1
|
Liu X, Liu J, Zhu D, Yan X, Chen J, Duan L, Kang Y, Ma D. Structural Rigidification Strategy Based on Self-Assembly Enabled Reversible Excited-State Conversion of Iridium(III) Complexes for Multiple-Stimulus-Responsive Data Encryption. J Am Chem Soc 2024; 146:29955-29963. [PMID: 39405363 DOI: 10.1021/jacs.4c12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Stimulus-responsive chromic materials exhibit color-switching properties under specific external stimuli and have been widely used in various fields. Transition-metal complexes show great potential applications as promising candidates for stimulus-responsive chromic materials, as their excited states not only depend on the chemical composition but are also affected by the intermolecular stacking modes. Owing to the intrinsic difficulty in the ordered stacking of the octahedral configuration, changing the stacking modes of iridium(III) complexes for multiple-stimulus responsiveness remains a significant challenge. In this work, we propose a structural rigidification strategy based on self-assembly to reversibly regulate the excited states of iridium(III) complexes, therefore achieving color switch under different stimulus conditions. We prepare cationic iridium(III) complexes by using tetrakis(perfluorophenyl)-borate ([B(PhF5)4]-) as the counterion, whose matching tetrahedral configuration and electron-deficient aromaticity enables polar-π interaction with the octahedral iridium(III) cations, inducing self-assembly to form structural rigidification. The structural rigidity restricts the large conformational changes of the metal-to-ligand charge transfer (3MLCT) excited state, and facilitates the conversion from the 3MLCT to the ligand-center (3LC) excited state in aggregated states. The excited-state conversion results in a 54 nm blue shift (from yellow to sky blue) in the photoluminescence spectra. As a result, we report a series of cationic iridium(III) complexes with different responses to low temperature, vapor fuming, and mechanical force, therefore achieving multiple-stimulus-responsive data encryption. Our work provides a novel strategy to achieve ordered stacking of octahedral complexes, shows a deeper understanding of the photophysical processes of transition-metal complexes, and offers a new perspective to develop multiple-stimulus-responsive chromic materials.
Collapse
Affiliation(s)
- Xiangyu Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Jing Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Danlei Zhu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Xinghua Yan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Jiawei Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083, P. R. China
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Ma B, Zhang B, Zhang H, Huang Y, Liu L, Wang B, Yang D, Ma D, Tang BZ, Wang Z. Asymmetric Structural Engineering of Hot-Exciton Emitters Achieving a Breakthrough in Non-Doped BT.2020 Blue OLEDs with a Record 9.5% External Quantum Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407254. [PMID: 39162045 PMCID: PMC11497023 DOI: 10.1002/advs.202407254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/21/2024]
Abstract
High-efficiency non-doped deep-blue organic light-emitting diodes (OLEDs) meeting the standard of BT.2020 color gamut is desired but rarely reported. Herein, an asymmetric structural engineering based on crossed long-short axis (CLSA) strategy is developed to obtain three new deep-blue emitters (BICZ, PHDPYCZ, and PHPYCZ) with a hot-exciton characteristic. Compared to 2BuCz-CNCz featuring a symmetric single hole-transport framework, these asymmetric emitters with the introduction of different electron-transport units show the enhancement of photoluminescence efficiency and improvement of bipolar charge transport capacity. Further combined with high radiative exciton utilization efficiency and light outcoupling efficiency, the non-doped OLED based on PHPYCZ exhibits the best performance with an excellent current efficiency of 3.49%, a record-high maximum external quantum efficiency of 9.5%, and a CIE y coordinate of 0.049 approaching the BT.2020 blue point. The breakthrough obtained in this work can inspire the molecular design of deep-blue emitters for high-performance non-doped BT.2020 blue OLEDs.
Collapse
Affiliation(s)
- Bingzhu Ma
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Baijun Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Han Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Yu Huang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Lu Liu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Baoling Wang
- Intellectual Property Publishing House Co., LtdNo. 50, Meteorological Road, HaidianBeijing100081China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyHong Kong999077China
- Center for Aggregation‐Induced Emission, AIE InstituteSouth China University of TechnologyGuangzhou510640China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong Shenzhen (CUHK‐Shenzhen)Guangdong518172China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology (SCUT)Guangzhou510640China
- Center for Aggregation‐Induced Emission, AIE InstituteSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
3
|
Wang Y, Du C, Cheng Z, Ge S, Feng Z, Wan L, Hu Y, Ma X, Su Z, Lu P. Rational Molecular Design of Phenanthroimidazole-Based Fluorescent Materials toward High-Efficiency Deep-Blue OLEDs by Molecular Isomer Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51201-51211. [PMID: 39279143 DOI: 10.1021/acsami.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Organic light-emitting diodes (OLEDs) have been extensively investigated in full-color displays and energy-saving lighting owing to their unique advantages. However, deep-blue OLEDs based on nondoped emitting layers with a satisfactory external quantum efficiency (EQE) are still rare for applications. In this work, six hot exciton materials, PPIM-12F, PPIM-22F, PPIM-13F, PPIM-23F, PPIM-1CN, and PPIM-2CN, are designed and synthesized via an isomer engineering design strategy and their photophysical properties and OLED performance are systematically investigated. These emitters all possess wide band gaps (3.53-3.69 eV), hybrid local and charge transfer (HLCT) characteristics, and good thermal stabilities. The C2 series compounds, PPIM-22F, PPIM-23F, and PPIM-2CN, all show redder emission peaks than the N1 series counterparts of PPIM-12F, PPIM-13F, and PPIM-1CN. In addition, the LUMO energy levels decrease consecutively in the sequence of PPIM-22F < PPIM-23F < PPIM-2CN and are all lower than their respective N1 series position isomers of PPIM-12F, PPIM-13F, and PPIM-1CN. The CV measurements indicate that such a design strategy renders the fine-tuning of LUMO energy levels, and the incorporation of electron acceptors at the extended C2 position of the PI unit is a better choice to improve the electron injection ability. Theoretical simulations indicate that they may harvest the triplet exciton through an upper-level reverse intersystem crossing process, which decreases the gathering of triplet excitons and allows the OLEDs to be fabricated by nondoping technology. Among them, PPIM-22F with a difluorobenzene substituent at the C2 position manifests the best performance in OLEDs, which exhibits the maximum EQE of 7.87% and Commission Internationale de ĺEclairage (CIE) coordinates of (0.16, 0.10). This work demonstrates an effective strategy for considerable improvement in device performance by a subtle change in the molecular structure through isomer engineering.
