1
|
Liu B, Bi S, Wang J, Xu P, Yu B. Synthesis of Acovenosides: Cardiac Glycosides with Potent Antitumor Activities. Org Lett 2024; 26:8725-8729. [PMID: 39420814 DOI: 10.1021/acs.orglett.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Acovenoside A (1), a cardiac glycoside featuring a unique l-acovenose at C-3 and a 1β,3β,14β-trihydroxy aglycone (namely, acovenosigenin A), shows promising antiproliferative activities. Herein, we report the synthesis of acovenoside A (1) together with a panel of its congeners. The synthesis features the stereoselective introduction of the 1β,14β-OH and C17-butenolide moieties starting from androstenedione (7) and gold(I)-catalyzed glycosylation with superarmed glycosyl ortho-alkynylbenzoates as donors.
Collapse
Affiliation(s)
- Benzhang Liu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuyang Bi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Matsumura T, Nishikawa T, Nakazaki A. Total Synthesis of 19-Nordigitoxigenin, An Antiaroside Y Aglycon. J Org Chem 2023; 88:15142-15150. [PMID: 37824414 DOI: 10.1021/acs.joc.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The first total synthesis of 19-nordigitoxigenin, an aglycon of antiroside Y, has been achieved. The key steps of our synthesis are (i) construction of the 19-norsteroid ring system via a Mizoroki-Heck reaction between a bromoanisole corresponding to the A-ring and cyclic alkene incorporating the CD-rings, followed by a Friedel-Crafts-type cyclodehydration, and (ii) incorporation of the butenolide moiety at C17 via a silyl-tethered radical cyclization and subsequent ozone oxidation.
Collapse
Affiliation(s)
- Taishi Matsumura
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
- Faculty of Science and Engineering, Iwate University, Ueda, Morioka 020-8551, Japan
| |
Collapse
|
3
|
Watanabe Y, Morozumi H, Mutoh H, Hagiwara K, Inoue M. Total Synthesis of (-)-Batrachotoxin Enabled by a Pd/Ag-Promoted Suzuki-Miyaura Coupling Reaction. Angew Chem Int Ed Engl 2023; 62:e202309688. [PMID: 37582693 DOI: 10.1002/anie.202309688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Batrachotoxin is an extremely potent cardio- and neurotoxic steroidal alkaloid found in certain species of frogs, birds, and beetles. The steroidal 6/6/6/5-membered carbocycle (ABCD-ring) is U-shaped and functionalized with two double bonds, a six-membered C3-hemiacetal across the AB-ring, a seven-membered oxazepane on the CD-ring, and a dimethylpyrrolecarboxy group at the D-ring carbon chain. These structural features present an unusual and formidable synthetic challenge. Herein we report a total synthesis of batrachotoxin based on a newly devised convergent strategy through a 22-step sequence. Enantiopure AB-ring and D-ring fragments were prepared and subjected to a crucial C(sp2 )-C(sp2 ) coupling reaction. Although both C(sp2 ) centers were sterically encumbered by proximal tetrasubstituted carbon atoms, Ag2 O strongly promoted the Pd(PPh3 )4 -catalyzed Suzuki-Miyaura coupling reaction at room temperature, thereby connecting the two fragments without damaging their preexisting functionalities. Subsequent treatment with t-BuOK induced Dieckmann condensation to cyclize the C-ring. The judiciously optimized functionalizations realized oxazepane formation, carbon chain extension, and pyrrole carboxylic acid condensation to deliver batrachotoxin.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisahiro Morozumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Mutoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Zhu L, Chen X, Feng J, Cui Y, Wu Q, Zhu D. Semirational Engineering of a Thermostable Carbonyl Reductase for the Precision Synthesis of (2 R,3 R)-2-Methyl-2-benzyl-3-hydroxycyclopentanone and Its Analogues. J Org Chem 2023; 88:11905-11912. [PMID: 37526991 DOI: 10.1021/acs.joc.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
2,2-Disubstituted-3-hydroxycyclopentanones are important chiral intermediates for natural products and pharmaceuticals. Through semirational engineering of a thermostable carbonyl reductase CBCR from Cupriavidus sp. BIS7, a mutant L91C/F93I was obtained. Mutant L91C/F93I showed 4- to 36-fold enhanced activities toward 2-methyl-2-benzyl-1,3-cyclopentanedione and its analogues, affording the (2R,3R)-stereoisomers with >99% ee and >99% de. Enzyme-substrate docking studies were performed to reveal the molecular basis for the activity and stereoselectivity improvements.
