1
|
Neubert TJ, Hielscher MM, Walter K, Schröter CM, Stage M, Rosencrantz RR, Panis F, Rompel A, Balasubramanian K, Waldvogel SR, Börner HG. Electrosynthesis of Mussel-inspired Adhesive Polymers as a Novel Class of Transient Enzyme Stabilizers. Angew Chem Int Ed Engl 2025; 64:e202419684. [PMID: 39743873 DOI: 10.1002/anie.202419684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92 % conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes. The electrochemical activation yields quinone-solutions, which are free of undesired reactive compounds and eliminates the challenging step of isolating the reactive quinones. The DiDOPA quinones were employed in polyaddition reactions with multi-thiols, forming oligomers that functioned as transient enzyme stabilizers (TES). These TCC-TES-additives improved the thermal stability and the activity of tyrosinase in heat stress assays.
Collapse
Affiliation(s)
- Tilmann J Neubert
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Maximilian M Hielscher
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Keven Walter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Carolin M Schröter
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| | - Marion Stage
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Life Science & Bioprocesses, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
- Brandenburg University of Technology BTU, Institute for Materials Chemistry, Chair of Biofunctional Polymermaterials, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Felix Panis
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Kannan Balasubramanian
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Unter den Linden 6, 10117, Berlin, Germany
| | - Siegfried R Waldvogel
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Unter den Linden 6, 10117, Berlin, Germany
| |
Collapse
|
2
|
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep 2025; 15:3392. [PMID: 39870681 PMCID: PMC11772771 DOI: 10.1038/s41598-025-86130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors. We also discuss the practical application challenges associated with enhancing the efficiency of CPPs in terms of their stability and targeting ability. In conclusion, the combination of CPPs with tumor immunotherapy is a promising strategy that has potential for precision administration and requires further research for optimal implementation.
Collapse
Affiliation(s)
- Di Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Poulou E, Hackenberger CPR. Staudinger Ligation and Reactions – From Bioorthogonal Labeling to Next‐Generation Biopharmaceuticals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
4
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
5
|
Shaik MS, Nadiveedhi MR, Gundluru M, Sarva S, Allagadda R, Chippada AR, Chamarthi N, Cirandur SR. Green synthesis of phosphoramidates and evaluation of their α-amylase activity by in silico and in vitro studies. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1876239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Mohan Gundluru
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
- DST–PURSE Centre, Sri Venkateswara University, Tirupati, AP, India
| | - Santhisudha Sarva
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
| | | | - Appa Rao Chippada
- Department of Biochemistry, Sri Venkateswara University, Tirupati, AP, India
| | - Nagaraju Chamarthi
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
| | | |
Collapse
|
6
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
7
|
Liu W, Tang Y, Ma H, Li F, Hu Y, Yang Y, Yang J, Liao J, Liu N. Astatine-211 labelled a small molecule peptide: specific cell killing in vitro and targeted therapy in a nude-mouse model. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Extensive interest in the development of α-emitting radionuclides astatine-211 (211At) stems from the potential superiority for the treatment of smaller tumors, disseminated disease, and metastatic disease. VP2, a small molecule fusion peptide, can specifically bind to the VPAC1 receptor which is over-expressed in malignant epithelial tumors. In our recent study, we performed the preparation of 211At labelled VP2 through a one-step method. In this work, we explored the targeted radionuclide therapy with [211At]At-SPC-VP2 in vitro and in vivo. The cytotoxicity and specific cell killing of [211At]At-SPC-VP2 were evaluated using the CCK-8 assay. Compared with the [211At]NaAt, the VPAC1-targeted radionuclide compound [211At]At-SPC-VP2 showed more effective cytotoxicity in vitro. Targeted radioactive therapy trial was carried out in non-small-cell lung cancer (NSCLC) xenograft mice. For the therapy experiment, 4 groups of mice were injected via the tail vein with 370 kBq, 550 kBq, 740 kBq, 3 × ∼246 kBq of [211At]At-SPC-VP2, of which the second and third injections were given 4 and 8 days after the first injection, respectively. As controls, animals were treated with saline or 550 kBq [211At]NaAt. The body weight and tumor size of mice were monitored before the administration and every 2 days thereafter. Cytotoxic radiation of partial tissue samples such as kidneys, liver and stomach of mice were assessed by immunohistochemical examination. The tumor growth was inhibited and significantly improved survival was achieved in mice treated with [211At]At-SPC-VP2, two-fold prolongation of survival compared with the control group, which received normal saline or 550 kBq [211At]NaAt. No renal or hepatic toxicity was observed in the mice receiving [211At]At-SPC-VP2, but gastric pathological sections showed 211At uptake in stomach resulting in later toxicity, highlighting the importance of further enhancing the stability of labelled compounds.
