units. The ionic pairs segregate the molecular blocks, leading to columnar liquid crystal organizations. These ionic supramolecular compounds exhibit interesting results as proton-conductive materials. Furthermore, the introduction of azobenzene units in the bent-core structure has provided a photoresponse to the proton conduction materials. Interestingly, the amphiphilic character generated by the ionic pairs and the hydrophobic bent-core structures allows their molecular self-assembly in water solution, resulting in aggregates of appealing morphologies. The structural modifications of the bent-core units (i.e., connecting bonds at the lateral structure and spacer lengths) provide an attractive analysis on the relationship between the chemical structure and the morphology of the aggregates (fibers, chiral ribbons, nanotubes...). Additionally, the self-assembly process and evolution of the aggregates from fibers to nanotubes have been studied with several techniques.
Collapse
Affiliation(s)
- Iván Marín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Martín Castillo-Vallés
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa I. Merino
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - César L. Folcia
- Departamento
de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, E-48080 Bilbao, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Blanca Ros
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
5
|
Gao T, Liang Y, Liu N, Wen X, Liu X, Gao H, Xiao Y. The Influence of Positional Isomerism of Terminal Alkyl Chains on Mesomorphic and Photophysical Behavior of Unsymmetric α-cyanostilbene-based Tetracatenars. J Fluoresc 2024; 34:2057-2064. [PMID: 37688669 DOI: 10.1007/s10895-023-03424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Two series of unsymmetric α-cyanostilbene-based tetracatenars containing three hexadecyl chains at one end and one alkyl chain with varying lengths at the other end were prepared by using Suzuki coupling and Knoevenagel reactions. These tetracatenars with the terminal three hexadecyl chains, which are adjacent to the cyano group are non-mesogens, whereas the isomers with one alkyl chain, which is adjacent to the cyano group display transition from non-mesogens to monotropic hexagonal columnar liquid crystal upon elongation of the alkyl chain. This transition could be attributed to that the three hexadecyl chains which are adjacent to the cyano group decrease the interactions between π-conjugated rigid cores, hindering the formation of mesophase. In addition, weak slovatochromism implies weak ICT in both series tetracatenars. Both series isomers exhibit distinct AIE characteristics attributing to the presence of α-cyanostilbene, which could induce stereoisomerism and restricted intermolecular rotation in the aggregated state. Different mechanochromism behaviors could be achieved due to the positional isomerism of terminal alkyl chains. Therefore, tuning the position of terminal alkyl chains could give rise to distinct changes in the molecular aggregate, which provides a scheme to build multifunctional materials with diverse potentials.
Collapse
Affiliation(s)
- Tianzhi Gao
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China
| | - Yurun Liang
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China
| | - Nana Liu
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China
| | - Xiaorong Wen
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China
| | - Xiaotong Liu
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China.
| | - Hongfei Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.
| | - Yulong Xiao
- Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control, China West Normal University, Nanchong, Sichuan, 637002, People's Republic of China.
| |
Collapse
|
6
|
Peng H, Fang X, Huang W, Liu W, Yang Y, Zhou Q, Li Y. Fabrication of Single-Ion Conductors Based on Liquid Crystal Polymer Network for Quasi-Solid-State Lithium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44350-44360. [PMID: 39145510 DOI: 10.1021/acsami.4c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.
Collapse
Affiliation(s)
- Hui Peng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xin Fang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Wen Huang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Wei Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Qun Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
7
|
Martínez D, Schlossarek T, Würthner F, Soberats B. Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2024; 63:e202403910. [PMID: 38635375 DOI: 10.1002/anie.202403910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.
Collapse
Affiliation(s)
- Daniel Martínez
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Tim Schlossarek
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
8
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
10
|
Wang D, Chen J, Wang Y, Hao X, Peng H, Liao Y, Zhou X, Smalyukh II, Xie X. Photoswitching in a Liquid Crystalline Pt(II) Coordination Complex. Chemistry 2024; 30:e202304366. [PMID: 38296805 DOI: 10.1002/chem.202304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Photoswitching of photoluminescence has sparked tremendous research interests for super-resolution imaging, high-security-level anti-counterfeiting, and other high-tech applications. However, the excitation of photoluminescence is usually ready to trigger the photoswitching process, making the photoluminescence readout unreliable. Herein, we report a new photoswitch by the marriage of spiropyran with platinum(II) coordination complex. Viable photoluminescence can be achieved upon excitation by 480 nm visible light while the photoswitching can be easily triggered by 365 nm UV light. The feasible photoswitching may be benefited from the formed liquid crystalline (LC) phase of the designed photoswitch as a crystalline spiropyran is normally unable to implement photoswitching. Compared to the counterparts, this LC photoswitch can show distinct and reliable apparent colors and emission colors before and after photoswitching, which may promise the utility in high-security-level anti-counterfeiting and other advanced information technologies.
Collapse
Affiliation(s)
- Dan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Chen
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yixuan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingtian Hao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Yonggui Liao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, Colorado, 80309, United States
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| |
Collapse
|
11
|
Damoc M, Tiron V, Tugui C, Varganici CD, Stoica AC, Novitchi G, Dascalu M, Cazacu M. Ferronematic Co(II) Complex: An Active Filler for Magnetically Actuated Soft Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307006. [PMID: 37992252 DOI: 10.1002/smll.202307006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.