Collapse
Affiliation(s)
- Yaxue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Chunya Du
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Shuyuan Ge
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Liang Wan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Yin Hu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Xiaobo Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zihan Su
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Roy G, Sengupta A, Likhar AR, Asthana D. A supramolecular host matrix for preserving fluorescence in the solid-state. SOFT MATTER 2024; 20:6327-6331. [PMID: 39026504 DOI: 10.1039/d4sm00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Fluorescent materials find numerous applications in light-based devices, but their utilization is severely affected by concentration caused quenching of fluorescence, the extreme form of which is the total loss of fluorescence in the solid state. Introduction of bulky substituents remains the most frequently applied fluorescence revival strategy, but requires multi-step synthetic modifications. We have demonstrated a simple one step supramolecular gel-based strategy to preserve the fluorescence in the solid state.
Collapse
Affiliation(s)
- Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India.
| | - Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India.
| |
Collapse
|
5
|
Wu Y, Zhang J, Li D, Du S, Mu X, Liu C, Fang K, Feng T, Wang T, Li W, Ge Z. Optimizing the energy level alignment for achieving record-breaking efficiency in hot exciton deep red OLEDs. MATERIALS HORIZONS 2024; 11:3928-3934. [PMID: 38845573 DOI: 10.1039/d4mh00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
To effectively compete with the quenching process in long-wavelength regions like deep red (DR) and near-infrared (NIR), rapid radiative decay is urgently needed to address the challenges posed by the "energy gap law". Herein, we confirmed that it is crucial for hot exciton emitters to attain a narrow energy gap (ΔES1-T2) between the lowest singlet excited (S1) state and second triplet excited (T2) state, while ensuring that T2 slightly exceeds S1 in the energy level. Two proofs-of-concept of hot exciton DR emitters, namely αT-IPD and βT-IPD, were successfully designed and synthesized by coupling electron-acceptors N,N-diphenylnaphthalen-2-amine (αTPA) and N,N-diphenylnaphthalen-1-amine (βTPA) with an electron-withdrawing unit 5-(4-(tert-butyl) phenyl)-5H-pyrazino[2,3-b]indole-2,3-dicarbonitrile (IPD). Both emitters exhibited a narrow ΔES1-T2, with T2 being slightly higher than S1. Additionally, both emitters showed significantly large ΔET2-T1. Moreover, due to their aggregation-induced emission characteristics, J-aggregated packing modes, moderate strength intermolecular CN⋯H-C and C-H⋯π interactions, and unique, comparatively large center-to-center distances among trimers in the crystalline state, both αT-IPD and βT-IPD emitters exhibited remarkable photoluminescence quantum yields of 68.5% and 73.5%, respectively, in non-doped films. Remarkably, the corresponding non-doped DR-OLED based on βT-IPD achieved a maximum external quantum efficiency of 15.5% at an emission peak wavelength of 667 nm, representing the highest reported value for hot exciton DR-OLEDs.
Collapse
Affiliation(s)
- Yujie Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Deli Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxin Zhuang West Road, Jinan 250022, P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Chunyu Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Kaibo Fang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Tao Wang
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
6
|
Liang JQ, Hu JJ, Huo ZZ, Yan ZP, Yuan L, Zhong XS, Wei Y, Song SQ, Liu QM, Song Y, Zheng YX. Two Different Chiral Groups Based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized OLEDs. Chem Asian J 2024:e202400664. [PMID: 39078718 DOI: 10.1002/asia.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/03/2024] [Indexed: 10/19/2024]
Abstract
Circularly polarized organic light-emitting diodes (CP-OLEDs) hold significant promise for applications in 3D displays due to the ability to generate circularly polarized luminescence (CPL) directly. In this study, two pairs of circularly polarized thermally activated delayed fluorescence (CP-TADF) enantiomers, named RR/SS-ONCN and RS/SR-ONCN, were synthesized by integrating two distinct chiral groups into the dicyanobenzene unit. The RR/SS-ONCN and RS/SR-ONCN enantiomers show CPL properties with dissymmetry photoluminescence factors (|gPL|) of 1.3×10-3 and 2.0×10-3 in doped films, respectively. Notably, RR/SS-ONCN exhibit higher |gPL| values than that of RS/SR-ONCN, especially in doped films, indicating that when the configurations of the two chiral groups are identical, the |gPL| value of the CP-TADF materials can be enhanced, demonstrating a certain stacking effect. Moreover, the corresponding CP-OLEDs demonstrate good performances, achieving maximum external quantum efficiencies of up to 21.9 % and notable CP electroluminescence with |gEL| factors of up to 1.0×10-3.
Collapse
Affiliation(s)
- Jia-Qi Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Jun Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhong-Zhong Huo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Sheng Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shi-Quan Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qi-Ming Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Wang CH, Adachi Y, Ohshita J. Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles. Molecules 2024; 29:2684. [PMID: 38893557 PMCID: PMC11173466 DOI: 10.3390/molecules29112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Germoles and siloles unsymmetrically condensed with heteroaromatic units are attracting much interest. In this study, compounds containing a triazologermole core unit condensed with a benzene or thiophene ring were prepared. Thienotriazologermole was subjected to bromination to obtain the bromide, which underwent transformation via the palladium-catalyzed Stille coupling reaction to form triphenylamine-substituted thienotriazolegermole, with an effective extension of conjugation. The electronic states and properties of these triazologermole derivatives are discussed on the basis of optical and electrochemical measurements and density functional theory calculations. Triphenylamine-substituted thienotriazolegermole showed clear solvatochromic properties in photoluminescence measurements, suggesting that intramolecular charge transfer occurs at the photo-excited state. This clearly indicates that the triazologermole unit is useful as an acceptor of donor-acceptor compounds. The potential application of triphenylamine-substituted thienotriazolegermole as a sensing material was also explored.
