1
|
Yared MJ, Chagneau C, Barraud P. Imino chemical shift assignments of tRNA Asp, tRNA Val and tRNA Phe from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:323-331. [PMID: 39365419 PMCID: PMC11511762 DOI: 10.1007/s12104-024-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Transfer RNAs (tRNAs) are an essential component of the protein synthesis machinery. In order to accomplish their cellular functions, tRNAs go through a highly controlled biogenesis process leading to the production of correctly folded tRNAs. tRNAs in solution adopt the characteristic L-shape form, a stable tertiary conformation imperative for the cellular stability of tRNAs, their thermotolerance, their interaction with protein and RNA complexes and their activity in the translation process. The introduction of post-transcriptional modifications by modification enzymes, the global conformation of tRNAs, and their cellular stability are highly interconnected. We aim to further investigate this existing link by monitoring the maturation of bacterial tRNAs in E. coli extracts using NMR. Here, we report on the 1H, 15N chemical shift assignment of the imino groups and some amino groups of unmodified and modified E. coli tRNAAsp, tRNAVal and tRNAPhe, which are essential for characterizing their maturation process using NMR spectroscopy.
Collapse
Affiliation(s)
- Marcel-Joseph Yared
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Carine Chagneau
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France.
| |
Collapse
|
2
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
4
|
Ma S, Kotar A, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519659. [PMID: 36711709 PMCID: PMC9881868 DOI: 10.1101/2023.01.03.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As an essential post-transcriptional regulator of gene expression, microRNA (miR) levels must be strictly maintained. The biogenesis of many, but not all, miRs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers and interestingly, its biogenesis is not known to be regulated by protein binding partners. Therefore, the intrinsic structural properties of pre-miR-31 can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of the precursor element of miR-31 (pre-miR-31) to investigate the role of distinct structural elements in regulating Dicer processing. We found that the presence or absence of mismatches within the helical stem do not strongly influence Dicer processing of the pre-miR. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by Dicer. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influence both Dicer binding and processing. Our results enrich our understanding of the active role that RNA structure plays in regulating Dicer processing which has direct implications for control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Jones AN, Tikhaia E, Mourão A, Sattler M. Structural effects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Res 2022; 50:2350-2362. [PMID: 35166835 PMCID: PMC8887474 DOI: 10.1093/nar/gkac080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The A-repeat region of the lncRNA Xist is critical for X inactivation and harbors several N6-methyladenosine (m6A) modifications. How the m6A modification affects the conformation of the conserved AUCG tetraloop hairpin of the A-repeats and how it can be recognized by the YTHDC1 reader protein is unknown. Here, we report the NMR solution structure of the (m6A)UCG hairpin, which reveals that the m6A base extends 5′ stacking of the A-form helical stem, resembling the unmethylated AUCG tetraloop. A crystal structure of YTHDC1 bound to the (m6A)UCG tetraloop shows that the (m6A)UC nucleotides are recognized by the YTH domain of YTHDC1 in a single-stranded conformation. The m6A base inserts into the aromatic cage and the U and C bases interact with a flanking charged surface region, resembling the recognition of single-stranded m6A RNA ligands. Notably, NMR and fluorescence quenching experiments show that the binding requires local unfolding of the upper stem region of the (m6A)UCG hairpin. Our data show that m6A can be readily accommodated in hairpin loop regions, but recognition by YTH readers requires local unfolding of flanking stem regions. This suggests how m6A modifications may regulate lncRNA function by modulating RNA structure.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ekaterina Tikhaia
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
6
|
LeBlanc RM, Kasprzak WK, Longhini AP, Olenginski LT, Abulwerdi F, Ginocchio S, Shields B, Nyman J, Svirydava M, Del Vecchio C, Ivanic J, Schneekloth JS, Shapiro BA, Dayie TK, Le Grice SFJ. Structural insights of the conserved "priming loop" of hepatitis B virus pre-genomic RNA. J Biomol Struct Dyn 2021; 40:9761-9773. [PMID: 34155954 PMCID: PMC10167916 DOI: 10.1080/07391102.2021.1934544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew P. Longhini
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fardokht Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stefano Ginocchio
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Brigit Shields
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Julie Nyman
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Maryia Svirydava
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
7
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
8
|
Duchardt-Ferner E, Juen M, Bourgeois B, Madl T, Kreutz C, Ohlenschläger O, Wöhnert J. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine. Nucleic Acids Res 2020; 48:949-961. [PMID: 31754719 PMCID: PMC6954400 DOI: 10.1093/nar/gkz1113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Michael Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Oliver Ohlenschläger
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
9
|
Weickhmann AK, Keller H, Wurm JP, Strebitzer E, Juen MA, Kremser J, Weinberg Z, Kreutz C, Duchardt-Ferner E, Wöhnert J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res 2019; 47:2654-2665. [PMID: 30590743 PMCID: PMC6411933 DOI: 10.1093/nar/gky1283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)—the product of SAM-dependent methyl group transfer reactions—and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational ‘OFF’-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.