Collapse
Affiliation(s)
- Madalin Damoc
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Vasile Tiron
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Blvd. Carol no. 11, Iasi, 700506, Romania
| | - Codrin Tugui
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Cristian-Dragos Varganici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Alexandru-Constantin Stoica
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, CNRS UPR 3228, 25 Rue des Martyrs, Grenoble, 38042, France
| | - Mihaela Dascalu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| | - Maria Cazacu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi, 700487, Romania
| |
Collapse
|
12
|
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, Tang W, Gong J. Chirality Supramolecular Systems: Helical Assemblies, Structure Designs, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307874. [PMID: 37890278 DOI: 10.1002/smll.202307874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Chirality, as one of the most striking characteristics, exists at various scales in nature. Originating from the interactions of host and guest molecules, supramolecular chirality possesses huge potential in the design of functional materials. Here, an overview of the recent progress in structure designs and functions of chiral supramolecular materials is present. First, three design routes of the chiral supramolecular structure are summarized. Compared with the template-induced and chemical synthesis strategies that depend on accurate molecular identification, the twisted-assembly technique creates chiral materials through the ordered stacking of the nanowire or films. Next, chirality inversion and amplification are reviewed to explain the chirality transfer from the molecular level to the macroscopic scale, where the available external stimuli on the chirality inversion are also given. Lastly, owing to the optical activity and the characteristics of the layer-by-layer stacking structure, the supramolecular chirality materials display various excellent performances, including smart response, shape-memorization, superior mechanical performance, and applications in biomedical fields. To sum up, this work provides a systematic review of the helical assemblies, structure design, and applications of supramolecular chirality systems.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
13
|
Sun Y, Escobedo FA. Coarse-Grained Molecular Simulation of Bolapolyphiles with a Multident Lateral Chain: Formation and Structural Analysis of Cubic Network Phases. J Chem Theory Comput 2024; 20:1519-1537. [PMID: 37490766 DOI: 10.1021/acs.jctc.3c00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bolapolyphiles constitute a versatile class of materials with a demonstrated potential to form a wide variety of complex ordered mesophases. In particular, cubic network phases (like the gyroid, primitive, and diamond phases) have been a target of many studies for their ability to create percolating 3D nanosized channels. In this study, molecular simulations are used to explore the phase behavior of bolapolyphiles containing a rigid rodlike core, associating hydrophilic core ends and a hydrophobic side chain with a multident architecture, i.e., where the branching pattern can vary from bident (two branches) to hexadent (six branches). Upon network phase formation, its skeleton is made up of "nodes" populated by the core ends and "struts" populated by the cores. It is shown that, by varying the side chain length, branching pattern, and attachment point to the core, one can alter the crowding around the cores and hence tune the nodal size and nodal valence (i.e., number of connecting struts) which lead to different types of network morphologies. For example, for a fixed total side chain length, having more branches generates a stronger crowding around the molecular core, driving them to form bundlelike domains with curvier interfaces that result in thinner struts. Also, attaching the lateral chain closer to one core end breaks the symmetry between the environments around the two core ends, leading to networks with bimodal nodal sizes. Importantly, since the characterization of (ordered or partially ordered) network phases is challenging given the potential incompatibilities between the simulation box size with the structure's space group periodic symmetry and the effect of morphological defects, a detailed framework is presented to analyze and fully characterize the unit cell parameters and structure factor of such systems.
Collapse
Affiliation(s)
- Yangyang Sun
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A Escobedo
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Liu YL, Zhu YL, Li YC, Lu ZY. Exploring the interplay of liquid crystal orientation and spherical elastic shell deformation in spatial confinement. Phys Chem Chem Phys 2024; 26:6180-6188. [PMID: 38300128 DOI: 10.1039/d3cp04479c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The application of liquid crystal technology typically relies on the precise control of molecular orientation at a surface or interface. This control can be achieved through a combination of morphological and chemical methods. Consequently, variations in constrained boundary flexibility can result in a diverse range of phase behaviors. In this study, we delve into the self-assembly of liquid crystals within elastic spatial confinement by using the Gay-Berne model with the aid of molecular dynamics simulations. Our findings reveal that a spherical elastic shell promotes a more regular and orderly alignment of liquid crystals compared to a hard shell. Moreover, during the cooling process, the hard-shell confined system undergoes an isotropic-smectic phase transition. In contrast, the phase behavior within the spherical elastic shell closely mirrors the isotropic-nematic-smectic phase transition observed in bulk systems. This indicates that the orientational arrangement of liquid crystals and the deformations induced by a flexible interface engage in a competitive interplay during the self-assembly process. Importantly, we found that phase behavior could be manipulated by altering the flexibility of the confined boundaries. This insight offers a fresh perspective for the design of innovative materials, particularly in the realm of liquid crystal/polymer composites.
