1
|
Bi W, Le M, Jia YG, Bao Z, Sun S, Wang C, Binks BP, Chen Y. Cholic Acid/Glutathione-Assembled Nanofibrils for Stabilizing Pickering Emulsion Biogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403667. [PMID: 39148219 DOI: 10.1002/smll.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Achieving the delicate balance required for both emulsion and gel characteristics, while also imparting biological functionality in gelled emulsions, poses a significant challenge. Herein, Pickering emulsion biogels stabilized is reported by novel biological nanofibrils assembled from natural glutathione (GSH) and a tripod cholic acid derivative (TCA) via electrostatic interactions. GSH, composed of tripeptides with carboxyl groups, facilitates the protonation and dissolution of TCA compounds in water and the electrostatic interactions between GSH and TCA trigger nanofibrillar assembly. Fibrous nuclei initially emerge, and the formed mature nanofibrils can generate a stable hydrogel at a low solid concentration. These nanofibrils exhibit efficient emulsifying capability, enabling the preparation of stable Pickering oil-in-water (O/W) emulsion gels with adjustable phase volume ratios. The entangled nanofibrils adsorbed at the oil-water interface restrict droplet movement, imparting viscoelasticity and injectability to the emulsions. Remarkably, the biocompatible nanofibrils and stabilized emulsion gels demonstrate promising scavenging properties against reactive oxygen species (ROS). This strategy may open new scenarios for the design of advanced emulsion gel materials using natural precursors and affordable building blocks for biomedical applications.
Collapse
Affiliation(s)
- Wenzhi Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China
| | - Zeyu Bao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shuo Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Chaoyang Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, andInnovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Rajbanshi A, Hilton E, Dreiss CA, Murnane D, Cook MT. Stimuli-Responsive Polymers for Engineered Emulsions. Macromol Rapid Commun 2024; 45:e2300723. [PMID: 38395416 DOI: 10.1002/marc.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Emulsions are complex. Dispersing two immiscible phases, thus expanding an interface, requires effort to achieve and the resultant dispersion is thermodynamically unstable, driving the system toward coalescence. Furthermore, physical instabilities, including creaming, arise due to presence of dispersed droplets of different densities to a continuous phase. Emulsions allow the formulation of oils, can act as vehicles to solubilize both hydrophilic and lipophilic molecules, and can be tailored to desirable rheological profiles, including "gel-like" behavior and shear thinning. The usefulness of emulsions can be further expanded by imparting stimuli-responsive or "smart" behaviors by inclusion of a stimuli-responsive emulsifier, polymer or surfactant. This enables manipulation like gelation, breaking, or aggregation, by external triggers such as pH, temperature, or salt concentration changes. This platform generates functional materials for pharmaceuticals, cosmetics, oil recovery, and colloid engineering, combining both smart behaviors and intrinsic benefit of emulsions. However, with increased functionality comes greater complexity. This review focuses on the use of stimuli-responsive polymers for the generation of smart emulsions, motivated by the great adaptability of polymers for this application and their efficacy as steric stabilizers. Stimuli-responsive emulsions are described according to the trigger used to provide the reader with an overview of progress in this field.
Collapse
Affiliation(s)
- Abhishek Rajbanshi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Eleanor Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Darragh Murnane
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Michael T Cook
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
3
|
Corker A, Ng HCH, Poole RJ, García-Tuñón E. 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials. SOFT MATTER 2019; 15:1444-1456. [PMID: 30667028 DOI: 10.1039/c8sm01936c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Additive manufacturing (AM) techniques and so-called 2D materials have undergone an explosive growth in the past decade. The former opens multiple possibilities in the manufacturing of multifunctional complex structures, and the latter on a wide range of applications from energy to water purification. Extrusion-based 3D printing, also known as Direct Ink Writing (DIW), robocasting, and often simply 3D printing, provides a unique approach to introduce advanced and high-added-value materials with limited availability into lab-scale manufacturing. On the other hand, 2D colloids of graphene oxide (GO) exhibit a fascinating rheology and can aid the processing of different materials to develop 'printable' formulations. This work provides an in-depth rheological study of GO suspensions with a wide range of behaviours from Newtonian-like to viscoelastic 'printable' soft solids. The combination of extensional and shear rheology reveals the network formation process as GO concentration increases from <0.1 vol% to 3 vol%. Our results also demonstrate that the quantification of 'printability' can be based on three rheology parameters: the stiffness of the network via the storage modulus (G'), the solid-to-liquid transition or flow stress (σf), and the flow transition index, which relates the flow and yield stresses (FTI = σf/σy).