Collapse
Affiliation(s)
- A Katharina Weickhmann
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Heiko Keller
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jan P Wurm
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Bavaria, Germany
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael A Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Institute of Informatics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
10
|
Wolter AC, Pianu A, Kremser J, Strebitzer E, Schnieders R, Fürtig B, Kreutz C, Duchardt-Ferner E, Wöhnert J. NMR resonance assignments for the GTP-binding RNA aptamer 9-12 in complex with GTP. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:281-286. [PMID: 31030336 DOI: 10.1007/s12104-019-09892-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Ligand binding RNAs such as artificially created RNA-aptamers are structurally highly diverse. Therefore, they represent important model systems for investigating RNA-folding, RNA-dynamics and the molecular recognition of chemically very different ligands, ranging from small molecules to whole cells. High-resolution structures of RNA-aptamers in complex with their cognate ligands often reveal unexpected tertiary structure elements. Recent studies on different classes of aptamers binding the nucleotide triphosphate GTP as a ligand showed that these systems not only differ widely in binding affinity but also in their ligand binding modes and structural complexity. We initiated the NMR-based structure determination of the high-affinity binding GTP-aptamer 9-12 in order to gain further insights into the diversity of ligand binding modes and structural variability of those aptamers. Here, we report 1H, 13C and 15N resonance assignments for the GTP 9-12-aptamer bound to GTP as the prerequisite for the structure determination by solution NMR.
Collapse
Affiliation(s)
- Antje C Wolter
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany.
| | - Angela Pianu
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Robbin Schnieders
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany.
| |
Collapse
|
11
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
12
|
Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019; 9:E123. [PMID: 31252628 PMCID: PMC6680826 DOI: 10.3390/metabo9070123] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raja Roy
- Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
13
|
Zhang H, Keane SC. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1541. [PMID: 31025514 PMCID: PMC7169810 DOI: 10.1002/wrna.1541] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The characterization of functional yet nonprotein coding (nc) RNAs has expanded the role of RNA in the cell from a passive player in the central dogma of molecular biology to an active regulator of gene expression. The misregulation of ncRNA function has been linked with a variety of diseases and disorders ranging from cancers to neurodegeneration. However, a detailed molecular understanding of how ncRNAs function has been limited; due, in part, to the difficulties associated with obtaining high-resolution structures of large RNAs. Tertiary structure determination of RNA as a whole is hampered by various technical challenges, all of which are exacerbated as the size of the RNA increases. Namely, RNAs tend to be highly flexible and dynamic molecules, which are difficult to crystallize. Biomolecular nuclear magnetic resonance (NMR) spectroscopy offers a viable alternative to determining the structure of large RNA molecules that do not readily crystallize, but is itself hindered by some technical limitations. Recently, a series of advancements have allowed the biomolecular NMR field to overcome, at least in part, some of these limitations. These advances include improvements in sample preparation strategies as well as methodological improvements. Together, these innovations pave the way for the study of ever larger RNA molecules that have important biological function. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nat Commun 2018; 9:2479. [PMID: 29946118 PMCID: PMC6018666 DOI: 10.1038/s41467-018-04871-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional mechanisms play a predominant role in the control of microRNA (miRNA) production. Recognition of the terminal loop of precursor miRNAs by RNA-binding proteins (RBPs) influences their processing; however, the mechanistic basis for how levels of individual or subsets of miRNAs are regulated is mostly unexplored. We previously showed that hnRNP A1, an RBP implicated in many aspects of RNA processing, acts as an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a. Here, by using an integrative structural biology approach, we show that hnRNP A1 forms a 1:1 complex with pri-mir-18a where both RNA recognition motifs (RRMs) bind to cognate RNA sequence motifs in the terminal loop of pri-mir-18a. Terminal loop binding induces an allosteric destabilization of base-pairing in the pri-mir-18a stem that promotes its downstream processing. Our results highlight terminal loop RNA recognition by RBPs as a potential general principle of miRNA biogenesis and regulation. hnRNP A1 is an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a, of the oncomiR-1 cluster. Here the authors employ an integrative structural biology approach and provide insights into the molecular mechanism of how hnRNP A1 facilitates pri-mir-18a biogenesis.
Collapse
|
15
|
Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018; 26:490-498.e3. [PMID: 29398526 PMCID: PMC5842133 DOI: 10.1016/j.str.2018.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS]2; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs.