Collapse
Affiliation(s)
- You-Lu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan-Chun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
15
|
Das S, Zheng C, Lodge TP, Siepmann JI, Mahanthappa MK, Calabrese MA, Reineke TM. Self-Assembly of Unusually Stable Thermotropic Network Phases by Cellobiose-Based Guerbet Glycolipids. Biomacromolecules 2024; 25:1291-1302. [PMID: 38170593 DOI: 10.1021/acs.biomac.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Caini Zheng
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - J Ilja Siepmann
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Cao Y, Scholte A, Prehm M, Anders C, Chen C, Song J, Zhang L, He G, Tschierske C, Liu F. Understanding the Role of Trapezoids in Honeycomb Self-Assembly-Pathways between a Columnar Liquid Quasicrystal and its Liquid-Crystalline Approximants. Angew Chem Int Ed Engl 2024; 63:e202314454. [PMID: 38009676 DOI: 10.1002/anie.202314454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Alexander Scholte
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Marko Prehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Changlong Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangxuan Song
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
17
|
Mu B, Hao X, Luo X, Yang Z, Lu H, Tian W. Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform. Nat Commun 2024; 15:903. [PMID: 38291054 PMCID: PMC10827788 DOI: 10.1038/s41467-024-45252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Light-harvesting is an indispensable process in photosynthesis, and researchers have been exploring various structural scaffolds to create artificial light-harvesting systems. However, achieving high donor/acceptor ratios for efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Here, we report a polymeric supramolecular column-based light-harvesting platform inspired by the natural light-harvesting of purple photosynthetic bacteria to address this issue. The supramolecular column is designed as a discotic columnar liquid crystalline polymer and acts as the donor, with the acceptor intercalated within it. The modular columnar design enables an ultrahigh donor/acceptor ratio of 20000:1 and an antenna effect exceeding 100. Moreover, the spatial confinement within the supramolecular columns facilitates control over the energy transfer process, enabling dynamic full-color tunable emission for information encryption applications with spatiotemporal regulation security.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
18
|
Bora U, Abdallah S, Mhanna R, Nicolas P, Dok A, de Coene Y, Van Cleuvenbergen S, Jeannin O, Malval JP, Clays K, Bellec N, Ocak H, Bilgin-Eran B, Camerel F, Akdas-Kiliç H. New Multifunctional Bipyrimidine-Based Chromophores for NLO-Active Thin-Film Preparation. Chemistry 2024; 30:e202302930. [PMID: 37926677 DOI: 10.1002/chem.202302930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
New synthesized bipyrimidine-based chromophores presenting alkoxystyryl donor groups carrying aliphatic achiral and chiral chains in the 4 position, connected to electron-accepting 2,2-bipyrimidine cores have been synthesized. Their linear and nonlinear optical (NLO) properties were investigated as well as their mesomorphic properties by various techniques (light-transmission measurements, polarized-light optical microscopy, differential scanning calorimetry measurements and two-photon excited fluorescence). The derivatives with achiral linear carbon chains were found to exhibit liquid-crystal properties with the formation smectic phases over large temperature ranges, which were confirmed by small-angle X-ray scattering analysis via stacking models. The nonlinear optical properties in the solid state for derivatives with C14 and the citronellol chains have been studied by wide-field second-harmonic generation and multi-photon fluorescence imaging, confirming centrosymmetry for these achiral mesogens and their excellent third-order nonlinearity whereas the chiral compound exhibits non-centrosymmetric organization resulting in a strong Second Harmonic Generation at the crystal state.
Collapse
Affiliation(s)
- Umut Bora
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Stephania Abdallah
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, Mulhouse, France
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, Mulhouse, France
| | - Prescillia Nicolas
- Institut des Sciences Chimiques de Rennes CNRS UMR, Université de Rennes, Rennes, France
| | - Ahmet Dok
- Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Yovan de Coene
- Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Olivier Jeannin
- Institut des Sciences Chimiques de Rennes CNRS UMR, Université de Rennes, Rennes, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, Mulhouse, France
| | - Koen Clays
- Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nathalie Bellec
- Institut des Sciences Chimiques de Rennes CNRS UMR, Université de Rennes, Rennes, France
| | - Hale Ocak
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | | | - Franck Camerel
- Institut des Sciences Chimiques de Rennes CNRS UMR, Université de Rennes, Rennes, France
| | - Huriye Akdas-Kiliç
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
- Institut des Sciences Chimiques de Rennes CNRS UMR, Université de Rennes, Rennes, France
| |
Collapse
|
19
|
Prestipino S, Pini D, Costa D, Malescio G, Munaò G. A density functional theory and simulation study of stripe phases in symmetric colloidal mixtures. J Chem Phys 2023; 159:204902. [PMID: 38010334 DOI: 10.1063/5.0177209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then, using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle diameter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a regular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of interaction.