Collapse
Affiliation(s)
- Liangyan Zhu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Chen
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhui Feng
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Cui
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qiaqing Wu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dunming Zhu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wai H, Micalizio GC. Toward the Asymmetric de Novo Synthesis of Lanostanes: Construction of 7,11-Dideoxy-Δ 5-lucidadone H. J Org Chem 2022; 87:14975-14979. [PMID: 36206482 PMCID: PMC9662812 DOI: 10.1021/acs.joc.2c02042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efforts to establish an asymmetric entry to hexanorlanostanes has resulted in a concise synthesis of 7,11-dideoxy-Δ5-lucidadone H from epichlorohydrin. By exploiting metallacycle-mediated annulative cross-coupling (to establish a functionalized hydrindane) and stereoselective formation of the steroidal C9-C10 bond to establish a stereodefined 9-alkyl estrane, 14 subsequent steps have been established to generate a hexanorlanostane system. Key transformations include formal inversion of the C13 quaternary center, oxidative dearomatization/group-selective Wagner-Meerwein rearrangement, and Lewis acid mediated semi-Pinacol rearrangement.
Collapse
Affiliation(s)
- HtooTint Wai
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755, United States
| |
Collapse
|
6
|
Zhang YA, Palani V, Seim AE, Wang Y, Wang KJ, Wendlandt AE. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 2022; 378:383-390. [PMID: 36302032 PMCID: PMC9974169 DOI: 10.1126/science.add6852] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The stereoselective synthesis of complex targets requires the precise orchestration of chemical transformations that simultaneously establish the connectivity and spatial orientation of desired bonds. In this work, we describe a complementary paradigm for the synthesis of chiral molecules and their isomers, which tunes the three-dimensional structure of a molecule at a late stage. Key to the success of this strategy is the development of a mild and highly general photocatalytic method composed of decatungstate polyanion and disulfide cocatalysts, which enable the interconversion of unactivated tertiary stereogenic centers that were previously configurationally fixed. We showcase the versatility of this method-and the implementation of stereoediting logic-by the rapid construction of chiral scaffolds that would be challenging to access using existing tools and by the late-stage stereoediting of complex targets.
Collapse
|
7
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Abstract
This article describes a concise synthesis of cardiotonic steroids oleandrigenin (7) and its subsequent elaboration into the natural product rhodexin B (2) from the readily available intermediate (8) that could be derived from the commercially available steroids testosterone or DHEA via three-step sequences. These studies feature an expedient installation of the β16-oxidation based on β14-hydroxyl-directed epoxidation and subsequent epoxide rearrangement. The following singlet oxygen oxidation of the C17 furan moiety provides access to oleandrigenin (7) in 12 steps (LLS) and a 3.1% overall yield from 8. The synthetic oleandrigenin (7) was successfully glycosylated with l-rhamnopyranoside-based donor 28 using a Pd(II)-catalyst, and the subsequent deprotection under acidic conditions provided cytotoxic natural product rhodexin B (2) in a 66% yield (two steps).
Collapse
Affiliation(s)
- Zachary Fejedelem
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nolan Carney
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Zhang L, Oestreich M. Diastereotopic Group-Selective Intramolecular Aldol Reactions Initiated by Enantioselective Conjugate Silylation: Diastereodivergence Controlled by the Silicon Nucleophile. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Liangliang Zhang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
10
|
Watanabe S, Nishikawa T, Nakazaki A. Total Synthesis of the Cardiotonic Steroid (+)-Cannogenol. J Org Chem 2021; 86:3605-3614. [PMID: 33538172 DOI: 10.1021/acs.joc.0c02966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of (+)-cannogenol, an aglycon common to various biologically important cardiotonic glycosides, has been achieved. Synthesis of the versatile intermediate involves Mizoroki-Heck and intramolecular Diels-Alder reactions from the enantiomerically pure CD-ring segment, newly prepared in a multidecagram scale this time. Total synthesis by the site-selective transformations of the versatile intermediate demonstrated the applicability of our synthetic approach.
Collapse
Affiliation(s)
- Shogo Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Abstract
We report a unified total synthesis of five bufadienolides: bufalin (1), bufogenin B (2), bufotalin (3), vulgarobufotoxin (4), and 3-(N-succinyl argininyl) bufotalin (5). After the steroidal ABCD ring 8 was produced, the D ring was cross-coupled with a 2-pyrone moiety and stereoselectively epoxidized to generate 6. TMSOTf promoted a stereospecific 1,2-hydride shift from 6 to establish the β-oriented 2-pyrone of 19. Functional group manipulations from 19 furnished 1-5, which potently inhibited cancer cell growth.