Collapse
Affiliation(s)
- Cong-Huan Wang
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
| | - Yohei Adachi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
| | - Joji Ohshita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan; (C.-H.W.); (Y.A.)
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
8
|
Jayabharathi J, Thanikachalam V. Robust luminogens as cutting-edge tools for efficient light emission in recent decades. Phys Chem Chem Phys 2024; 26:13561-13605. [PMID: 38655772 DOI: 10.1039/d4cp00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Blue luminogens play a vital role in white lighting and potential metal-free fluorescent materials and their high-lying excited states contribute to harvesting triplet excitons in devices. However, in TADF-OLEDs (ΔEST < 0.1 eV), although T1 excitons transfer to S1via RISC with 100% IQE, the longer lifetime of blue TADF suffers from efficiency roll-off (RO). In this case, hybridized local and charge transfer (HLCT) materials have attracted significant interest in lighting owing to their 100% hot exciton harvesting and enhanced efficiency. Both academics and industrialists widely use the HLCT strategy to improve the efficiency of fluorescent organic light-emitting diodes (FOLEDs) by harvesting dark triplet excitons through the RISC process. Aggregation-induced emissive materials (AIEgens) possess tight packing in the aggregation state, and twisted AIEgens with HLCT behaviour have a shortened conjugation length, inducing blue emission and making them suitable candidates for OLED applications. TTA-OLEDs are used in commercial BOLEDs because of their moderate efficiency and reasonable operation lifetime. In this review, we discuss the devices based on TTA fluorophores, TADF fluorophores, HLCT fluorophores, AIEgens and HLCT-sensitized fluorophores (HLCT-SF), which break through the statistical limitations.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Annamalai University, Annamalainagar, Tamilnadu-608 002, India.
| | | |
Collapse
|
9
|
Yin Y, Lai X, Ma Q, Ma H, Zhu W, Lee JY, Wang Y. HLCT-Type Acceptor Molecule-Based Exciplex System for Highly Efficient Solution-Processable OLEDs with Suppressed Efficiency Roll-Offs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313656. [PMID: 38315898 DOI: 10.1002/adma.202313656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Exciplex systems are promising candidates for thermally activated delayed fluorescence (TADF) molecules because of the small energy difference between the lowest singlet and triplet excited states (ΔEST). However, realizing high-efficiency and low-external-quantum-efficiency (EQE) roll-off in solution-processed organic light-emitting diodes (OLEDs) using an exciplex system remains a formidable challenge. In this study, two (HLCT)-type isomers with a spiro skeleton, 2-tBuspoCz-TRZ and 10-tBuspoCz-TRZ, are designed and synthesized as acceptors of exciplexes, where tert-butylspirofluorene indole is regarded as a donor and the triazine unit as an acceptor. Green exciplex emissions are observed for the 2-tBuspoCz-TRZ:TAPC and 10-tBuspoCz-TRZ:TAPC exciplexes, indicating distinct TADF characteristics with a very small ΔEST of 35 ± 5 meV. By using the TADF exciplex system based on the HLCT acceptor as an emitter, solution-processable OLEDs achieve a maximum external quantum efficiency (EQEmax) of 20.8%. Furthermore, a high EQEmax > 25% with a very low-efficiency roll-off (≈3.5% at 1000 cd m-2) is obtained for solution-processable phosphorescent devices using HLCT-based exciplexes as the host matrix of phosphors. This study paves the way for a novel strategy for designing acceptor exciplex molecules for effective TADF molecules and host matrices in solution-processable OLEDs.
Collapse
Affiliation(s)
- Yixiao Yin
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaoyi Lai
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
10
|
Dou L, Xu L, Gao H, Song J, Shang S, Song Z. Red Fluorescent Molecule with Aggregation-Induced Emission Based on Dehydroabietic Acid Diarylamine for Bioimaging. J Fluoresc 2024:10.1007/s10895-024-03712-x. [PMID: 38652360 DOI: 10.1007/s10895-024-03712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
In this paper, molecules with AIE red light properties were designed by coupling dehydroabietic acid diarylamine and 2,3-diphenylfumaronitrile, which were designated 2DTPA-CN and 2TPA-CN. The emission wavelengths were 683 nm and 701 nm, respectively. The 2DTPA-CN and 2TPA-CN showed typical AIE characteristics with large Stokes shifts of 7.4 × 104 cm-1 and 6.7 × 104 cm-1, respectively. The obvious solvatochromism and electron cloud distributions of HOMO/LUMO in the ground and excited states both reveal the intramolecular charge transfer (ICT) effect. The 2DTPA-CN, boasting exceptional biocompatibility, was successfully prepared into nanoparticles (NPs), which were applied to tumor cell imaging, showing good bioimaging effects both in vitro imaging in live cells and in vivo imaging in live mice. The results demonstrated that it possesses significant potential as an effective bioimaging reagent for the detection of tumor cells. Furthermore, the incorporation of 2,3-diphenylfumaronitrile moieties to dehydroabietic acid diarylamine emerged as a proficient approach to broaden the emission wavelengths of rosin-based fluorescent materials.
Collapse
Affiliation(s)
- Liwei Dou
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijun Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Gao
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan, 48502, USA
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| |
Collapse
|
11
|
Situ Z, Li X, Gao H, Zhang J, Li Y, Zhao F, Kong J, Zhao H, Zhou M, Wang Y, Kuang Z, Xia A. Accelerating Intersystem Crossing in Multiresonance Thermally Activated Delayed Fluorescence Emitters via Long-Range Charge Transfer. J Phys Chem Lett 2024; 15:4197-4205. [PMID: 38598694 DOI: 10.1021/acs.jpclett.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are excellent candidates for high-performance organic light-emitting diodes (OLEDs) due to their narrowband emission properties. However, the inherent mechanism of regulating the rate of intersystem crossing (ISC) is ambiguous in certain MR-TADF skeletons. Herein, we propose a mechanism of accelerating ISC in B/S-based MR-TADF emitters by peripheral modifications of electron-donating groups (EDGs) without affecting the narrowband emission property. The long-range charge transfer (LRCT) stems from the introduced EDG leading to high-lying singlet and triplet excited states. The ISC process is accelerated by the enhanced spin-orbital coupling (SOC) between the singlet short-range charge transfer (SRCT) and triplet LRCT manifolds. Meanwhile, the narrowband emission derived from the MR-type SRCT state is well retained as expected in the peripherally modified MR-TADF emitters. This work reveals the regulation mechanism of photophysical properties by high-lying LRCT excited states and provides a significant theoretical basis for modulating the rate of ISC in the further design of MR-TADF materials.