Collapse
Affiliation(s)
- Santi Prestipino
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Pini
- Dipartimento di Fisica "A. Pontremoli," Università di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Dino Costa
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gianpietro Malescio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
20
|
Veeraprakash B, Shanavas AKJ, Reddy GSM, Lobo NP, Ramanathan KV, Narasimhaswamy T. Molecular Conformations of Shape Anisometrically Variant Mesogens in Liquid Crystalline Phase Studied by 13 C NMR Spectroscopy. Chemphyschem 2023:e202300353. [PMID: 37725408 DOI: 10.1002/cphc.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Mesogens that vary in shape anisometry have been investigated by 13 C solid-state NMR in the liquid crystalline phase to inspect the conformations. The molecules examined comprise of (i) rod-like mesogen with three-phenyl ring core and terminal hexyloxy chains, (ii) three-ring core linked to the fourth phenyl ring via a spacer, and (iii) trimesic acid connected to three side arms core units through a spacer. The order parameter (Szz ) values for the phenyl rings of the rod-like mesogen are 0.65-0.68, while the mesogen with a three-ring core linked to a phenyl ring via spacer showed dissimilarity. Consequently, for the core unit phenyl rings, Szz is ~0.70, and the terminal phenyl ring showed a low value of 0.12. For the trimesic acid based mesogen, the Szz value for the side arm phenyl rings is ~0.53, and for the central phenyl ring, a very low value of 0.11 is witnessed. By considering the ordering of the rod-like mesogen as a yardstick and employing the ratios of Szz values of the phenyl rings, the average conformations of other mesogens are arrived. Accordingly, for the trimesic acid based mesogen, a tripod-like conformation instead of λ shape is proposed in the liquid crystalline phase.
Collapse
Affiliation(s)
- Bathini Veeraprakash
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Abdul K J Shanavas
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Goddeti S M Reddy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Nitin P Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Tanneru Narasimhaswamy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
22
|
Gautam V, Mishra M, Thapa KB, Kumar J, Singh D, Kumar D. Electronic, optical and spectroscopic properties of N-dialkyl-imidazolium hexafluorophosphate (C NMIM.PF 6) ionic liquid crystal molecules investigated by computational methods. J Mol Model 2023; 29:274. [PMID: 37548776 DOI: 10.1007/s00894-023-05672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In this present work, we calculate the electronic, spectroscopic and nonlinear optical properties (NLO) of N-dialkyl-imidazolium hexafluorophosphate (CNMIM.PF6, where N = 10, 12, 14, 16, 18, 20) ionic liquid crystal molecules under the effect of alkyl chain length variation in cation moiety [CNMIM]+ with fixed anion [PF6]-. CONTEXT: The majority of research on ionic liquid crystal to date has been focused on experiments, while theoretical studies on the optical properties of ionic liquid crystal have been extremely rare. Nonlinear phenomena in optical devices have attracted many researchers. Therefore, results of NLO properties may favor facile synthesis and fabrication of novel-type of materials as well as optoelectronic devices. Spectroscopic studies elucidate further insight into ionic liquid crystal behavior. The results demonstrate that variations in alkyl chain length have an impact on the conformers' electrical, spectroscopic, and NLO properties as well as their stability. The stability of ionic liquid crystal molecules increases with increase in the alkyl chain length and the energy band gap range is 6.64-6.29 eV. Understanding ionic liquid crystal's physical behavior requires an understanding of their dipole moments and NLO features, which are covered in this article. The results of NLO characteristics for all ionic liquid crystal molecules show that their first-order hyperpolarizabilities are higher than the reference molecule (urea). METHODS: The electronic (molecular energy band gap, electrostatic potential map, as well as HOMO-LUMO orbitals) and spectroscopic (IR-RAMAN, UV) properties were evaluated with the help of theoretical model at B3LYP/6-31G(d) while the NLO study has been performed using B3LYP and M06-2X with different basis sets 6-31G(d) and 6-311++G(d,p), as implemented in Gaussian09 software.
Collapse
Affiliation(s)
- Varsha Gautam
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India
| | - Mirtunjai Mishra
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India
| | - Khem B Thapa
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India
| | - Jitendra Kumar
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India
| | - Devendra Singh
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India.
| | - Devesh Kumar
- Department of Physics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, 226025, India.
| |
Collapse
|
23
|
Jun T, Park H, Kim J, Lee W, Ahn H, Jang WD, Lee B, Ryu DY. Impact of peripheral alkyl chain length on mesocrystal assemblies of G2 dendrons. NANOSCALE 2023; 15:9069-9075. [PMID: 37158020 DOI: 10.1039/d3nr01243c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Unique sphere-packing mesophases such as Frank-Kasper (FK) phases have emerged from the viable design of intermolecular interactions in supramolecular assemblies. Herein, a series of Cn-G2-CONH2 dendrons possessing an identical core wedge are investigated to elucidate the impact of peripheral alkyl chain lengths (Cn) on the formation of the close-packed structures. The C18 and C14 dendrons, of which the contour lengths of the periphery Lp are longer than the wedge length Lw, assemble into a uniform sphere-packing phase such as body-centred cubic (BCC), whereas the C8 dendron with short (Lp < Lw) corona environment forms the FK A15 phase. Particularly in the intermediate C12 and C10 dendrons (Lp ≈ Lw), cooling the samples from an isotropic state leads to cooling-rate-dependent phase behaviours. The C12 dendron produces two structures of hexagonal columnar and sphere-packing phases (BCC and A15), while the C10 dendron generates the A15 and σ phases by the fast- and slow-cooling processes, respectively. Our results show the impact of peripheral alkyl chain lengths on the formation of mesocrystal phases, where the energy landscape of the dendrons at Lp/Lw ≈ 1 must be more complex and delicate than those with either longer or shorter peripheral alkyl chains.
