1
|
Ni X, Tang X, Wang D, Zhang J, Zhao L, Gao J, He H, Dramou P. Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. J Pharm Biomed Anal 2023; 235:115659. [PMID: 37657406 DOI: 10.1016/j.jpba.2023.115659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Molecularly imprinted polymers (MIPs) have had tremendous impact on biomimetic recognition due to their precise specificity and high affinity comparable to that of antibodies, which has shown the great advantages of easy preparation, good stability and low cost. The combination of MIPs with other analytical technologies can not only achieve rapid extraction and sensitive detection of target compounds, improving the level of analysis, but also achieve precise targeted delivery, in-vivo imaging and other applications. Among them, the recognition mechanism plays a vital role in chemical and biological sensing, while the improvement of the recognition element, such as the addition of new nanomaterials, can greatly improve the analytical performance of the sensor, especially in terms of selectivity. Currently, due to the need for rapid diagnosis and improved sensing properties (such as selectivity, stability, and cost-effectiveness), researchers are investigating new recognition elements and their combinations to improve the recognition capabilities of chemical sensing and bio-sensing. Therefore, this review mainly discusses the design strategies of optical sensors, electrochemical sensors and photoelectric sensors with molecular imprinting technology and their applications in environmental systems, food fields, drug detection and biology including bacteria and viruses.
Collapse
Affiliation(s)
- Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjie Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Gao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
3
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci Rep 2018; 8:11222. [PMID: 30046057 PMCID: PMC6060165 DOI: 10.1038/s41598-018-29585-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/09/2018] [Indexed: 11/14/2022] Open
Abstract
Glycopeptide antibiotics are known as the last resort for the treatment of serious infections caused by Gram-positive bacteria. The use of milk products contaminated with these antibiotic residues leads to allergic reactions and sensitivity in human. Also, long-term consumption of milk products containing low levels of these antibiotics may cause the relevant bacteria to build up resistance to these last resort antibiotics. Sensitive, rapid and effective quantification and monitoring systems play a key role for their determination in milk products. Hence, molecularly imprinted nanostructures were rationally designed in this work to produce high affinity synthetic receptors to be coupled with a surface plasmon resonance sensor for the analysis of glycopeptide antibiotics in milk samples. The nanoMIP-SPR sensor enabled vancomycin quantification with the LODs of 4.1 ng mL−1 and 17.7 ng mL−1 using direct and competitive assays, respectively. The recoveries rates for two sensor methods ranged in 85–110% with RSDs below 7%. The affinity between the nanoMIP receptors and the target molecule (dissociation constant: 1.8 × 10−9 M) is mostly superior to natural receptors and other synthetic receptors. Unlike other methods commonly employed for the detection of milk contaminants this approach is extremely simple, fast and robust, and do not require pre-sample treatment.
Collapse
|
5
|
|
6
|
Fandrich A, Buller J, Memczak H, Stöcklein W, Hinrichs K, Wischerhoff E, Schulz B, Laschewsky A, Lisdat F. Responsive Polymer-Electrode Interface—Study of its Thermo- and pH-Sensitivity and the Influence of Peptide Coupling. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Zhao L, Yang J, Ye H, Zhao F, Zeng B. Preparation of hydrophilic surface-imprinted ionic liquid polymer on multi-walled carbon nanotubes for the sensitive electrochemical determination of imidacloprid. RSC Adv 2017. [DOI: 10.1039/c6ra25969c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrophilic ionic liquid monomer was immobilized on carboxylated MWNTs by ion exchange, then reversible addition–fragmentation chain transfer precipitation polymerization was performed in the presence of a template, imidacloprid.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Juan Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Huili Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
8
|
Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk. J Chromatogr A 2016; 1462:2-7. [DOI: 10.1016/j.chroma.2016.06.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022]
|
9
|
Yarman A, Scheller FW. MIP-esterase/Tyrosinase Combinations for Paracetamol and Phenacetin. ELECTROANAL 2016. [DOI: 10.1002/elan.201600042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aysu Yarman
- Institute for Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam Germany
- Fraunhofer IZI-BB; Am Mühlenberg 13 14476 Potsdam Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam Germany
- Fraunhofer IZI-BB; Am Mühlenberg 13 14476 Potsdam Germany
| |
Collapse
|
10
|
Wang Y, Zhao T, Dai P, Jiang N, Li F. Employment of Molecularly Imprinted Polymers to High-Throughput Screen nNOS-PSD-95 Interruptions: Structure and Dynamics Investigations on Monomer-Template Complexation. Chemphyschem 2016; 17:893-901. [DOI: 10.1002/cphc.201500941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Yongwei Wang