Collapse
Affiliation(s)
- Zicong Situ
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Xingqing Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Honglei Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Zhang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Fangming Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
12
|
Zeng XY, Tang YQ, Zhou JX, Zhang K, Wang HY, Zhu YY, Li YQ, Tang JX. Extended Conjugation Strategy Enabling Red-Shifted and Efficient Emission of Orange-Red Thermally Activated Delayed Fluorescence Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16563-16572. [PMID: 38507218 DOI: 10.1021/acsami.3c18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In account of the energy gap law, the development of efficient narrow-band gap thermally activated delayed fluorescence (TADF) materials remains a major challenge for the application of organic light-emitting diodes (OLEDs). The orange-red TADF materials are commonly designed with either large π-conjugated systems or strong intramolecular donor-acceptor (D-A) interactions for red-shift emission and small singlet-triplet energy gap (ΔEST). There are rare reports on the simultaneous incorporation of these two strategies on the same material systems. Herein, two orange-red emitters named 1P2D-BP and 2P2D-DQ have been designed by extending the conjugation degree of the center acceptor DQ and increasing the number distribution of the peripheral donor PXZ units, respectively. The emission peak of 1P2D-BP is red-shifted to 615 nm compared to 580 nm for 2P2D-DQ, revealing the pronounced effect of the conjugation extension on the emission band gap. In addition, the distorted molecular structure yields a small ΔEST of 0.02 eV, favoring the acquisition of a high exciton utilization through an efficient reverse intersystem crossing process. As a result, orange-red OLEDs with both 1P2D-BP and 2P2D-DQ have achieved an external quantum efficiency (EQE) of more than 17%. In addition, the efficient white OLED based on 1P2D-BP is realized through precise exciton assignment and energy transport modulation, showing an EQE of 23.6% and a color rendering index of 82. The present work provides an important reference for the design of high-efficiency narrow-band gap materials in the field of solid-state lighting.
Collapse
Affiliation(s)
- Xin-Yi Zeng
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Yan-Qing Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jing-Xiong Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Han-Yang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuan-Ye Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Zhao F, Kong J, Zhang W, Kuang Z, Zhou M. Triplet Excited-State Dynamics in Benzothiadiazole-Based Thermally Activated Delayed Fluorescence Compound. J Phys Chem Lett 2024:2885-2892. [PMID: 38447087 DOI: 10.1021/acs.jpclett.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The "hot exciton" thermally activated delayed fluorescence (TADF) materials have attracted considerable research interest for their utilization of high-lying triplet excitons. In this work, we reported the mechanism of photoluminescence by revealing the spectral evolution from singlet to triplet states in "hot exciton" TADF molecules by transient absorption (TA) spectra and triplet sensitization experiments. The internal conversion and intersystem crossing are much faster than reverse intersystem crossing (RISC), so that high-lying triplet states (Tn) are difficult to accumulate to be observed in the transient absorption spectra. In contrast, the emergence of delayed fluorescence in time-resolved emission spectra demonstrates the existence of a high-lying RISC process (hRISC) from Tn to S1. Triplet sensitization experiments successfully identified the spectral features of the T1 state in the TA spectra. This work sheds light on critical factors for the systematic design of these materials to achieve a high emission quantum yield.
Collapse
Affiliation(s)
- Fangming Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Zhuoran Kuang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
14
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
15
|
Yang N, Yue G, Zhang Y, Qin X, Gao Z, Mi B, Fan Q, Qian Y. Reproducible and High-Performance WOLEDs Based on Independent High-Efficiency Triplet Harvesting of Yellow Hot-Exciton ESIPT and Blue TADF Emitters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304615. [PMID: 37822169 DOI: 10.1002/smll.202304615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hot exciton organic light-emitting diode (OLED) emitters can balance the high performance of a device and reduce efficiency roll-off by fast reverse intersystem crossing from high-lying triplets (hRISC). In this study, an excited-state intramolecular proton transfer (ESIPT) fluorophore of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) with the typical characteristic properties of a hot exciton is developed. With high efficiency of utilization of the exciton (91%), its yellow OLED exhibited high external quantum efficiency (EQE) of 5.6%, current efficiency (CE) of 16.8 cd A-1 , and power efficiency (PE) of 17.3 lm W-1 . The performance of the yellow emissive "hot exciton" ESIPT fluorophores is among the highest recorded. Due to the large Stokes shift of the ESIPT emitter, non-energy-transferred high-performance white OLEDs (WOLEDs) are developed, which are reproducible and highly efficient. This is possible because of the independent harvesting of most of the triplets in both complementary-color emitters without the interference of energy transfer. The PyHBT-based WOLEDs exhibit a maximum EQE of 14.3% and CE of 41.1 cd A-1 , which facilitates the high-yield mass production of inexpensive WOLEDs.
Collapse
Affiliation(s)
- Ningjing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Guochang Yue
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yong Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiaoyu Qin
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiqiang Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Baoxiu Mi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Qian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
16
|
Yang G, Li Y, Wang B, Zhang Y. Lighting Up Fluorescence: Precise Recognition of Halogenated Solvents Through Effective Fluorescence Detection Using Chalcone Derivatives as a D-A-D-A-type Fluorescent Chemosensor. J Fluoresc 2023:10.1007/s10895-023-03527-2. [PMID: 38055140 DOI: 10.1007/s10895-023-03527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
In this paper, we report a D-A-D-A-type fluorescence sensor, FX, composed of triphenylamine and pyrazine units as electron donors, pyridine units, and α-β unsaturated carbon-based structures as electron acceptors. FX exhibits typical ICT characteristics. As a dual-emission material, FX undergoes acid-base-induced color changes and displays mechanofluorochromic properties in the solid state. In solution, FX, as an AIE material, shows significant fluorescence enhancement behavior in most halogenated solvents. Notably, it achieves a high quantum yield of 0.672 in a chloroform solution. We utilized this phenomenon to quantitatively detect chloroform through fluorescence titration analysis, with a detection limit of 0.061%. Additionally, we developed a test paper to verify the practical applicability of the sensor for detecting halogenated solvents. The fluorescence enhancement behavior was confirmed through DFT calculations. The results indicate that FX is not only a multifunctional dual-state emission material but also provides valuable references for the fluorescence detection of halogenated solvents.