Collapse
Affiliation(s)
- Taesuk Jun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Junsu Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Wooseop Lee
- Industry Technology Convergence Centre, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Hyungju Ahn
- Industry Technology Convergence Centre, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
24
|
El-Atawy MA, Omar AZ, Alazmi ML, Alsubaie MS, Hamed EA, Ahmed HA. Synthesis and characterization of new imine liquid crystals based on terminal perfluoroalkyl group. Heliyon 2023; 9:e14871. [PMID: 37025900 PMCID: PMC10070094 DOI: 10.1016/j.heliyon.2023.e14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023] Open
Abstract
New organic derivatives named, (E)-3(or4) -(alkyloxy)-N-{(trifluoromethyl)benzylidene}aniline, 1a-f, were synthesized and examined their liquid crystalline behaviors. FT-IR, 1H NMR, 13C NMR, 19F NMR, elemental analyses and GCMS were used to validate the prepared compounds' chemical structures. We used differential scanning calorimetry (DSC) and polarized optical microscopy (POM) to investigate the mesomorphic characteristics of the formed Schiff bases. All tested compounds of series 1a-c have mesomorphic behaviour of nematogenic temperature ranges while the group 1d-f show non-mesomorphic properties. Moreover, it was found that the enantiotropic N phases included all of the homologue 1a-c. Computational studies using DFT (density functional theory) validated the experimental mesomorphic behavior results. All the analyzed compounds had their dipole moments, polarizability, and reactivity characteristics explained. Theoretical simulations showed that as the length of the terminal chain is increased, the polarizability of the stuided compounds increases. Consequently, compounds 1a and 1d have the least polarizability.
Collapse
|
25
|
Al-Zahrani SA, Khan MT, Jevtovic’ V, Masood N, Jeilani YA, Ahmed HA. Design of Liquid Crystal Materials Based on Palmitate, Oleate, and Linoleate Derivatives for Optoelectronic Applications. Molecules 2023; 28:molecules28041744. [PMID: 36838732 PMCID: PMC9964637 DOI: 10.3390/molecules28041744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Herein, liquid crystalline derivatives based on palmitate, oleate, and linoleate moieties with azomethine cores were synthesized, and their physical, chemical, optical, and photophysical properties were investigated in detail. The mesomorphic activity of these materials was examined through polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The observed results revealed that the stability of the thermal mesophase depends on the terminal polar as well as on the fatty long-chain substituents. Purely smectogenic phases were detected in all three terminal side chains. A eutectic composition with a low melting temperature and a broad smectic A range was found by constructing a binary phase diagram and addressing it in terms of the mesomorphic temperature range. The energy bandgap of the palmitate-based derivative (Ia) was determined as 3.95 eV and slightly increased to 4.01 eV and 4.05 eV for the oleate (Ib) and linoleate (Ic) derivatives, respectively. The optical constants (n, κ, εr, and εi) were extracted from the fitting of measured spectroscopic ellipsometer data. The steady-state spectra of these samples exhibited a broad emission in the range 400-580 nm, which was found to be blue shifted to 462 nm for both Ib and Ic derivatives. The average fluorescence decay lifetime of the Ia derivative was found to be 598 ps, which became faster for the Ib and Ic derivatives and slower for the sample with a chloride end polar group.
Collapse
Affiliation(s)
- Salma A. Al-Zahrani
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Taukeer Khan
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia
| | - Violeta Jevtovic’
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Yassin Aweis Jeilani
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
- Correspondence:
| |
Collapse
|
26
|
Feng H, He Y, Yang W, Wang S, Feng YS. A novel strategy for constructing fluorescent liquid crystals with diphenylacrylonitrile groups derivatives based on Thiazolo[5,4-d]thiazole core. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zhang C, Gao L, Lin J, Wang L. Hierarchical 2D-1D micelles self-assembled from the heterogeneous seeded-growth of rod-coil block copolymers. NANOSCALE 2023; 15:1412-1421. [PMID: 36594400 DOI: 10.1039/d2nr05618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise control of size and dimension is the key to constructing complex hierarchical nanostructures, particularly multi-dimensional hybrid nanoassemblies. Herein, we conducted Brownian dynamics simulations to examine the seeded-growth of rod-coil block copolymer assemblies and discovered that 2D-1D (disk-cylinder) hybrid micelles could be formed via liquid-crystallization-driven self-assembly (LCDSA). 2D nanodisk micelles with smectic-like LC cores served as seeds. After adding rod-coil block copolymers into the seed solution, the copolymers incorporated onto the 2D seed edges to generate junction points. Several cylindrical arms were formed from the elongation of junction points, resulting in 2D-1D multi-dimensional hybrid micelles. The structural transition of the micelle core from smectic-like (disk) to cholesteric-like (cylindrical arms) LC packing manners benefit from the fluidity of LC. Such a seeded-growth behavior simultaneously exhibits the features of heterogeneous nucleation and homogenous epitaxy growth. Intriguingly, the arms generate in sequence, and its junction position is in the para-position first, followed by ortho-position or meta-position, resembling the difference in the substituent activities on the benzene ring. These theoretical findings are consistent with experimental results, and provide explanations to some unaddressed issues in experiments. The obtained results also reveal that the hybrid micelles are a good stabilizer due to their high surface area and distinctive suspension behaviors.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
28
|
Cai X, Hauche S, Poppe S, Cao Y, Zhang L, Huang C, Tschierske C, Liu F. Network Phases with Multiple-Junction Geometries at the Gyroid-Diamond Transition. J Am Chem Soc 2023; 145:1000-1010. [PMID: 36603102 DOI: 10.1021/jacs.2c10462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel phase sequence for the transition from the double diamond to the double gyroid cubic phases via two non-cubic intermediate phases, an orthorhombic Fmmm (O69) phase and a hexagonal P63/m (H176) phase, is reported for specifically designed bolapolyphiles composed of a linear rod-like bistolane core with sticky glycerol ends and two branched central and two linear peripheral side chains. These liquid crystalline (LC) phases represent members of a new class of unicontinuous network phases, formed by longitudinal rod bundles with polar spheres acting as junctions and the alkyl chains forming the continuum around them. In contrast to previously known bicontinuous cubic networks, they combine different junctions with different angles in a common structure, and one of them even represents a triple network instead of the usually found double networks. This provides new perspectives for the design of soft network phases with enhanced structural complexity, inspiring the search for new supramolecular networks, nano-particle arrays, and photonic band-gap materials.