- Collaborative Innovation Center for Cardiovascular Disease; Translational Medicine of Jiangsu; School of Pharmacy; Nanjing Medical University; Nanjing 211166 P. R. China
| | - Ting Zhao
- Collaborative Innovation Center for Cardiovascular Disease; Translational Medicine of Jiangsu; School of Pharmacy; Nanjing Medical University; Nanjing 211166 P. R. China
| | - Peng Dai
- Collaborative Innovation Center for Cardiovascular Disease; Translational Medicine of Jiangsu; School of Pharmacy; Nanjing Medical University; Nanjing 211166 P. R. China
| | - Nan Jiang
- Collaborative Innovation Center for Cardiovascular Disease; Translational Medicine of Jiangsu; School of Pharmacy; Nanjing Medical University; Nanjing 211166 P. R. China
| | - Fei Li
- Collaborative Innovation Center for Cardiovascular Disease; Translational Medicine of Jiangsu; School of Pharmacy; Nanjing Medical University; Nanjing 211166 P. R. China
| |
Collapse
|
11
|
Zhang Z, Wang Z, Wang F, Ren J, Qu X. Programmable Downregulation of Enzyme Activity Using a Fever and NIR-Responsive Molecularly Imprinted Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6172-6178. [PMID: 26488826 DOI: 10.1002/smll.201502071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/16/2015] [Indexed: 06/05/2023]
Abstract
A fever and NIR-responsive molecularly imprinted nanocomposite is designed for programmable downregulation of enzyme activity. The target enzyme can be captured specifically and its activity can be downregulated only when body temperature increases abnormally. Upon NIR irradiation, the temperature of the destination region can increase accordingly inducing a further decrease in the enzyme activity.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
12
|
Yarman A, Dechtrirat D, Bosserdt M, Jetzschmann KJ, Gajovic-Eichelmann N, Scheller FW. Cytochrome c-Derived Hybrid Systems Based on Moleculary Imprinted Polymers. ELECTROANAL 2015. [DOI: 10.1002/elan.201400592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Li XY, Ma L, Huang YP, Liu ZS, Aisa HA. Preparation of metallic pivot-based imprinted monoliths with a hydrophilic macromonomer. RSC Adv 2015. [DOI: 10.1039/c5ra02699g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hydrophilic macromonomer oligo(ethyleneglycol) methyl ether methacrylate (OEG) was introduced into a metal ion-mediated MIP matrix to achieve good selectivity and less hydrophobic character.
Collapse
Affiliation(s)
- Xiu-Yuan Li
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Li Ma
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Yan-Ping Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Zhao-Sheng Liu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| |
Collapse
|
14
|
Sun H, Lai JP, Fung YS. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction. J Chromatogr A 2014; 1358:303-8. [DOI: 10.1016/j.chroma.2014.06.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
|
15
|
Liu Q, Jia Q, Zhu R, Shao Q, Wang D, Cui P, Ge J. 5,10,15,20-tetrakis(4-carboxyl phenyl)porphyrin-CdS nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:177-84. [PMID: 25063108 DOI: 10.1016/j.msec.2014.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/15/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Here, we describe the design of a novel mimic peroxidase, nanocomposites composed by 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H2TCPP) and cadmium sulfide (CdS). The H2TCPP-CdS nanocomposites can catalyze oxidation of substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 and form a blue product which can be seen by the naked eye in 5 min. The mechanism of the catalytic reaction originated from the generation of hydroxyl radical (·OH), which is a powerful oxidizing agent to oxidize TMB to produce a blue product. Then, we developed a colorimetric method that is highly sensitive and selective to detect glucose, combined with glucose oxidase (GOx). The proposed method allowed the detection of H2O2 concentration in the range of 4×10(-6)-1.4×10(-5)M and glucose in the range of 1.875×10(-5)-1×10(-4)M with detectable H2O2 concentration as low as 4.6×10(-7)M and glucose as low as 7.02×10(-6)M, respectively. The results provided the theoretical basis of practical application in glucose detecting and peroxidase mimetic enzymes.
Collapse
Affiliation(s)
- Qingyun Liu
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China.
| | - Qingyan Jia
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
| | - Renren Zhu
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
| | - Qian Shao
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
| | - Dongmei Wang
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
| | - Peng Cui
- School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China
| | - Jiechao Ge
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
16
|
The first electrochemical MIP sensor for tamoxifen. SENSORS 2014; 14:7647-54. [PMID: 24776936 PMCID: PMC4063000 DOI: 10.3390/s140507647] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022]
Abstract
We present an electrochemical MIP sensor for tamoxifen (TAM)—a nonsteroidal anti-estrogen—which is based on the electropolymerisation of an O-phenylenediamine–resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only “bulk” MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at +1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences.
Collapse
|