Collapse
Affiliation(s)
- Guo Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China
| | - Yuanwei Li
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China
| | - Bin Wang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China.
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China.
| | - Ying Zhang
- Sichuan University of Science & Engineering, GongZi, 634002, China
| |
Collapse
|
17
|
Hao XL, Ren AM, Zhou L, Zhang H. Theoretical Research and Photodynamic Simulation of Aggregation-Induced Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. J Phys Chem A 2023; 127:9771-9780. [PMID: 37948560 DOI: 10.1021/acs.jpca.3c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The discovery and utilization of pure organic thermally activated delayed fluorescence (TADF) materials provide a major breakthrough in obtaining high-performance and low-cost organic light-emitting diodes (OLEDs). In spite of recent research progress in TADF emitters, highly efficient and stable TADF emitters in high-concentration solutions and in the solid state have been rarely reported, and most of them suffer from aggregation-induced quenching (ACQ). To resolve this issue, the aggregation-induced delayed fluorescence (AIDF) mechanism was studied in depth by the simulation of excited-state dynamic processes, and the effect of geometric modifications on optical properties was minutely investigated based on molecular modeling. TD-DFT calculations demonstrate that it is the key point for the transformation between prompt fluorescence and TADF to effectively regulate singlet-triplet energy difference and electron-vibration coupling by the aggregation effect. Then, excellent green and red TADF materials with very small singlet-triplet energy differences of 0.05 and 0.06 eV, high TADF quantum yields up to 57.53% and 39.19%, and suitable fluorescence lifetimes of 0.99 and 1.67 us, respectively, were designed and obtained, which demonstrate the potential application of these two TADF materials in OLEDs.
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
18
|
Li M, Wang L, You C, Liu D, Zhang K, Zhu W. Azaacene containing iridium(III) phosphors: elaboration of the π-conjugation effect and application in highly efficient solution-processed near-infrared OLEDs. Dalton Trans 2023; 52:16276-16284. [PMID: 37855254 DOI: 10.1039/d3dt02629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Azaacenes have attracted wide research interest due to their tremendous potential in organic electronics. However, near-infrared (NIR) light-emitting iridium(III) phosphors bearing azaacene derivatives are rarely investigated. In this contribution, two solution-processable heteroleptic iridium(III) complexes, namely DBPzIr and PPzIr, are rationally designed and synthesized, and they contain a rigid phenanthrene- or pyrene-fused diazaacene core and two peripheral groups of 4-tert-butyl-phenyl attached at the 12,13-positions in the core, respectively. The effects of the diazaacene core and appending groups on the optoelectronic properties of both complexes are systematically investigated. A dramatically red-shifted NIR emission peak at 789 nm with a photoluminescence quantum yield (PLQY) of 14% is observed in PPzIr compared with the 746 nm emission with a PLQY of 40% in DBPzIr. Taking advantage of their photophysical properties, the solution-processed device doped with DBPzIr achieves a maximum external quantum efficiency (EQEmax) of 8.00% with a radiance of 54 866 mW Sr-1 m-2 at 716 nm and the device doped with PPzIr exhibits a significantly red-shifted emission at 772 nm with an EQEmax of 3.53%. The achieved device performance is among the best values in the reported NIR-OLEDs based on iridium(III) complexes via a solution process at the same color gamut. Our study indicates that the reasonable collocation of the rigid diazaacene chelating core and flexible peripheral groups in the iridium(III) complex is of great significance in designing highly efficient NIR emitters.
Collapse
Affiliation(s)
- Min Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, Jiangxi, P. R. China
| | - Li Wang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
- Kunshan Bye Polymer Material Corporation, Ltd, Suzhou, 215300, P. R. China
| | - Caifa You
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Denghui Liu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
- Kunshan Bye Polymer Material Corporation, Ltd, Suzhou, 215300, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
19
|
Yang H, Peng SK, Zheng J, Luo D, Xie M, Huang YL, Cai X, Wang J, Zhou XP, Li D. Achiral Au(I) Cyclic Trinuclear Complexes with High-Efficiency Circularly Polarized Near-Infrared TADF. Angew Chem Int Ed Engl 2023; 62:e202310495. [PMID: 37638844 DOI: 10.1002/anie.202310495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Realizing high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region is challenging and valuable for luminescent material, especially for thermally activated delay fluorescence (TADF) material. In this work, we report two achiral cyclic trinuclear Au(I) complexes, Au3 (4-Clpyrazolate)3 and Au3 (4-Brpyrazolate)3 (denoted as Cl-Au and Br-Au), obtained through the reaction of 4-chloro-1H-pyrazole and 4-bromo-1H-pyrazole with Au(I) salts, respectively. Both Cl-Au and Br-Au exhibit TADF with high PLQY (>70 %) in the NIR I (700-900 nm) (λmax = 720 nm) region, exceeding other NIR-TADF emitters in the solid state. Photophysical experiments and theoretical calculations confirmed the efficient NIR-TADF properties of Cl-Au and Br-Au were attributed to the small energy gap ΔE(S1-T2) (S = singlet, T = triplet) and the large spin-orbital coupling induced by ligand-to-metal-metal charge transfer of molecular aggregations. In addition, both complexes crystallize in the achiral Pna21 space group (mm2 point group) and are circularly polarized light (CPL) active with maxima luminescent dissymmetry factor |glum | of 3.4 × 10-3 (Cl-Au) and 2.7 × 10-3 (Br-Au) for their crystalline powder samples, respectively. By using Cl-Au as the emitting ink, 3D-printed luminescent logos are fabricated, which own anti-counterfeiting functions due to its CPL behavior dependent on the crystallinity.