Collapse
Affiliation(s)
- Xiaoqian Cai
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sebastian Hauche
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Silvio Poppe
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chang Huang
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
29
|
Hamaguchi K, Lu H, Okamura S, Kajiyama S, Uchida J, Sato S, Watanabe G, Ishii Y, Washizu H, Ungar G, Kato T. Reentrant 2D Nanostructured Liquid Crystals by Competition between Molecular Packing and Conformation: Potential Design for Multistep Switching of Ionic Conductivity. Chemphyschem 2023; 24:e202200927. [PMID: 36594677 DOI: 10.1002/cphc.202200927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Reentrant phenomena in soft matter and biosystems have attracted considerable attention because their properties are closely related to high functionality. Here, we report a combined experimental and computational study on the self-assembly and reentrant behavior of a single-component thermotropic smectic liquid crystal toward the realization of dynamically functional materials. We have designed and synthesized a mesogenic molecule consisting of an alicyclic trans,trans-bicyclohexyl mesogen and a polar cyclic carbonate group connected by a flexible tetra(oxyethylene) spacer. The molecule exhibits an unprecedented sequence of layered smectic phases, in the order: smectic A-smectic B-reentrant smectic A. Electron density profiles and large-scale molecular dynamics simulations indicate that competition between the stacking of bicyclohexyl mesogens and the conformational flexibility of tetra(oxyethylene) chains induces this unusual reentrant behavior. Ion-conductive reentrant liquid-crystalline materials have been developed, which undergo the multistep conductivity changes in response to temperature. The reentrant liquid crystals have potential as new mesogenic materials exhibiting switching functions.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shota Okamura
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Takashi Kato
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Initiative for Supra-Materials, Shinshu University Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
30
|
Chen J, Zhu L, Li B, Xiao M, Chen W, Feng X, Zhuo X, Li Y, Wan Y, Deng S. Sorting and Screening of Quaternary Ammonium Lipoids for Membrane-Binding Assays Based on Electrochemiluminescent Cocrystalline Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15316-15326. [PMID: 36441978 DOI: 10.1021/acs.langmuir.2c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Being synthetic supplements to natural lipids, lipoids now play an increasingly significant role in nanopore sequencing, olfactory sensing, and nanoimpact electrochemistry. Yet, systematic comparisons to sort and screen qualified lipoids are lacking for specific scenario applications. Here, taking the merits of electrochemiluminescence (ECL) in probing biointerfacial events, a new metric was proposed for the evaluation of substrate candidacy in the pool of hyamine bromides (ABs), that are used to cohere with electron-rich porphyrins for deep eutectics-like ECL matrices. Using a state-of-the-art framework emitter, the cocrystalline nanosheet of C70 and zinc meso-tetraphenylporphine (ZnTPP) via simple liquid-liquid interfacial deposition, 6 out of 20 ABs were inspected and identified as not only amenable filmogens but excitonic sensitizers in key terms of ECL strength as well as voltammetric characteristics. Among them, the methyltrioctyl (MTOAB) headgroup stood out; while the ECL activity at ZnTPP-C70@MTOAB was proven to be dictated by ionophoresis across multilamellar lipoidal layers. Thus, target-induced membrane deformation would let coreactant scavengers in to quench ECL, which enabled assays on two less visited bioprocesses regarding (1) the lipid solubility of ipratropium bromide, an aerosol medication for rhinitis treatment; and (2) the resorption of selenosugar as the central metabolite of Se-proteins on kidney glomerular basement barrier. Both resulted in nice membrane-binding measurements with comparable dissociation constants to reported microfluidic ELISA methods. By and large, though still being rudimentary, such parametrization of ECL-able biofilm would set up a basic ECL toolbox for archiving and resourcing multilipoidal even lipid-lipoid combos to handle the realistic (sub)cytomembrane processes in the future.