Collapse
Affiliation(s)
- Weihao Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Yu Tang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Yingjiang Hu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu , China
| |
Collapse
|
8
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
9
|
Wang X, Su B, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Cascaded bio-responsive delivery of eNOS gene and ZNF580 gene to collaboratively treat hindlimb ischemia via pro-angiogenesis and anti-inflammation. Biomater Sci 2020; 8:6545-6560. [DOI: 10.1039/d0bm01573c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cascaded, bio-responsively delivered eNOS gene and ZNF580 gene overcome transfection bottlenecks and collaboratively exert anti-ischemic function via promoting angiogenesis and alleviating inflammation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Bin Su
- Department of Clinical Research
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jiaying Zhou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
10
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|
11
|
Park HJ, Kim S, Jeon EJ, Song IT, Lee H, Son Y, Hong HS, Cho SW. PEGylated substance P augments therapeutic angiogenesis in diabetic critical limb ischemia. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Christian AH, Jia S, Cao W, Zhang P, Meza AT, Sigman MS, Chang CJ, Toste FD. A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation. J Am Chem Soc 2019; 141:12657-12662. [PMID: 31361488 PMCID: PMC6781863 DOI: 10.1021/jacs.9b04744] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a data-driven, physical organic approach to the development of new methionine-selective bioconjugation reagents with tunable adduct stabilities. Statistical modeling of structural features described by intrinsic physical organic parameters was applied to the development of a predictive model and to gain insight into features driving the stability of adducts formed from the chemoselective coupling of oxaziridine and methionine thioether partners through Redox Activated Chemical Tagging (ReACT). From these analyses, a correlation between sulfimide stabilities and sulfimide ν (C═O) stretching frequencies was revealed. We exploited the rational gains in adduct stability exposed by this analysis to achieve the design and synthesis of a bis-oxaziridine reagent for peptide stapling. Indeed, we observed that a macrocyclic peptide formed by ReACT stapling at methionine exhibited improved uptake into live cells compared to an unstapled congener, highlighting the potential utility of this unique chemical tool for thioether modification. This work provides a template for the broader use of data-driven approaches to bioconjugation chemistry and other chemical biology applications.
Collapse
Affiliation(s)
- Alec H. Christian
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wendy Cao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patricia Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Arismel Tena Meza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Affiliation(s)
- Rashid Nazir
- Additives and Chemistry Group, Advanced FibersEmpa Swiss Federal Laboratories for Materials Science and Technology St. Gallen Switzerland
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced FibersEmpa Swiss Federal Laboratories for Materials Science and Technology St. Gallen Switzerland
| |
Collapse
|
14
|
Copper catalyzed tandem Chan–Lam type C—N and Staudinger-phosphite N—P coupling for the synthesis of N-arylphosphoramidates. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
15
|
Salmeia KA, Flaig F, Rentsch D, Gaan S. One-Pot Synthesis of P( O)-N Containing Compounds Using N-Chlorosuccinimide and Their Influence in Thermal Decomposition of PU Foams. Polymers (Basel) 2018; 10:E740. [PMID: 30960665 PMCID: PMC6403897 DOI: 10.3390/polym10070740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Synthesis of intermediate containing P(O)-Cl bonds is the key to converting P(O)-H bonds to P(O)-N. In this work we have performed chlorination reactions of different H-phosphinates and H-phosphonates using N-chlorosuccinimide as an environmentally-benign chlorinating agent. The chlorination reaction showed high yield and high selectivity for transformation of P(O)-H bonds into P(O)-Cl analogues, resulting in an easily separable succinimide as the by-product. Using a one-pot synthesis methodology, we have synthesized a series of P(O)-N containing derivatives whose synthesis was found to be dependent on the reaction solvents and the starting materials. The synthesized P(O)-N compounds were incorporated in flexible polyurethane foam (FPUF) and screened for their influence in thermal decomposition of FPUFs using thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC). All solid P(O)-N compounds influenced the first-stage decomposition of FPUFs, which resulted in an accelerated decomposition or temporary stabilization of this stage. However, the liquid P(O)-N derivatives volatilize at an earlier stage and could be active in the gas phase. In addition, they also work in condensed phase via acid catalyzed decomposition for FPUFs.