Collapse
Affiliation(s)
- Hu Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Su-Kao Peng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Guangdong, 515041, P. R. China
| | - Xuan Cai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
20
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
21
|
Zhao S, Yang Z, Zhang X, Liu H, Lv Y, Wang S, Yang Z, Zhang ST, Yang B. A functional unit combination strategy for enhancing red room-temperature phosphorescence. Chem Sci 2023; 14:9733-9743. [PMID: 37736641 PMCID: PMC10510757 DOI: 10.1039/d3sc03668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Red room-temperature phosphorescence (RTP) materials based on non-metallic organic compounds are less reported compared to the commonly found green RTP materials. Here, we propose a novel approach to obtain red RTP materials by integrating and combining two functional units, resembling a jigsaw puzzle. In this approach, benzo[c][2,1,3]thiadiazole (BZT) serves as the red RTP unit, while a folding unit containing sulphur/oxygen is responsible for enhancing spin-orbit coupling (SOC) to accelerate the intersystem crossing (ISC) process. Three new molecules (SS-BZT, SO-BZT, and OO-BZT) were designed and synthesized, among which SS-BZT and SO-BZT with folded geometries demonstrate enhanced red RTP in their monodisperse films compared to the parent BZT. Meanwhile, the SS-BZT film shows a dual emission consisting of blue fluorescence and red RTP, with a significant spectral separation of approximately 150 nm, which makes the SS-BZT film highly suitable for applications in optical oxygen sensing and ratiometric detection. Within the oxygen concentration range of 0-1.31%, the SS-BZT film demonstrates a quenching constant of 2.66 kPa-1 and a quenching efficiency of 94.24%, indicating that this probe has the potential to accurately detect oxygen in a hypoxic environment.
Collapse
Affiliation(s)
- Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Yingbo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shiyin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zhongzhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
22
|
Du S, Luo M, Li D, Lyu L, Li W, Zhao M, Wang Z, Zhang J, Liu D, Li Y, Su SJ, Ge Z. Hot-Exciton Mechanism and AIE Effect Boost the Performance of Deep-Red Emitters in Non-Doped OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303304. [PMID: 37354127 DOI: 10.1002/adma.202303304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Luminescent materials possessing a "hot-exciton" mechanism and aggregation-induced emission (AIE) qualities are well-suited for use as emitting materials in nondoped organic light-emitting diodes (OLEDs), particularly in deep-red regions where their ground state and singlet excited state surfaces are in proximity, leading to the formation of multiple nonradiative channels. However, designing molecules that artificially combine the hot-exciton mechanism and AIE attributes remains a formidable task. In this study, a versatile strategy is presented to achieve hot-exciton fluorescence with AIE property by increasing the first singlet excited (S1 ) state through modulation of the conjugation length of the newly created acceptor unit, matching the energy level of high-lying triplet (Tn ) states, and enhancing exciton utilization efficiency by employing suitable donor moieties. This approach reduces the aggregation-caused quenching (ACQ) in the aggregate state, resulting in the proof-of-concept emitter DT-IPD, which produces an unprecedented external quantum efficiency (EQE) of 12.2% and Commission Internationale de I'Eclairage (CIE) coordinates of (0.69, 0.30) in a deep-red non-doped OLED at 685 nm, representing the highest performance among all deep-red OLEDs based on materials with hot-exciton mechanisms. This work provides novel insights into the design of more efficient hot-exciton emitters with AIE properties.
Collapse
Affiliation(s)
- Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Lingling Lyu
- Institute of New Energy Technology, Ningbo Dayang Technology Co., Ltd, Zhongguan Road 1219, Ningbo, 315000, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyu Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Yong Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Ma B, Ding Z, Liu D, Zhou Z, Zhang K, Dang D, Zhang S, Su SJ, Zhu W, Liu Y. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Chemistry 2023; 29:e202301197. [PMID: 37154226 DOI: 10.1002/chem.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.
Collapse
Affiliation(s)
- Bin Ma
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenming Ding
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongfeng Dang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
24
|
Liu F, Zhou P, Hou Y, Tan H, Liang Y, Liang J, Zhang Q, Guo S, Tong M, Ni J. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight. Nat Commun 2023; 14:4344. [PMID: 37468482 DOI: 10.1038/s41467-023-40007-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Solar-driven photosynthesis is a sustainable process for the production of hydrogen peroxide, the efficiency of which is plagued by side reactions. Metal-free covalent organic frameworks (COFs) that can form suitable intermediates and inhibit side reactions show great promise to photo-synthesize H2O2. However, the insufficient formation and separation/transfer of photogenerated charges in such materials restricts the efficiency of H2O2 production. Herein, we provide a strategy for the design of donor-acceptor COFs to greatly boost H2O2 photosynthesis. We demonstrate that the optimal intramolecular polarity of COFs, achieved by using suitable amounts of phenyl groups as electron donors, can maximize the free charge generation, which leads to high H2O2 yield rates (605 μmol g-1 h-1) from water, oxygen and visible light without sacrificial agents. Combining in-situ characterization with computational calculations, we describe how the triazine N-sites with optimal N 2p states play a crucial role in H2O activation and selective oxidation into H2O2. We further experimentally demonstrate that H2O2 can be efficiently produced in tap, river or sea water with natural sunlight and air for water decontamination.
Collapse
Affiliation(s)
- Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Peng Zhou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China
| | - Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Jialiang Liang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, PR China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China.