Collapse
Affiliation(s)
- Shinsuke Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Plöger TA, Koep S, Militzer HC, Göller AH. Combined experimental and quantum mechanical elucidation of the synthetically accessible stereoisomers of Hydroxyestradienone (HED), the starting material for vilaprisan synthesis. J Comput Aided Mol Des 2020; 35:505-516. [PMID: 33094408 DOI: 10.1007/s10822-020-00353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Selective progesterone receptor modulators are promising therapeutic options for the treatment of uterine fibroids. Vilaprisan, a new chemical entity that was discovered at Bayer is currently in clinical development. In this study we provide a combined experimental and quantum chemical approach providing the data that allowed to present hydroxyestradienone as an acceptable starting material for drug substance synthesis. Hydroxyestradienone has four stereogenic centers leading to 8 diastereomers and 16 enantiomers of which only six diastereomers were synthetically accessible but two not. A computational multistep protocol resulting in density functional P2PLYP-D3(BJ)/dev2-TZVPP Gibbs free energies and SMD solvation free energies led to a clear separation between the existing and the synthetically not accessible enantiomers, whereas multiple geometry-based and cheminformatic descriptors were not able to explain experimental findings.
Collapse
Affiliation(s)
- Tobias A Plöger
- Product Supply, Pharmaceuticals, Bayer AG, 59192, Bergkamen, Germany
| | - Stefan Koep
- Product Supply, Pharmaceuticals, Bayer AG, 42096, Wuppertal, Germany
| | | | - Andreas H Göller
- Computational Molecular Design, Digital Technologies, Pharmaceuticals, Bayer AG, 42096, Wuppertal, Germany.
| |
Collapse
|
13
|
Gong J, Li J, Chen X, Zhang H, Zhu L, Bu D, Wang Q, Feng J, Wu Q, Zhu D. Highly Diastereoselective Synthesis of 2,2-Disubstituted Cyclopentane-1,3-diols via Stepwise Ketone Reduction Enabling Concise Chirality Construction. J Org Chem 2020; 85:9599-9606. [PMID: 32668161 DOI: 10.1021/acs.joc.0c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of 2,2-disubstituted trans,cis-cyclopentane-1,3-diols were synthesized in >99% dr through enzymatic reduction of enantiopure 2,2-disubstituted 3-hydroxycyclopentane-1-ones, which were prepared by highly stereoselective enzymatic reduction of the corresponding cyclodiketones. For 2-benzyl-2-methyl-3-oxocyclopentyl acetate, acetylation of the hydroxyl group significantly affected the reduction stereoselectivity, giving trans,cis-, trans,trans-, and cis,cis-2-benzyl-2-methyl-cyclopentane-1,3-diols in stereomerically pure form. This efficient and environmentally friendly method provides a practical approach to the synthesis of these chiral building blocks in single stereoisomeric form, demonstrating the power of biocatalysis in the concise chirality construction of complex chiral molecules.
Collapse
Affiliation(s)
- Jingyao Gong
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.,National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jianjiong Li
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Hongliu Zhang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Liangyan Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dandan Bu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
14
|
Cheng MJ, Zhong LP, Gu CC, Zhu XJ, Chen B, Liu JS, Wang L, Ye WC, Li CC. Asymmetric Total Synthesis of Bufospirostenin A. J Am Chem Soc 2020; 142:12602-12607. [PMID: 32658467 DOI: 10.1021/jacs.0c05479] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first and asymmetric total synthesis of bioactive bufospirostenin A, an unusual spirostanol with rearranged A/B rings, was accomplished. The synthetically challenging [5-7-6-5] tetracyclic ring system, found in bufospirostenin A and some other natural products, was efficiently constructed by the unique intramolecular rhodium-catalyzed Pauson-Khand reaction of an alkoxyallene-yne. The 11 stereocenters in the final product, including the 10 contiguous stereocenters, were installed diastereoselectively.
Collapse
Affiliation(s)
- Min-Jing Cheng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Ping Zhong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu-Jiang Zhu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Li J, Feng J, Chen X, Gong J, Cui Y, Zhang H, Bu D, Wu Q, Zhu D. Structure-Guided Directed Evolution of a Carbonyl Reductase Enables the Stereoselective Synthesis of (2S,3S)-2,2-Disubstituted-3-hydroxycyclopentanones via Desymmetric Reduction. Org Lett 2020; 22:3444-3448. [PMID: 32319785 DOI: 10.1021/acs.orglett.0c00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Li
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Jingyao Gong
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Hongliu Zhang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dandan Bu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
16
|
Taspinar Ö, Wilczek T, Erver J, Breugst M, Neudörfl JM, Schmalz HG. Synthesis of the 8,19-Epoxysteroid Eurysterol A. Chemistry 2020; 26:4256-4260. [PMID: 32031278 PMCID: PMC7187428 DOI: 10.1002/chem.202000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 01/21/2023]
Abstract
We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8−C19 oxy‐bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionalization of ring B was achieved by two different routes to set up a 5α‐hydroxy‐7‐en‐6‐one moiety. As a key step, an intramolecular oxa‐Michael addition was exploited to close the oxy‐bridge (8β,19‐epoxy unit). DFT calculations show this reversible transformation being exergonic by about −30 kJ mol−1. Along the optimized (scalable) synthetic sequence, the target natural product was obtained in only 11 steps in 5 % overall yield. In addition, an access to (isomeric) 7β,19‐epoxy steroids with a previously unknown pentacyclic ring system was discovered.