Collapse
Affiliation(s)
- Jialiang Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuyu Feng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiyong Zhuo
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Wan
- Department of Instruments Science and Technology, School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengyuan Deng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
31
|
Alaasar M, Cao Y, Liu Y, Liu F, Tschierske C. Switching Chirophilic Self-assembly: From meso-structures to Conglomerates in Liquid and Liquid Crystalline Network Phases of Achiral Polycatenar Compounds. Chemistry 2022; 28:e202201857. [PMID: 35866649 PMCID: PMC10092095 DOI: 10.1002/chem.202201857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Spontaneous generation of chirality from achiral molecules is a contemporary research topic with numerous implications for technological applications and for the understanding of the development of homogeneous chirality in biosystems. Herein, a series of azobenzene based rod-like molecules with an 3,4,5-trialkylated end and a single n-alkyl chain involving 5 to 20 aliphatic carbons at the opposite end is reported. Depending on the chain length and temperature these achiral molecules self-assemble into a series of liquid and liquid crystalline (LC) helical network phases. A chiral isotropic liquid (Iso1 [ *] ) and a cubic triple network phase with chiral I23 lattice were found for the short chain compounds, whereas non-cubic and achiral cubic phases dominate for the long chain compounds. Among them a mesoscale conglomerate with I23 lattice, a tetragonal phase (Tetbi ) containing one chirality synchronized and one non-synchronized achiral network, an achiral double network meso-structure with Ia3 ‾ $\bar 3$ d space group and an achiral percolated isotropic liquid mesophase (Iso1 ) were found. This sequence is attributed to an increasing strength of chirality synchronization between the networks, combined with a change of the preferred mode of chirophilic self-assembly between the networks, switching from enantiophilic to enantiophobic with decreasing chain length and lowering temperature. These nanostructured and mirror symmetry broken LC phases exist over wide temperature ranges which is of interest for potential applications in chiral and photosensitive functional materials derived from achiral compounds.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
- Department of ChemistryFaculty of ScienceCairo UniversityP.O.12613GizaEgypt
| | - Yu Cao
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Yan Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
- Wanhua Chemical Group Co Ltd.Yantai265505P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
| |
Collapse
|
32
|
Zhou H, Zheng S, Guo X, Gao Y, Li H, Pang H. Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V 2O 5 nanowires compositing carbon nanomaterials. J Colloid Interface Sci 2022; 628:24-32. [PMID: 35973255 DOI: 10.1016/j.jcis.2022.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The design of electrode internal structure plays an important role in improving the performance of micro-supercapacitors (MSCs). However, the complexity of the program hinders the development and application of Three-dimensional(3D)-printed MSCs. Herein, printable inks were prepared by using vanadium pentoxide nanowires as active materials, carbon nanotubes as collector and conductive agent, graphene oxide as adhesive, scaffold and water retaining agent. Benefiting from the liquid-crystal properties of materials and 3D printing technology as well as the adjustment of the materials proportion, onion-like structures with ordered porous layered structure and uniform electric-field-strength MSCs were constructed. The 3D-printed MSC has fine area capacitance (34.68 mF cm-2) and area energy density (1.73 µWh cm-2 at a current density of 0.24 mA cm-2). Therefore, using the unique characteristics of materials to build an efficient 3D printing strategy is expected to provide a feasible solution for the construction of various MSCs and other high-energy storage systems.
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yidan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
33
|
Xiao Y, Liu X, Li N, Pang Y, Zheng Z. Central condensed ring changes for manipulating the self-assembly and photophysical behaviors of cyanostilbene-based hexacatenars. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
35
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid-Crystalline Networks: An A15-Like Frank-Kasper Phase Based on Rod-Packing. Angew Chem Int Ed Engl 2022; 61:e202203447. [PMID: 35470526 PMCID: PMC9321821 DOI: 10.1002/anie.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/10/2022]
Abstract
The Pm 3 ‾ n cubic and other low-symmetry Frank-Kasper phases are known to be formed by soft spheres, ranging from metals to block copolymer micelles and colloidal nanoparticles. Here, we report a series of X-shaped polyphiles composed of sticky rods and two non-symmetric branched side-chains, which self-assemble into the first example of a cubic liquid-crystalline phase representing a tetrahedral network of rods with a Pm 3 ‾ n lattice. It is the topological dual to the Weaire-Phelan foam, being the Voronoi tessellation of the A15 sphere packing, from which this network is obtained by Delaunay triangulation.