Collapse
Affiliation(s)
- Khalifah A Salmeia
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Florence Flaig
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
16
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Siebertz KD, Hackenberger CPR. Chemoselective triazole-phosphonamidate conjugates suitable for photorelease. Chem Commun (Camb) 2018; 54:763-766. [PMID: 29308492 DOI: 10.1039/c7cc08605a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we describe a new method for the conjugation of azide-containing target compounds that can be readily released as amines by irradiation with near UV light. This concept is based on a two-step protocol employing the chemoselective CuAAC and Staudinger-phosphonite reactions to deliver photo-cleavable phosphonamidate conjugates in high yields starting from 2-nitrobenzyl substituted phosphonites.
Collapse
Affiliation(s)
- Kristina D Siebertz
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|
18
|
Helma J, Leonhardt H, Hackenberger CPR, Schumacher D. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Methods Mol Biol 2018; 1728:67-93. [PMID: 29404991 DOI: 10.1007/978-1-4939-7574-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tub-tag labeling is a chemoenzymatic method that enables the site-specific labeling of proteins. Here, the natural enzyme tubulin tyrosine ligase incorporates noncanonical tyrosine derivatives to the terminal carboxylic acid of proteins containing a 14-amino acid recognition sequence called Tub-tag. The tyrosine derivative carries a unique chemical reporter allowing for a subsequent bioorthogonal modification of proteins with a great variety of probes. Here, we describe the Tub-tag protein modification protocol in detail and explain its utilization to generate labeled proteins for advanced applications in cell biology, imaging, and diagnostics.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Christian P R Hackenberger
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Dominik Schumacher
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Araman C, Thompson RE, Wang S, Hackl S, Payne RJ, Becker CFW. Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils. Chem Sci 2017; 8:6626-6632. [PMID: 28989689 PMCID: PMC5625290 DOI: 10.1039/c7sc02719b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Semisynthesis and characterization of homogeneously mono- and di-PEGylated full length PrP variants to study the impact of PEGylation (as N-glycan mimics) on protein folding and aggregation.
The prion protein (PrP) is an N-glycosylated protein attached to the outer leaflet of eukaryotic cell membranes via a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrPSc) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrPC) into PrPSc and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs. Here we report a semisynthetic approach to generate PrP variants modified with monodisperse polyethyleneglycol (PEG) units as mimics of N-glycans. Incorporating PEG at glycosylation sites 181 and 197 in PrP induced only small changes to the secondary structure when compared to unmodified, wildtype PrP. More importantly, in vitro aggregation was abrogated for all PEGylated PrP variants under conditions at which wildtype PrP aggregated. Furthermore, the addition of PEGylated PrP as low as 10 mol% to wildtype PrP completely blocked aggregation. A similar effect was observed for synthetic PEGylated PrP segments comprising amino acids 179–231 alone if these were added to wildtype PrP in aggregation assays. This behavior raises the question if large N-glycans interfere with aggregation in vivo and if PEGylated PrP peptides could serve as potential therapeutics.
Collapse
Affiliation(s)
- Can Araman
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Robert E Thompson
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Siyao Wang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Stefanie Hackl
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Christian F W Becker
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| |
Collapse
|
20
|
Hoffmann E, Streichert K, Nischan N, Seitz C, Brunner T, Schwagerus S, Hackenberger CPR, Rubini M. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites. MOLECULAR BIOSYSTEMS 2017; 12:1750-5. [PMID: 26776361 DOI: 10.1039/c5mb00857c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.