Collapse
Affiliation(s)
- Andrew Corker
- Materials Innovation Factory, University of Liverpool, UK.
| | | | | | | |
Collapse
|
4
|
Chen X, Ma X, Yan C, Sun D, Yeung T, Xu Z. CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions. J Colloid Interface Sci 2019; 534:595-604. [DOI: 10.1016/j.jcis.2018.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
5
|
Tang X, Zhou H, Cai Z, Cheng D, He P, Xie P, Zhang D, Fan T. Generalized 3D Printing of Graphene-Based Mixed-Dimensional Hybrid Aerogels. ACS NANO 2018; 12:3502-3511. [PMID: 29613763 DOI: 10.1021/acsnano.8b00304] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Graphene-based mixed-dimensional materials hybridization is important for a myriad of applications. However, conventional manufacturing techniques face critical challenges in producing arbitrary geometries with programmable features, continuous interior networks, and multimaterials homogeneity. Here we propose a generalized three-dimensional (3D) printing methodology for graphene aerogels and graphene-based mixed-dimensional (2D + nD, where n is 0, 1, or 2) hybrid aerogels with complex architectures, by the development of hybrid inks and printing schemes to enable mix-dimensional hybrids printability, overcoming the limitations of multicomponents inhomogeneity and harsh post-treatments for additives removal. Importantly, nonplanar designed geometries are also demonstrated by shape-conformable printing on curved surfaces. We further demonstrate the 3D-printed hybrid aerogels as ultrathick electrodes in a symmetric compression tolerant microsupercapacitor, exhibiting quasi-proportionally enhanced areal capacitances at high levels of mass loading. The excellent performance is attributed to the sufficient ion- and electron-transport paths provided by the 3D-printed highly interconnected networks. The encouraging finding indicates tremendous potentials for practical energy storage applications. As a proof of concept, this general strategy provides avenues for various next-generation complex-shaped hybrid architectures from microscale to macroscale, for example, seawater desalination devices, electromagnetic shielding systems, and so forth.
Collapse
Affiliation(s)
- Xingwei Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Zuocheng Cai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Dongdong Cheng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Peisheng He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Peiwen Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Di Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| | - Tongxiang Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiaotong University , Shanghai 200240 , China
| |
Collapse
|
6
|
Li C, Liu R, Xue Q, Huang Y, Su Y, Shen Q, Wang D. Oil-in-Water Emulsion Templated and Crystallization-Driven Self-Assembly Formation of Poly(l-lactide)-Polyoxyethylene-Poly(l-lactide) Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13060-13067. [PMID: 29064708 DOI: 10.1021/acs.langmuir.7b02596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A molecular solution of an amphiphilic block copolymer may act as an oil phase by dispersing into an aqueous micellar system of small-molecular surfactant, forming oil-in-water (O/W) emulsion droplets. In this paper, an as-synthesized triblock copolymer poly(l-lactide)-polyoxyethylene-poly(l-lactide) (PLLA-PEO-PLLA) was dissolved in tetrahydrofuran (THF) and then added to an aqueous micellar solution of nonaethylene glycol monododecyl ether (AEO-9), forming initially coalescent O/W emulsion droplets in the size range of 35 nm-1.3 μm. Along with gradual volatilization of THF and simultaneous concentration of PLLA-PEO-PLLA molecules, the amphiphilic copolymer backbones themselves experience solution-based self-assembly, forming inverted core-corona aggregates within an oil-phase domain. Anisotropic coalescence of adjacent O/W emulsion droplets occurs, accompanied by further volatilization of THF. The hydrophilic block crystallization of core-forming PEOs and the hydrophobic chain stretch of corona-forming PLLAs together induce the intermediate formation of rod-like architectures with an average diameter of 300-800 nm, and this leads to a large-scale deposition of the triblock copolymer fibers with an average diameter of ∼2.0 μm. Consequently, this strategy could be of general interest in the self-assembly formation of amphiphilic block copolymer fibers and could also provide access to aqueous solution crystallization of hydrophilic segments of these copolymers.
Collapse
Affiliation(s)
- Chunyu Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Shan Da Nan Road 27, Jinan 250100, China
| | - Rui Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Shan Da Nan Road 27, Jinan 250100, China
| | - Qingbin Xue
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Shan Da Nan Road 27, Jinan 250100, China
| | - Yaping Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing 100190, China
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing 100190, China
| | - Qiang Shen
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Shan Da Nan Road 27, Jinan 250100, China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun North First Street 2, Beijing 100190, China
| |
Collapse
|
7
|
Xu M, Zhang W, Pei X, Jiang J, Cui Z, Binks BP. CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant. RSC Adv 2017. [DOI: 10.1039/c7ra03722h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Switchable n-decane-in-water Pickering emulsions were prepared using positively charged alumina nanoparticles in combination with a trace amount of the anionic surfactant sodium dodecyl sulfate (SDS) and equal moles of a CO2/N2 switchable surfactant.