Collapse
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Matthias Wagner
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
36
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
37
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
38
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid‐Crystalline Networks: An A15‐Like Frank–Kasper Phase Based on Rod‐Packing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Marco Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Silvio Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Matthias Wagner
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Carsten Tschierske
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
39
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
40
|
Cao Y, Alaasar M, Zhang L, Zhu C, Tschierske C, Liu F. Supramolecular meso-Trick: Ambidextrous Mirror Symmetry Breaking in a Liquid Crystalline Network with Tetragonal Symmetry. J Am Chem Soc 2022; 144:6936-6945. [PMID: 35394276 DOI: 10.1021/jacs.2c01511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bicontinuous and multicontinuous network phases are among nature's most complex structures in soft matter systems. Here, a chiral bicontinuous tetragonal phase is reported as a new stable liquid crystalline intermediate phase at the transition between two cubic phases, the achiral double gyroid and the chiral triple network cubic phase with an I23 space group, both formed by dynamic networks of helices. The mirror symmetry of the double gyroid, representing a meso-structure of two enantiomorphic networks, is broken at the transition to this tetragonal phase by retaining uniform helicity only along one network while losing it along the other one. This leads to a conglomerate of enantiomorphic tetragonal space groups, P41212 and P43212. Phase structures and chirality were analyzed by small-angle X-ray scattering (SAXS), grazing-incidence small-angle X-ray scattering (GISAXS), resonant soft X-ray scattering (RSoXS) at the carbon K-edge, and model-dependent SAXS/RSoXS simulation. Our findings not only lead to a new bicontinuous network-type three-dimensional mesophase but also reveal a mechanism of mirror symmetry breaking in soft matter by partial meso-structure racemization at the transition from enantiophilic to enantiophobic interhelical self-assembly.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, Halle (Saale) D-06120, Germany.,Department of Chemistry, Cairo University, Giza 12613, Egypt
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, Halle (Saale) D-06120, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
41
|
Alaasar M, Cai X, Kraus F, Giese M, Liu F, Tschierske C. Controlling ambidextrous mirror symmetry breaking in photosensitive supramolecular polycatenars by alkyl-chain engineering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Hockey-Stick Polycatenars: Network formation and transition from one dimensional to three-dimensional liquid crystalline phases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Varshney D, Anu, Prakash J, Pratap Singh V, Yadav K, Singh G. Probing the impact of bismuth-titanate based nanocomposite on the dielectric and electro-optical features of a nematic liquid crystal material. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Wei P, Lou H, Yan J, Li L, Zhang Y, Xia Y, Wang Y, Wang Y. Synthesis and properties of high performance aromatic thermotropic liquid crystal copolyesters based on naphthalene ring structure. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Ocak H, Karaağaç B, Akdaş-Kılıç H, Jeannin O, Camerel F, Bilgin Eran B. Synthesis and mesomorphic properties of new organosiloxane chiral calamitic liquid crystals. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Rodlike 4,6-diamino-1,3,5-triazine derivatives, effect of the core length on mesophase behavior and their application as LE-LCD device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Santra G, Semidalas E, Mehta N, Karton A, Martin JML. S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Phys Chem Chem Phys 2022; 24:25555-25570. [DOI: 10.1039/d2cp03938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The S66x8 noncovalent interactions benchmark has been re-evaluated at the “sterling silver” level. Against this, a selection of computationally more economical alternatives has been assayed, ranging from localized CC to double hybrids and SAPT(DFT).
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Nisha Mehta
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Jan M. L. Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
48
|
Kanth P, Shankar Rao D, Krishna Prasad S, Singh B. Investigation of mesomorphic, photophysical and gelation behavior in aroylhydrazone based liquid crystals: Observation of mesophase crossover phenomena. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
50
|
Kato SI, Naito Y, Moriguchi R, Kitamura C, Matsumoto T, Yoshihara T, Ishi-I T, Nagata Y, Takeshita H, Yoshizawa K, Shiota Y, Suzuki K. Augmented Self-Association by Electrostatic Forces in Thienopyrrole-Fused Thiadiazoles that Contain an Ester instead of an Ether Linker. Chem Asian J 2021; 17:e202101341. [PMID: 34939334 DOI: 10.1002/asia.202101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Indexed: 11/11/2022]
Abstract
During the self-assembly of π-conjugated molecules, linkers and substituents can potentially add supportive noncovalent intermolecular interactions to π-stacking interactions. Here, we report the self-assembly behavior of thienopyrrole-fused thiadiazole (TPT) fluorescent dyes that possess ester or ether linkers and dodecyloxy side chains in solution and the condensed phase. A comparison of the self-association behavior of the ester- and ether-bridged compounds in solution using detailed UV-vis, fluorescence, and NMR spectroscopic studies revealed that the subtle replacement of the ether linkers by ester linkers leads to a distinct increase in the association constant (ca. 3-4 fold) and the enthalpic contribution (ca. 3 kcal mol-1). Theoretical calculations suggest that the ester linkers, which are in close proximity to one another due to the π-stacking interactions, induce attractive electrostatic forces and augment self-association. The self-assembly of TPT dyes into well-defined 1D clusters with high aspect ratios was observed, and their morphologies and crystallinity were investigated using SEM and X-ray diffraction analyses. TPTs with ester linkers exhibit a columnar liquid crystalline mesophase in the condensed phase.
Collapse
Affiliation(s)
- Shin-Ichiro Kato
- The University of Shiga Prefecture, Department of Materials Science, 2500 Hassaka-cho, 522-8533, Hikone, JAPAN
| | - Yukako Naito
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Ryo Moriguchi
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Chitoshi Kitamura
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Taisuke Matsumoto
- Kyushu University: Kyushu Daigaku, Institute for Materials Chemistry and Engineering, JAPAN
| | - Toshitada Yoshihara
- Gunma University Faculty of Engineering Graduate School of Engineering: Gunma Daigaku Rikogakubu Daigakuin Riko Gakufu, Molecular Science, JAPAN
| | - Tsutomu Ishi-I
- National Institute of Technology Kurume College, Biochemistry and Applied Chemistry, JAPAN
| | - Yuka Nagata
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Hiroki Takeshita
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Kazunari Yoshizawa
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Yoshihito Shiota
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Kazumasa Suzuki
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| |
Collapse
|