Collapse
Affiliation(s)
- E Hoffmann
- Department of Organic Chemistry, University of Konstanz, D-78464 Konstanz, Germany.
| | - K Streichert
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - N Nischan
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - C Seitz
- Department of Biochemical Pharmacology, University of Konstanz, D-78464 Konstanz, Germany
| | - T Brunner
- Department of Biochemical Pharmacology, University of Konstanz, D-78464 Konstanz, Germany
| | - S Schwagerus
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - C P R Hackenberger
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - M Rubini
- Department of Organic Chemistry, University of Konstanz, D-78464 Konstanz, Germany.
| |
Collapse
|
21
|
Zheng Y, Li Z, Ren J, Liu W, Wu Y, Zhao Y, Wu C. Artificial disulfide-rich peptide scaffolds with precisely defined disulfide patterns and a minimized number of isomers. Chem Sci 2017; 8:2547-2552. [PMID: 28553486 PMCID: PMC5431680 DOI: 10.1039/c6sc05710a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich peptides are emerging as potential templates for drug design applications. However, the synthesis and reengineering of disulfide-rich peptides are challenging, owing to the complexity of the oxidative folding process involving a number of diverse isomeric structures. Novel disulfide-rich peptide scaffolds that are not besieged by their disulfide isomers are still greatly desired. In this work, we report the design and synthesis of a novel class of artificial disulfide-rich peptide scaffolds with precisely defined disulfide patterns and a minimized number of isomers. In theory, natural peptides with three disulfide bonds have 15 possible isomers. By rationally engineering the thiol-framework of a peptide containing six cysteines with penicillamines and a dithiol amino acid, we demonstrated, for the first time, that the total number of isomers formed after oxidative folding can be decreased to a minimum of two (i.e., from 15 to 2). As fewer isomeric folds are involved in the oxidative folding, the pathway of the folding becomes more concise and the yield of the artificial scaffolds is substantially increased compared to that of its six-cysteine-containing analogue, which makes the artificial disulfide-rich scaffolds (with only 2 predefined isomeric folds) extremely promising for being exploited as structurally complex templates for the design of peptide therapeutics and ligands.
Collapse
Affiliation(s)
- Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Jing Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Weidong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Yaqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| |
Collapse
|
22
|
Chen Y, Li T, Li J, Cheng S, Wang J, Verma C, Zhao Y, Wu C. Stabilization of peptides against proteolysis through disulfide-bridged conjugation with synthetic aromatics. Org Biomol Chem 2017; 15:1921-1929. [DOI: 10.1039/c6ob02786e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed an efficient strategy for the stabilization of peptides against proteolysis, which involves noncovalent π–π interactions between aromatic amino acid residues in peptides and synthetic electron-deficient aromatics.
Collapse
Affiliation(s)
- Yaqi Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tao Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jianguo Li
- Singapore Eye Research Institute
- Singapore
- Bioinformatics Institute (A*STAR)
- Singapore
| | - Shiyan Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinghui Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chandra Verma
- Bioinformatics Institute (A*STAR)
- Singapore
- National University of Singapore
- Department of Biological Sciences
- Singapore
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
23
|
Bertran-Vicente J, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Direct access to site-specifically phosphorylated-lysine peptides from a solid-support. Org Biomol Chem 2016; 13:6839-43. [PMID: 26018866 DOI: 10.1039/c5ob00734h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation is a key process for changing the activity and function of proteins. The impact of phospho-serine (pSer), -threonine (pThr) and -tyrosine (pTyr) is certainly understood for some proteins. Recently, peptides and proteins containing N-phosphorylated amino acids such as phosphoarginine (pArg), phosphohistidine (pHis) and phospholysine (pLys) have gained interest because of their different chemical properties and stability profiles. Due to its high intrinsic lability, pLys is the least studied within this latter group. In order to gain insight into the biological role of pLys, chemical and analytical tools, which are compatible with the labile P(=O)-N bond, are highly sought-after. We recently reported an in-solution synthetic approach to incorporate pLys residues in a site-specific manner into peptides by taking advantage of the chemoselectivity of the Staudinger-phosphite reaction. While the in-solution approach allows us to circumvent the critical TFA cleavage, it still requires several transformations and purification steps to finally deliver pLys peptides. Here we report the synthesis of site-specific pLys peptides directly from a solid support by using a base labile resin. This straightforward and highly efficient approach facilitates the synthesis of various site-specific pLys-containing peptides and lays the groundwork for future studies about this elusive protein modification.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, Berlin 13125, Germany.
| | | | | | | | | |
Collapse
|
24
|
Nischan N, Kasper MA, Mathew T, Hackenberger CPR. Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions. Org Biomol Chem 2016; 14:7500-8. [DOI: 10.1039/c6ob00843g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With this study we introduce new unsymmetrical phosphites to obtain lipidated peptide-conjugates starting from easily accessible azide-modified amino acid or peptide precursors.