Collapse
Affiliation(s)
- Ömer Taspinar
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Tobias Wilczek
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Julian Erver
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Martin Breugst
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| |
Collapse
|
17
|
Recent Progress in Steroid Synthesis Triggered by the Emergence of New Catalytic Methods. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Fu S, Liu B. Recent progress in the synthesis of limonoids and limonoid-like natural products. Org Chem Front 2020. [DOI: 10.1039/d0qo00203h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent progress in syntheses of limonoids and limonoid-like natural products is reviewed. The current “state-of-art” advance on novel synthetic strategy are summarized and future outlook will be presented.
Collapse
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
19
|
Contente ML, Dall’Oglio F, Annunziata F, Molinari F, Rabuffetti M, Romano D, Tamborini L, Rother D, Pinto A. Stereoselective Reduction of Prochiral Cyclic 1,3-Diketones Using Different Biocatalysts. Catal Letters 2019. [DOI: 10.1007/s10562-019-03015-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
A biocatalytic hydroxylation-enabled unified approach to C19-hydroxylated steroids. Nat Commun 2019; 10:3378. [PMID: 31358750 PMCID: PMC6662754 DOI: 10.1038/s41467-019-11344-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/10/2019] [Indexed: 11/11/2022] Open
Abstract
Steroidal C19-hydroxylation is pivotal to the synthesis of naturally occurring bioactive C19-OH steroids and 19-norsteroidal pharmaceuticals. However, realizing this transformation is proved to be challenging through either chemical or biological synthesis. Herein, we report a highly efficient method to synthesize 19-OH-cortexolone in 80% efficiency at the multi-gram scale. The obtained C19-OH-cortexolone can be readily transformed to various synthetically useful intermediates including the industrially valuable 19-OH-androstenedione, which can serve as a basis for synthesis of C19-functionalized steroids as well as 19-nor steroidal drugs. Using this biocatalytic C19-hydroxylation method, the unified synthesis of six C19-hydroxylated pregnanes is achieved in just 4 to 9 steps. In addition, the structure of sclerosteroid B is revised on the basis of our synthesis. C19 hydroxylation is a unique feature of some bioactive steroids. Here, the authors developed a direct C19 hydroxylation approach to scalably access 19-OH-cortexolone in the host T. cucumeris and then converted the product into various pharmaceutically useful products via chemical synthesis.
Collapse
|
21
|
Urabe D, Inoue M. Convergent Total Synthesis of Bioactive Cardenolides. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
22
|
Khatri HR, Bhattarai B, Kaplan W, Li Z, Curtis Long MJ, Aye Y, Nagorny P. Modular Total Synthesis and Cell-Based Anticancer Activity Evaluation of Ouabagenin and Other Cardiotonic Steroids with Varying Degrees of Oxygenation. J Am Chem Soc 2019; 141:4849-4860. [PMID: 30802047 PMCID: PMC6516474 DOI: 10.1021/jacs.8b12870] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Cu(II)-catalyzed diastereoselective Michael/aldol cascade approach is used to accomplish concise total syntheses of cardiotonic steroids with varying degrees of oxygenation including cardenolides ouabagenin, sarmentologenin, 19-hydroxysarmentogenin, and 5- epi-panogenin. These syntheses enabled the subsequent structure activity relationship (SAR) studies on 37 synthetic and natural steroids to elucidate the effect of oxygenation, stereochemistry, C3-glycosylation, and C17-heterocyclic ring. Based on this parallel evaluation of synthetic and natural steroids and their derivatives, glycosylated steroids cannogenol-l-α-rhamnoside (79a), strophanthidol-l-α-rhamnoside (92), and digitoxigenin-l-α-rhamnoside (97) were identified as the most potent steroids demonstrating broad anticancer activity at 10-100 nM concentrations and selectivity (nontoxic at 3 μM against NIH-3T3, MEF, and developing fish embryos). Further analyses indicate that these molecules show a general mode of anticancer activity involving DNA-damage upregulation that subsequently induces apoptosis.