Collapse
Affiliation(s)
- Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Keane
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Zhaoming Su
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rossitza N Irobalieva
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Verna Van
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Carly A Sciandra
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Duchardt-Ferner E, Wöhnert J. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2017; 69:101-110. [PMID: 29032519 DOI: 10.1007/s10858-017-0140-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 05/24/2023]
Abstract
Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1H,31P-correlation experiments as well as a BEST-HNP experiment exploiting 3hJN,P rather than 2hJH,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
17
|
Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 2017; 628:42-56. [PMID: 28600200 DOI: 10.1016/j.abb.2017.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the structure and dynamics of RNA, because many biologically important RNAs have conformationally flexible structures, which makes them difficult to crystallize. Functional, independently folded RNA domains, range in size between simple stem-loops of as few as 10-20 nucleotides, to 50-70 nucleotides, the size of tRNA and many small ribozymes, to a few hundred nucleotides, the size of more complex RNA enzymes and of the functional domains of non-coding transcripts. In this review, we discuss new methods for sample preparation, assignment strategies and structure determination for independently folded RNA domains of up to 100 kDa in molecular weight.
Collapse
|
18
|
Duchardt-Ferner E, Juen M, Kreutz C, Wöhnert J. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:29-34. [PMID: 27730489 DOI: 10.1007/s12104-016-9715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Michael Juen
- Centre for Molecular Biosciences (CMBI), Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Centre for Molecular Biosciences (CMBI), Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
19
|
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 2017; 118-119:119-136. [PMID: 28315749 DOI: 10.1016/j.ymeth.2017.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies.
Collapse
|
20
|
Neuner S, Kreutz C, Micura R. The synthesis of 15N(7)-Hoogsteen face-labeled adenosine phosphoramidite for solid-phase RNA synthesis. MONATSHEFTE FUR CHEMIE 2016; 148:149-155. [PMID: 28127100 PMCID: PMC5225212 DOI: 10.1007/s00706-016-1882-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT We have developed an efficient route for the synthesis of 15N(7)-labeled adenosine as phosphoramidite building block for site- and atom-specific incorporation into RNA by automated solid-phase synthesis. Such labeled RNA is required for the evaluation of selected non-canonical base pair interactions in folded RNA using NMR spectroscopic methods. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Sandro Neuner
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck, Austria
| |
Collapse
|
21
|
Fürtig B, Schnieders R, Richter C, Zetzsche H, Keyhani S, Helmling C, Kovacs H, Schwalbe H. Direct ¹³C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA. JOURNAL OF BIOMOLECULAR NMR 2016; 64:207-221. [PMID: 26852414 DOI: 10.1007/s10858-016-0021-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond (1)H detection. Here, we develop (13)C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for (13)C direct detection allows correlations of donor-acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed (13)C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.
Collapse
Affiliation(s)
- Boris Fürtig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany.
| | - Robbin Schnieders
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany
| | - Heidi Zetzsche
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany
| | - Sara Keyhani
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany
| | - Christina Helmling
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany
| | - Helena Kovacs
- Bruker BioSpin, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max von Laue-Str. 7, 60438, Frankfurt, Germany.
| |
Collapse
|
22
|
Neuner S, Santner T, Kreutz C, Micura R. The "Speedy" Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA. Chemistry 2015; 21:11634-11643. [PMID: 26237536 PMCID: PMC4946632 DOI: 10.1002/chem.201501275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although numerous reports on the synthesis of atom-specific (15)N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of (15)N(1) adenosine and (15)N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve (15)N(3) uridine and (15)N(3) cytidine amidites in order to tap full potential of (1)H/(15)N/(15)N-COSY experiments for directly monitoring individual Watson-Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered.
Collapse
Affiliation(s)
- Sandro Neuner
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Tobias Santner
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| |
Collapse
|
23
|
Dallmann A, Sattler M. Detection of hydrogen bonds in dynamic regions of RNA by NMR spectroscopy. ACTA ACUST UNITED AC 2014; 59:7.22.1-19. [PMID: 25501594 DOI: 10.1002/0471142700.nc0722s59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NMR spectroscopy is a powerful tool to study the structure and dynamics of nucleic acids. In this unit, we give an overview of important experiments to determine and characterize hydrogen bonds in nucleic acids and provide detailed instructions for setting up recently developed sensitivity-improved NMR pulse sequences, i.e., BEST selective long-range HNN-COSY, selective BEST-TROSY-HNNCOSY, and Py H(CC)NN-COSY. The strengths and limitations of these experiments will also be discussed. Detailed step-by-step protocols are provided for each of the three pulse sequences, with special emphasis on adjusting and setting of delays and shaped pulses. The NMR pulse sequences with example datasets and optimized, nonstandard adiabatic pulse shapes used for selective (15)N magnetization transfer are provided. These experiments enable NMR analysis of a broad variety of RNAs ranging from low to high molecular weight and complexity.
Collapse
Affiliation(s)
- Andre Dallmann
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Center for Integrated Protein Science Munich and Chair of Biomolecular NMR-Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany; Present address: Division of Molecular Structure, National Institute of Medical Research, London, United Kingdom
| | | |
Collapse
|