Collapse
Affiliation(s)
- N. Nischan
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| | - M.-A. Kasper
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
- 13125 Berlin
- Germany
- Humboldt-Universität zu Berlin
- Institut für Chemie
| | - T. Mathew
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| | - C. P. R. Hackenberger
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| |
Collapse
|
25
|
Schumacher D, Helma J, Mann FA, Pichler G, Natale F, Krause E, Cardoso MC, Hackenberger CPR, Leonhardt H. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angew Chem Int Ed Engl 2015; 54:13787-91. [DOI: 10.1002/anie.201505456] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/17/2015] [Indexed: 12/20/2022]
|
26
|
Schumacher D, Helma J, Mann FA, Pichler G, Natale F, Krause E, Cardoso MC, Hackenberger CPR, Leonhardt H. Vielseitige, effiziente und ortsspezifische Proteinfunktionalisierung durch das Enzym Tubulin-Tyrosin-Ligase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Chen Y, Yang C, Li T, Zhang M, Liu Y, Gauthier MA, Zhao Y, Wu C. The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides. Biomacromolecules 2015; 16:2347-55. [PMID: 26156023 DOI: 10.1021/acs.biomac.5b00567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of noncovalent interactions to the stability of naturally occurring peptides and proteins has been generally acknowledged, though how these can be rationally manipulated to improve the proteolytic stability of synthetic peptides remains to be explored. In this study, a platform to enhance the proteolytic stability of peptides was developed by controllably dimerizing them into α-helical dimers, connected by two disulfide bonds. This platform not only directs peptides toward an α-helical conformation but permits control of the interfacial hydrophobic interactions between the peptides of the dimer. Using two model dimeric systems constructed from the N-terminal α-helix of RNase A and known inhibitors for the E3 ubiquitin ligase MDM2 (and its homologue MDMX), a deeper understanding into the interplay of disulfide bonds, α-helicity, and hydrophobic interactions on enhanced proteolytic stability was sought out. Results reveal that all three parameters play an important role on attaining ultrahigh proteolytic resistance, a concept that can be exploited for the development of future peptide therapeutics. The understanding gained through this study will enable this strategy to be tailored to new peptides because the proposed strategy displays substantial tolerance to sequence permutation. It thus appears promising for conveniently creating prodrugs composed entirely of the therapeutic peptide itself (i.e., in the form of a dimer).
Collapse
Affiliation(s)
- Yaqi Chen
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Chaoqiong Yang
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tao Li
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Miao Zhang
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yang Liu
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Marc A Gauthier
- ‡Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| | - Yibing Zhao
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Chuanliu Wu
- †The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
28
|
Schmitz M, Kuhlmann M, Reimann O, Hackenberger CR, Groll J. Side-chain cysteine-functionalized poly(2-oxazoline)s for multiple peptide conjugation by native chemical ligation. Biomacromolecules 2015; 16:1088-94. [PMID: 25728550 PMCID: PMC4428813 DOI: 10.1021/bm501697t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Indexed: 12/19/2022]
Abstract
We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol-ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements.
Collapse
Affiliation(s)
- Michael Schmitz
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Kuhlmann
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Oliver Reimann
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian
P. R. Hackenberger
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Humboldt
Universität zu Berlin, Department
Chemie, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Jürgen Groll
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
29
|
Wang ZPA, Tian CL, Zheng JS. The recent developments and applications of the traceless-Staudinger reaction in chemical biology study. RSC Adv 2015. [DOI: 10.1039/c5ra21496c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioorthogonal reactions are one of the most important topics in chemical biology. Traceless-Staudinger reaction/ligation has been investigated and widely applied in life science. Herein, the current developments, mechanism studies, and biological applications are summarized.