Collapse
Affiliation(s)
- Hem Raj Khatri
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Bijay Bhattarai
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Will Kaplan
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zhongzheng Li
- Department of Chemistry, Nankai University, Nankai, People Republic of China
| | | | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
23
|
Wang Y, Ju W, Tian H, Sun S, Li X, Tian W, Gui J. Facile Access to Bridged Ring Systems via Point-to-Planar Chirality Transfer: Unified Synthesis of Ten Cyclocitrinols. J Am Chem Soc 2019; 141:5021-5033. [PMID: 30827095 DOI: 10.1021/jacs.9b00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bridged ring systems are found in a wide variety of biologically active molecules including pharmaceuticals and natural products. However, the development of practical methods to access such systems with precise control of the planar chirality presents considerable challenges to synthetic chemists. In the context of our work on the synthesis of cyclocitrinols, a family of steroidal natural products, we herein report the development of a point-to-planar chirality transfer strategy for preparing bridged ring systems from readily accessible fused ring systems. Inspired by the proposed pathway for biosynthesis of cyclocitrinols from ergosterol, our strategy involves a bioinspired cascade rearrangement, which enabled the gram-scale synthesis of a common intermediate in nine steps and subsequent unified synthesis of 10 cyclocitrinols in an additional one to three steps. Our work provides experimental support for the proposed biosynthetic pathway and for the possible interrelationships between members of the cyclocitrinol family. In addition to being a convenient route to 5(10→19) abeo-steroids, our strategy also offers a generalized approach to bridged ring systems via point-to-planar chirality transfer. Mechanistic investigations suggest that the key cascade rearrangement involves a regioselective ring scission of a cyclopropylcarbinyl cation rather than a direct Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Wei Ju
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Suyun Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xinghui Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Weisheng Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
24
|
Fan JH, Hu YJ, Guo Q, Li S, Zhao J, Li CC. Asymmetric synthesis of the tetracyclic core of bufogargarizin C by an intramolecular [5 + 2] cycloaddition. Org Chem Front 2019. [DOI: 10.1039/c8qo01089g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A concise asymmetric synthesis of the synthetically challenging 7/5/6/5-tetracyclic core of bufogargarizin C by a unique intramolecular [5 + 2] cycloaddition was reported.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Ya-Jian Hu
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Qiang Guo
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Shaoping Li
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Jing Zhao
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| |
Collapse
|
25
|
Shiina I, Miesch M, Peter C, Geoffroy P, Murata T, Tonoi T. Diastereo–/Enantioselective Diels–Alder Synthesis of 14β-Hydroxysteroid Scaffolds: A Combined Experimental and DFT Study. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Urabe D, Nakagawa Y, Mukai K, Fukushima KI, Aoki N, Itoh H, Nagatomo M, Inoue M. Total Synthesis and Biological Evaluation of 19-Hydroxysarmentogenin-3-O-α-l-rhamnoside, Trewianin, and Their Aglycons. J Org Chem 2018; 83:13888-13910. [DOI: 10.1021/acs.joc.8b02219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Nakagawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Mukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei-ichiro Fukushima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoto Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. Total Synthesis of Aplysiasecosterol A. J Am Chem Soc 2018; 140:9211-9218. [PMID: 29939021 DOI: 10.1021/jacs.8b05070] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aplysiasecosterol A (1) is a structurally unusual 9,11-secosteroid isolated from the sea hare Aplysia kurodai. We have accomplished the first and asymmetric total synthesis of 1 in a convergent fashion. The left-hand segment bearing three adjacent stereocenters was constructed through desymmetrizing reduction, ketalization, and radical cyclization. A strategy of asymmetric 2-bromoallylation followed by spontaneous desymmetrizing lactolization enabled a more expeditious access to this segment. The right-hand segment was prepared through two different approaches: one featuring Myers alkylation and Suzuki-Miyaura coupling and the other relying upon Aggarwal lithiation-borylation and Zweifel-Evans olefination. The two fragments were coupled by a Reformatsky type reaction. The three consecutive stereocenters embedded in the central domain of 1 were generated by an iron-mediated, hydrogen atom transfer based radical cyclization reaction.