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| |
Collapse
|
25
|
Jayabharathi J, Thanikachalam V, Thilagavathy S. Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
26
|
Chen J, Tang Z, Zhou Y, Ding S, Li L, Qian L, Xiang C. Glutamine Induced High-Quality Perovskite Film to Improve the Efficiency of NIR Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207520. [PMID: 36808211 DOI: 10.1002/smll.202207520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Indexed: 05/11/2023]
Abstract
Formamidine lead iodide (FAPbI3 ) is an important material for realizing high-performance near-infrared light-emitting diodes (NIR-LEDs). However, due to the uncontrollable growth of solution-processed films which usually causes low coverage, and poor surface morphology, the development of FAPbI3 -based NIR-LEDs is hindered, restraining its potential industrial applications. In this work, by employing glutamine (Gln) in perovskite precursor, the quality of FAPbI3 film is improved significantly. Due to the ameliorated solution process by the organic additive, the film coverage over the substrate is substantially enhanced. Meanwhile, the trap state of grain is largely reduced. Consequently, NIR perovskite LEDs are demonstrated with a maximum external quantum efficiency (EQE) of 15% with the emission peak at 795 nm, which is four times higher than the device with pristine perovskite film.
Collapse
Affiliation(s)
- Jianan Chen
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
- Department of Mechanical Engineering, Ningbo University, Ningbo, Zhejiang, 315201, China
| | - Zhaobing Tang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, Zhejiang, 315201, China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Yangzhou Zhou
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
| | - Shuo Ding
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, Zhejiang, 315201, China
| | - Liang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, Zhejiang, 315201, China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Zhongchuang 1st Road, Hangzhou Bay New Zone, Ningbo, Zhejiang, 315000, China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 West Zhongguan Road, Ningbo, Zhejiang, 315201, China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
27
|
Assiri MA, Waseem MT, Hamad A, Imran M, Farooq U, Shahzad SA. Ratiometric and colorimetric probes with large stokes shift for sensing of exogenous hypochlorite in potato sprouts and industrial effluents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122298. [PMID: 36603278 DOI: 10.1016/j.saa.2022.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Being one of the important reactive oxygen species (ROS), hypochlorite ions (ClO-) are involved in the control of several pathological and physiological processes. However, overexpression of ClO- may prompt several disorders including cancer. Therefore, two fluorescein functionalized compounds with catechol (probe 1) and 2-naphthyl (probe 2) as substituents were synthesized through Schiff base reaction to recognize ClO- in food items and industrial samples. While probe 2 exhibited turn-off fluorescent response towards ClO- with limit of detection (LOD) of 86.7 nM, structurally alike probe 1 showed excellent ratiometric response with low detection limit (36.3 nM), large Stokes shift (353 nm), and 'fast' response time (15 s). 1H NMR titration experiments favored spiroring opening of probe 1 upon the reaction with ClO-. Probe 1 was successfully utilized for the monitoring of exogenous ClO- in industrial samples. Further, fabrication of probe coated fluorescent paper strips and recognition of ClO- in sprouting potato show diverse practical applicability of our probes.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Hamad
- Faculty of Pharmacy, Grand Asian University Sialkot, 51310 Punjab, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
28
|
Zhu Y, Kong L, Yang JX. Multifunctional behavior of a carbazole derivative: Red phosphorescent emission, aggregation-induced long-life exciton and light-emitting diode application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122208. [PMID: 36566531 DOI: 10.1016/j.saa.2022.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A D-π-A typed cyanyl-carboxylic derivative (named as CECZA) merely produced prompt fluorescence with lifetime at nanosceond scale in dilute solutions, whose solid-state luminescence exhibited 3.36 μs lifetime with 13.80 % quantum yield (QY, captured at 522 nm for powder at nanometer scale) at 298 K and 43.36 ms lifetime with 30.46 % QY (650 nm, 80 K, tiny crystals). Femtosecond transient absorption, Raman spectroscopy and quantum chemical calculation provided valid clues to reveal its excitonic transition mechanism. The results indicated that the restricted vibration of benzene ring on carbazole group and alkyl chain weakened the vibrational modes of CECZA molecule and strengthened inter-molecular interactions between adjacent molecules at low temperatures, which promoted the persistent phosphorescent emission. Due to strong UV-vis absorption, high quantum efficiency and excellent thermal stability, CECZA can be used as a potential candidate in light-emitting diode (LED) application. Combined with a commercial InGaN blue-emitting chip, CECZA-InGaN emitted daylight white light.
Collapse
Affiliation(s)
- Yingzhong Zhu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China.
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| |
Collapse
|
29
|
Wu Z, Wang J, Zhao L, Li C, Lu Y. A novel donor-acceptor structured diketopyrrolopyrrole-based conjugated polymer synthesized by direct arylation polycondensation (DArP) for highly efficient antimicrobial photothermal therapy. Biomater Sci 2023; 11:2151-2157. [PMID: 36729407 DOI: 10.1039/d2bm02024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel donor (D)-acceptor (A) structured conjugated polymer (PDPP-TP), which contains two alternating D-A pairs, namely thiophene (T)-diketopyrrolopyrrole (DPP) and thiophenen (T)-thieno[3,4-b]pyrazine (TP) along the main chain of the polymer, was synthesized by direct arylation polycondensation (DArP) for a highly efficient photothermal antibacterial treatment. The hydrophilic PDPP-TP-based nanoparticles (PTNPs) with a hydration diameter of about 120 nm were obtained by self-assembly using DSPE-mPEG2000 as the polymer matrix. PTNPs show strong near-infrared (NIR) absorbance with a λmax at 910 nm (ε = 2.25 × 104 L mol-1 cm-1) and NIR light-triggered photoactivity with a high photothermal conversion efficiency (PTCE) of 52.8% under 880 nm laser irradiation. Keeping the merits of excellent biocompatibility and photostability, PTNPs exhibited remarkable bacterial inhibition efficiency of almost 100% against Gram-negative E. coli and Gram-positive S. aureus with the help of an 880 nm laser (0.7 W cm-2, 6 min), demonstrating its great potential as photothermal materials with a broad spectrum of activity for the effective treatment of microbial infections.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
30
|