Collapse
Affiliation(s)
- Zhi-Peng A. Wang
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
- Department of Chemistry
| | - Chang-Lin Tian
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| |
Collapse
|
30
|
Li Y, Li T, Wang J, Bao X, Zhao Y, Wu C. Multivalent peptides displayed on OEGMA-based copolymers for the modulation of protein–protein interactions. Polym Chem 2015. [DOI: 10.1039/c5py01080b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new class of copolymer–peptide conjugates which exploits the comb-shaped pOEGMA as a polymeric backbone, into which multiple copies of peptide chains that can modulate intracellular p53–Mdm2 or p53–Mdm4 protein interactions are incorporated.
Collapse
Affiliation(s)
- Yujie Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tao Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinghui Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaojia Bao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
31
|
Vallée MRJ, Majkut P, Krause D, Gerrits M, Hackenberger CPR. Chemoselective Bioconjugation of Triazole Phosphonites in Aqueous Media. Chemistry 2014; 21:970-4. [DOI: 10.1002/chem.201404690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 11/07/2022]
|
32
|
Nischan N, Hackenberger CPR. Site-specific PEGylation of proteins: recent developments. J Org Chem 2014; 79:10727-33. [PMID: 25333794 DOI: 10.1021/jo502136n] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The attachment of linear polyethylene glycol (PEG) to peptides and proteins for their stabilization for in vivo applications is a milestone in pharmaceutical research and protein-drug development. However, conventional methods often lead to heterogeneous PEGylation mixtures with reduced protein activity. Current synthetic efforts aim to provide site-specific approaches by chemoselective targeting of canonical and noncanonical amino acids and to improve the PEG architecture. This synopsis highlights recent work in this area, which also resulted in improved pharmacokinetics of peptide and protein therapeutics.
Collapse
Affiliation(s)
- Nicole Nischan
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
33
|
Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC. A novel cell permeable DNA replication and repair marker. Nucleus 2014; 5:590-600. [PMID: 25484186 PMCID: PMC4615156 DOI: 10.4161/nucl.36290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells.
Collapse
Affiliation(s)
- Henry D Herce
- a Department of Biology , Technische Universität Darmstadt ; Darmstadt , Germany
| | | | | | | | | |
Collapse
|
34
|
Blum AP, Kammeyer JK, Yin J, Crystal DT, Rush AM, Gilson MK, Gianneschi NC. Peptides displayed as high density brush polymers resist proteolysis and retain bioactivity. J Am Chem Soc 2014; 136:15422-37. [PMID: 25314576 PMCID: PMC4227725 DOI: 10.1021/ja5088216] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility.
Collapse
Affiliation(s)
- Angela P Blum
- Department of Chemistry & Biochemistry, ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Schumacher D, Hackenberger CPR. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr Opin Chem Biol 2014; 22:62-9. [DOI: 10.1016/j.cbpa.2014.09.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/01/2022]
|
36
|
Bertran-Vicente J, Serwa RA, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Site-specifically phosphorylated lysine peptides. J Am Chem Soc 2014; 136:13622-8. [PMID: 25196693 DOI: 10.1021/ja507886s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation controls major processes in cells. Although phosphorylation of serine, threonine, and tyrosine and also recently histidine and arginine are well-established, the extent and biological significance of lysine phosphorylation has remained elusive. Research in this area has been particularly limited by the inaccessibility of peptides and proteins that are phosphorylated at specific lysine residues, which are incompatible with solid-phase peptide synthesis (SPPS) due to the intrinsic acid lability of the P(═O)-N phosphoramidate bond. To address this issue, we have developed a new synthetic route for the synthesis of site-specifically phospholysine (pLys)-containing peptides by employing the chemoselectivity of the Staudinger-phosphite reaction. Our synthetic approach relies on the SPPS of unprotected ε-azido lysine-containing peptides and their subsequent reaction to phosphoramidates with phosphite esters before they are converted into the natural modification via UV irradiation or basic deprotection. With these peptides in hand, we demonstrate that electron-transfer dissociation tandem mass spectrometry can be used for unambiguous assignment of phosphorylated-lysine residues within histone peptides and that these peptides can be detected in cell lysates using a bottom-up proteomic approach. This new tagging method is expected to be an essential tool for evaluating the biological relevance of lysine phosphorylation.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|