Collapse
Affiliation(s)
- Zhaohong Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zhicong Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Yu Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Tong Mu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
28
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
29
|
Yamashita S. Total Synthesis of Limonin, a Personal Story on Natural Product Synthesis. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Hung K, Hu X, Maimone TJ. Total synthesis of complex terpenoids employing radical cascade processes. Nat Prod Rep 2018; 35:174-202. [PMID: 29417970 PMCID: PMC5858714 DOI: 10.1039/c7np00065k] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: 2011-2017Radical cyclizations have a rich history in organic chemistry and have been particularly generous to the field of natural product synthesis. Owing to their ability to operate in highly congested molecular quarters, and with significant functional group compatibility, these transformations have enabled the synthesis of numerous polycyclic terpenoid natural products over the past several decades. Moreover, when programmed accordingly into a synthetic plan, radical cascade processes can be used to rapidly assemble molecular complexity, much in the same way nature rapidly constructs terpene frameworks through cationic cyclization pathways. This review highlights recent total syntheses of complex terpenoids (from 2011-2017) employing C-C bond-forming radical cascade sequences.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry, University of California - Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
31
|
Bhattarai B, Nagorny P. Enantioselective Total Synthesis of Cannogenol-3-O-α-l-rhamnoside via Sequential Cu(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. Org Lett 2017; 20:154-157. [PMID: 29244520 DOI: 10.1021/acs.orglett.7b03513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A concise and scalable enantioselective total synthesis of the natural cardenolides cannogenol and cannogenol-3-O-α-l-rhamnoside has been achieved in 18 linear steps. The synthesis features a Cu(II)-catalyzed enantioselective and diastereoselective Michael reaction/tandem aldol cyclization and a one-pot reduction/transposition, which resulted in a rapid (6 linear steps) assembly of a functionalized intermediate containing C19 oxygenation that could be elaborated to cardenolide cannogenol. In addition, a strategy for achieving regio- and stereoselective glycosylation at the C3 position of synthetic cannogenol was developed and applied to the preparation of cannogenol-3-O-α-l-rhamnoside.
Collapse
Affiliation(s)
- Bijay Bhattarai
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Sakata K, Wang Y, Urabe D, Inoue M. Synthesis of the Tetracyclic Structure of Batrachotoxin Enabled by Bridgehead Radical Coupling and Pd/Ni-Promoted Ullmann Reaction. Org Lett 2017; 20:130-133. [PMID: 29232148 DOI: 10.1021/acs.orglett.7b03482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroidal ABCD-ring system of the potent neurotoxin batrachotoxin was efficiently assembled in a convergent fashion. Bridgehead radical coupling between the simple AB-ring and D-ring fragments (3 and 4) formed the sterically congested linkage at the C9-oxygen-attached tetrasubstituted carbon. The C-ring was then cyclized by the Pd/Ni-promoted Ullmann reaction of the vinyl triflate and vinyl bromide of 19, giving rise to tetracyclic structure 1.
Collapse
Affiliation(s)
- Komei Sakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yinghua Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Abstract
Several Gold's reagents were synthesized from cyanuric chloride and N,N-dialkylformamides. These synthetic equivalents of N,N-dimethylformamide dimethyl acetal were used in an optimized and scalable procedure for the regioselective synthesis of a variety of enaminones from ketone starting materials, whose utility was demonstrated by the stereoselective synthesis of Rawal-type dienes.
Collapse
|
34
|
Bernhard Y, Thomson B, Ferey V, Sauthier M. Nickel-Catalyzed α-Allylation of Aldehydes and Tandem Aldol Condensation/Allylation Reaction with Allylic Alcohols. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703486] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yann Bernhard
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Brodie Thomson
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Vincent Ferey
- Chemistry and Biotechnology Development; SANOFI; 371 rue du Professeur Blayac 34184 Montpellier Cedex 04 France
| | - Mathieu Sauthier
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| |
Collapse
|
35
|
Bernhard Y, Thomson B, Ferey V, Sauthier M. Nickel-Catalyzed α-Allylation of Aldehydes and Tandem Aldol Condensation/Allylation Reaction with Allylic Alcohols. Angew Chem Int Ed Engl 2017; 56:7460-7464. [DOI: 10.1002/anie.201703486] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Yann Bernhard
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Brodie Thomson
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Vincent Ferey
- Chemistry and Biotechnology Development; SANOFI; 371 rue du Professeur Blayac 34184 Montpellier Cedex 04 France
| | - Mathieu Sauthier
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| |
Collapse
|
36
|
Michalak M, Michalak K, Wicha J. The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Nat Prod Rep 2017; 34:361-410. [PMID: 28378871 DOI: 10.1039/c6np00107f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: early studies through to March 2016Cardenolides and bufadienolides constitute an attractive class of biologically active steroid derivatives which have been used for the treatment of heart disease in traditional remedies as well as in modern medicinal therapy. Due to their application as therapeutic agents and their unique molecular structures, bearing unsaturated 5- or 6-membered lactones (or other heterocycles) attached to the steroid core, cardio-active steroids have received great attention, which has intensified during the last decade, in the synthetic organic community. Advances in the field of cross-coupling reactions have provided a powerful tool for the attachment of lactone subunits to the steroid core. This current review covers a methodological analysis of synthetic efforts to cardenolide and bufadienolide aglycones. Special emphasis is given to cross-coupling reactions applied for the attachment of lactone subunits at sterically very hindered positions of the steroid core. The carefully selected partial and total syntheses of representative cardio-active steroids will also be presented to exemplify recent achievements (improvements) in the field.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
37
|
Mizoguchi H. Recent Developments in Synthetic Strategies toward Highly Oxygenated Steroids Cardenolides. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Hui C, Pu F, Xu J. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis. Chemistry 2016; 23:4023-4036. [DOI: 10.1002/chem.201604110] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chunngai Hui
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Fan Pu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Jing Xu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| |
Collapse
|
39
|
Peter C, Ressault B, Geoffroy P, Miesch M. Concise Approach to (ent)-14 β-Hydroxysteroids through Highly Diastereo-/Enantioselective Diels-Alder Reactions. Chemistry 2016; 22:10808-12. [PMID: 27192692 DOI: 10.1002/chem.201601926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/07/2022]
Abstract
14β-Hydroxysteroids, especially 14β-hydroxyandrostane derivatives are closely related to the cardenolide skeletons. The latter were readily available through highly diastero/enantioselective Diels-Alder (DA) reactions requiring high pressure or Lewis acid activation. Moreover, in the presence of (R)- or (S)-carvone as a chiral dienophile, the DA-reaction takes place under chemodivergent parallel kinetic resolution control affording highly enantiomerically enriched 14β-hydroxysteroid derivatives or the corresponding (ent)-14β-hydroxysteroid derivatives.