Collapse
Affiliation(s)
- Maodong Xu
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Bernard P. Binks
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| |
Collapse
|
8
|
Minas C, Carnelli D, Tervoort E, Studart AR. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9993-9999. [PMID: 27677912 DOI: 10.1002/adma.201603390] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/10/2016] [Indexed: 05/25/2023]
Abstract
Bulk hierarchical porous ceramics with unprecedented strength-to-weight ratio and tunable pore sizes across three different length scales are printed by direct ink writing. Such an extrusion-based process relies on the formulation of inks in the form of particle-stabilized emulsions and foams that are sufficiently stable to resist coalescence during printing.
Collapse
Affiliation(s)
- Clara Minas
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Davide Carnelli
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Elena Tervoort
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Assembly of porous hierarchical copolymers/resin proppants: New approaches to smart proppant immobilization via molecular anchors. J Colloid Interface Sci 2016; 466:275-83. [PMID: 26745744 DOI: 10.1016/j.jcis.2015.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. EXPERIMENTS Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). FINDINGS The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack.
Collapse
|
11
|
Bi J, Zeng X, Tian D, Li H. Temperature-Responsive Switch Constructed from an Anthracene-Functionalized Pillar[5]arene-Based Host–Guest System. Org Lett 2016; 18:1092-5. [DOI: 10.1021/acs.orglett.6b00097] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiahai Bi
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiangfei Zeng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Demei Tian
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
12
|
Xiao M, Xian Y, Shi F. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition. Angew Chem Int Ed Engl 2015; 54:8952-6. [PMID: 26095923 DOI: 10.1002/anie.201502349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 12/17/2022]
Abstract
Macroscopic supramolecular assembly bridges fundamental research on molecular recognition and the potential applications as bulk supramolecular materials. However, challenges remain to realize stable precise assembly, which is significant for further functions. To handle this issue, the Marangoni effect is applied to achieve spontaneous locomotion of macroscopic building blocks to reach interactive distance, thus contributing to formation of ordered structures. By increasing the density of the building blocks, the driving force for assembly transforms from a hydrophobic-hydrophobic interaction to hydrophilic-hydrophilic interaction, which is favorable for introducing hydrophilic coatings with supramolecular interactive groups on matched surfaces, consequently realizing the fabrication of stable precise macroscopic supramolecular assemblies.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China)
| | - Yiming Xian
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China)
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China).
| |
Collapse
|
13
|
Xiao M, Xian Y, Shi F. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
García-Tuñon E, Barg S, Franco J, Bell R, Eslava S, D'Elia E, Maher RC, Guitian F, Saiz E. Printing in three dimensions with graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1688-93. [PMID: 25605024 DOI: 10.1002/adma.201405046] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/03/2014] [Indexed: 05/16/2023]
Abstract
Responsive graphene oxide sheets form non-covalent networks with optimum rheological properties for 3D printing. These networks have shear thinning behavior and sufficiently high elastic shear modulus (G') to build self-supporting 3D structures by direct write assembly. Drying and thermal reduction leads to ultra-light graphene-only structures with restored conductivity and elastomeric behavior.
Collapse
Affiliation(s)
- Esther García-Tuñon
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2BP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. NATURE MATERIALS 2015; 14:23-36. [PMID: 25344782 DOI: 10.1038/nmat4089] [Citation(s) in RCA: 1689] [Impact Index Per Article: 187.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/14/2014] [Indexed: 05/18/2023]
Abstract
Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.
Collapse
Affiliation(s)
- Ulrike G K Wegst
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Hao Bai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eduardo Saiz
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Antoni P Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert O Ritchie
- 1] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Materials Science &Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Bai S, Pappas C, Debnath S, Frederix PWJM, Leckie J, Fleming S, Ulijn RV. Stable emulsions formed by self-assembly of interfacial networks of dipeptide derivatives. ACS NANO 2014; 8:7005-13. [PMID: 24896538 DOI: 10.1021/nn501909j] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate the use of dipeptide amphiphiles that, by hand shaking of a biphasic solvent system for a few seconds, form emulsions that remain stable for months through the formation of nanofibrous networks at the organic/aqueous interface. Unlike absorption of traditional surfactants, the interfacial networks form by self-assembly through π-stacking interactions and hydrogen bonding. Altering the dipeptide sequence has a dramatic effect on the properties of the emulsions formed, illustrating the possibility of tuning emulsion properties by chemical design. The systems provide superior long-term stability toward temperature and salts compared to with sodium dodecyl sulfate (SDS) and can be enzymatically disassembled causing on-demand demulsification under mild conditions. The interfacial networks facilitate highly tunable and stable encapsulation and compartmentalization with potential applications in cosmetics, therapeutics, and food industry.
Collapse
|