Collapse
Affiliation(s)
- Clovis Peter
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Blandine Ressault
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Philippe Geoffroy
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Michel Miesch
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France.
| |
Collapse
|
40
|
Kaplan W, Khatri HR, Nagorny P. Concise Enantioselective Total Synthesis of Cardiotonic Steroids 19-Hydroxysarmentogenin and Trewianin Aglycone. J Am Chem Soc 2016; 138:7194-8. [PMID: 27232585 PMCID: PMC5015484 DOI: 10.1021/jacs.6b04029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expedient and scalable approach to cardiotonic steroids carrying oxygenation at the C11- and C19-positions has been developed and applied to the total asymmetric synthesis of steroids 19-hydroxysarmentogenin and trewianin aglycone as well as to the assembly of the panogenin core. This new approach features enantioselective organocatalytic oxidation of an aldehyde, diastereoselective Cu(OTf)2-catalyzed Michael reaction/tandem aldol cyclizations, and one-pot reduction/transposition reactions allowing a rapid (7 linear steps) assembly of a functionalized cardenolide skeleton. The ability to quickly set this steroidal core with preinstalled functional handles and diversity elements eliminates the need for difficult downstream functionalizations and substantially improves the accessibility to the entire class of cardenolides and their derivatives for biological evaluation.
Collapse
Affiliation(s)
- Will Kaplan
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Hem Raj Khatri
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
41
|
Zhou T, Feng F, Shi Y, Tian WS. Synthesis Toward and Stereochemical Assignment of Clathsterol: Exploring Diverse Strategies to Polyoxygenated Sterols. Org Lett 2016; 18:2308-11. [DOI: 10.1021/acs.orglett.6b01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tao Zhou
- Key Laboratory of Synthetic
Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Feng Feng
- Key Laboratory of Synthetic
Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yong Shi
- Key Laboratory of Synthetic
Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei-Sheng Tian
- Key Laboratory of Synthetic
Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Zhu D, Yu B. Total Synthesis of Linckosides A and B, the Representative Starfish Polyhydroxysteroid Glycosides with Neuritogenic Activities. J Am Chem Soc 2015; 137:15098-101. [PMID: 26595819 DOI: 10.1021/jacs.5b11276] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Linckosides A and B, two starfish metabolites with promising neuritogenic activities, are synthesized in a longest linear sequence of 32 steps and 0.5% overall yield; this represents the first synthesis of members of the polyhydroxysteroid glycoside family, which occur widely in starfishes.
Collapse
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| |
Collapse
|
43
|
Cichowicz NR, Kaplan W, Khomutnyk Y, Bhattarai B, Sun Z, Nagorny P. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. J Am Chem Soc 2015; 137:14341-8. [PMID: 26491886 PMCID: PMC4651737 DOI: 10.1021/jacs.5b08528] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.
Collapse
Affiliation(s)
- Nathan R. Cichowicz
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Will Kaplan
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Yaroslav Khomutnyk
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Bijay Bhattarai
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| |
Collapse
|
44
|
Li H, Mazet C. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification. J Am Chem Soc 2015; 137:10720-7. [DOI: 10.1021/jacs.5b06281] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Houhua Li
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest
Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest
Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Huang W, Rong HY, Xu J. Cyclic α-Alkoxyphosphonium Salts from (2-(Diphenylphosphino)phenyl)methanol and Aldehydes and Their Application in Synthesis of Vinyl Ethers and Ketones via Wittig Olefination. J Org Chem 2015; 80:6628-38. [PMID: 26067375 DOI: 10.1021/acs.joc.5b01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic α-alkoxyphosphonium salts have been synthesized from (2-(diphenylphosphino)phenyl)methanol and aldehydes in 36-89% yields. These phosphonium salts are bench-stable solids and undergo Wittig olefination with aldehydes under basic conditions (K2CO3 or t-BuOK) to form benzylic vinyl ethers, which are readily hydrolyzed to 1,2-disubstituted ethanones under acidic conditions. The formation mechanism of these phosphonium salts via hemiacetal is also proposed.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Hong-Ying Rong
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Jie Xu
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
46
|
Total Synthesis of Limonin. Angew Chem Int Ed Engl 2015; 54:8538-41. [DOI: 10.1002/anie.201503794] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/16/2015] [Indexed: 11/07/2022]
|
47
|
Yamashita S, Naruko A, Nakazawa Y, Zhao L, Hayashi Y, Hirama M. Total Synthesis of Limonin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Abstract
Described are the synthesis and application of α-t-butyldimethylsilyl-α-methoxyacetaldehyde as a formal methoxyvinyl cation equivalent. Addition of Grignard reagents to the title aldehyde, followed by treatment of the intermediate β-hydroxysilanes with KH, gives good yields of large Z-methoxyvinylated products. Assuming a Peterson-like elimination mechanism, one can infer that the Grignard addition proceeds with high syn selectivity. These results are consistent with a chelation control model involving coordination to the α-methoxy group in the title aldehyde rather than an alternative stereoelectronic Felkin-Anh-type model. It must be noted that a steric Felkin-Anh model also accounts for the observed stereochemistry. All told, the title reagent can be employed to efficiently append a Z-configured methoxyvinyl group to an appropriate R-M species, in two steps.
Collapse
|
49
|
Li X, Peng S, Li L, Huang Y. Synthesis of tetrasubstituted 1-silyloxy-3-aminobutadienes and chemistry beyond Diels-Alder reactions. Nat Commun 2015; 6:6913. [PMID: 25898310 PMCID: PMC4411301 DOI: 10.1038/ncomms7913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/12/2015] [Indexed: 01/20/2023] Open
Abstract
Electron-rich dienes have revolutionized the synthesis of complex compounds since the discovery of the legendary Diels–Alder cycloaddition reaction. This highly efficient bond-forming process has served as a fundamental strategy to assemble many structurally formidable molecules. Amino silyloxy butadienes are arguably the most reactive diene species that are isolable and bottleable. Since the pioneering discovery by Rawal, 1-amino-3-silyloxybutadienes have been found to undergo cycloaddition reactions with unparalleled mildness, leading to significant advances in both asymmetric catalysis and total synthesis of biologically active natural products. In sharp contrast, this class of highly electron-rich conjugated olefins has not been studied in non-cycloaddition reactions. Here we report a simple synthesis of tetrasubstituted 1-silyloxy-3-aminobutadienes, a complementarily substituted Rawal's diene. This family of molecules is found to undergo a series of intriguing chemical transformations orthogonal to cycloaddition reactions. Structurally diverse polysubstituted ring architectures are established in one step from these dienes. Electron-rich dienes have been shown to have multiple uses in synthesis by means of cycloaddition reactions. Here, the authors report a series of non-cycloaddition-based reactions of these compounds, giving access to 4-, 5-, 6- and 7-membered ring systems.
Collapse
Affiliation(s)
- Xijian Li
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Siyu Peng
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Li Li
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Huang
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
50
|
Mukai K, Kasuya S, Nakagawa Y, Urabe D, Inoue M. A convergent total synthesis of ouabagenin. Chem Sci 2015; 6:3383-3387. [PMID: 28706702 PMCID: PMC5490423 DOI: 10.1039/c5sc00212e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 11/21/2022] Open
Abstract
A convergent total synthesis of ouabagenin, an aglycon of cardenolide glycoside ouabain, was achieved by assembly of the AB-ring, D-ring and butenolide moieties.
A convergent total synthesis of ouabagenin, an aglycon of cardenolide glycoside ouabain, was achieved by assembly of the AB-ring, D-ring and butenolide moieties. The multiply oxygenated cis-decalin structure of the AB-ring was constructed from (R)-perillaldehyde through the Diels–Alder reaction and sequential oxidations. The intermolecular acetal formation of the AB-ring and D-ring fragments, and combination of the intramolecular radical and aldol reactions, assembled the requisite steroidal skeleton in a stereoselective fashion. Finally, stereoselective installation of the C17-butenolide via the Stille coupling and hydrogenation led to ouabagenin.
Collapse
Affiliation(s)
- Ken Mukai
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Satoshi Kasuya
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Yuki Nakagawa
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| |
Collapse
|