Yang Z, Fu Z, Liu H, Wu M, Li N, Wang K, Zhang ST, Zou B, Yang B. Pressure-induced room-temperature phosphorescence enhancement based on purely organic molecules with a folded geometry. Chem Sci 2023; 14:2640-2645. [PMID: 36908955 PMCID: PMC9993843 DOI: 10.1039/d3sc00172e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The pressure-dependent luminescence behavior of purely organic compounds is an important topic in the field of stimulus-responsive smart materials. However, the relevant studies are mainly limited to the investigation of fluorescence properties, while room-temperature phosphorescence (RTP) of purely organic compounds has not been investigated. Here, we filled in this gap regarding pressure-dependent RTP by using a model molecule selenanthrene (SeAN) with a folded geometry. For the first time to the best of our knowledge, a unique phenomenon involving pressure-induced RTP enhancement was discovered in an SeAN crystal, and an underlying mechanism involving folding-induced spin-orbit coupling enhancement was revealed. Pressure-induced RTP enhancement was also observed in an analog of SeAN also showing a folded geometry, but in this case yielded a white-light emission that is very rare in purely organic RTP-displaying materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
31
|
Sun H, Chen S, Jin J, Sun R, Sun J, Liu D, Liu Z, Zeng J, Zhu Y, Niu J, Lu S. A water-stable Schiff base fluorophore: AIEE behavior, reversible mechanofluorochromism, detection of water content and viscosity of automobile brake fluid, and cell imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
Liu Y, Chen X, Liu X, Guan W, Lu C. Aggregation-induced emission-active micelles: synthesis, characterization, and applications. Chem Soc Rev 2023; 52:1456-1490. [PMID: 36734474 DOI: 10.1039/d2cs01021f] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aggregation-induced emission (AIE)-active micelles are a type of fluorescent functional materials that exhibit enhanced emissions in the aggregated surfactant state. They have received significant interest due to their excellent fluorescence efficiency in the aggregated state, remarkable processability, and solubility. AIE-active micelles can be designed through the self-assembly of amphipathic AIE luminogens (AIEgens) and the encapsulation of non-emissive amphipathic molecules in AIEgens. Currently, a wide range of AIE-active micelles have been constructed, with a significant increase in research interest in this area. A series of advanced techniques has been used to characterize AIE-active micelles, such as cryogenic-electron microscopy (Cryo-EM) and confocal laser scanning microscopy (CLSM). This review provides an overview of the synthesis, characterization, and applications of AIE-active micelles, especially their applications in cell and in vivo imaging, biological and organic compound sensors, anticancer drugs, gene delivery, chemotherapy, photodynamic therapy, and photocatalytic reactions, with a focus on the most recent developments. Based on the synergistic effect of micelles and AIE, it is anticipated that this review will guide the development of innovative and fascinating AIE-active micelle materials with exciting architectures and functions in the future.
Collapse
Affiliation(s)
- Yuhao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoting Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Filho MS, Moraes ES, da Luz LC, da Silveira Santos F, Martin AR, Benhida R, Duarte LGTA, Rodembusch FS. Synthesis, photophysics, and theoretical calculations of styryl-based fluorophores harboring substituted benzothiazole acceptors. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
35
|
Lian M, Ye Z, Mu Y, Hu D, Liu Y, Zhang H, Ji S, Huo Y. Progress on Blue-Emitting Hot Exciton Materials. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
36
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
37
|
Wu R, Tian M, Shu C, Zhou C, Guan W. Determination of the critical micelle concentration of surfactants using fluorescence strategies. SOFT MATTER 2022; 18:8920-8930. [PMID: 36440607 DOI: 10.1039/d2sm01320g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The increasing importance of surfactants in various fields has led to growing interest in the comprehensive characterization of surfactants. The critical micelle concentration (CMC), the most fundamental property of surfactants, is a parameter that must be measured. In particular, with the continuous expansion of the molecular structure of surfactants, numerous novel amphiphilic molecules have been developed that are capable of forming ordered aggregates in various solvent systems. Fluorescence spectroscopy, based on the differences in fluorescence intensity and wavelength of the fluorescent probe in the solvent phase and micellar phase, can sensitively detect the CMC of surfactants. This review aims to summarize the various fluorescence methods used to determine the CMC, including aggregation-induced emission (AIE), excimer formation, intramolecular charge transfer (ICT), and other miscellaneous strategies. The difficulties and limitations in the CMC determination process are also described. Further suggestions are provided to guide the existing fluorescence probes and the corresponding fluorescence methods to detect critical aggregation concentrations of amphiphilic molecules.
Collapse
Affiliation(s)
- Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chang Shu
- Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Lafzi F, Taskesenligil Y, Canımkurbey B, Pıravadılı S, Kilic H, Saracoglu N. Four-Winged Propeller-Shaped Indole-Modified and Indole-Substituted Tetraphenylethylenes: Greenish-Blue Emitters with Aggregation-Induced Emission Features for Conventional Organic Light-Emitting Diodes. ACS OMEGA 2022; 7:44322-44337. [PMID: 36506174 PMCID: PMC9730769 DOI: 10.1021/acsomega.2c05914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission (AIE) is an extraordinary photochemical phenomenon described by Tang's group in 2001, where the aggregation of some organic molecules enhances their light emission by limiting intramolecular activity in the aggregate state. This phenomenon offers new opportunities for researchers due to its potential applications in optoelectronics, energy, and biophysics. Tetraphenylethylenes (TPEs) are reliable AIE luminogens with a wide range of successful applications in material chemistry. To expand the library of AIE-active TPEs, both a series of TPE analogues, in which the phenyl rotor has been replaced by the indole ring, and indole-substituted TPE derivatives were designed and synthesized through vinyl-aryl and aryl-aryl bond formations using the Suzuki coupling reaction. Efficient synthetic routes that delivered indole-modified and indole-substituted TPEs have been developed, and almost all heterocyclic TPE analogues have demonstrated AIE behavior. Furthermore, to test whether the indole ring can be diversified, two title compounds were converted to a series of bis(indolyl)methane (BIM), and these BIM-TPE materials showed typical AIE properties. Interestingly, two compounds indicated a solvent vapor fuming reversible switch between bright blue emission and greenish-yellow emission. Upon fuming with dichloromethane, their fluorescence spectra showed 8 and 32 nm red-shift and could return to the original state after fuming with hexane. Furthermore, we have explored the effects of replacing the phenyl ring in TPE with indole together with the substitution of TPE with indole ring(s) on the performance of organic light-emitting diode (OLED) device applications. In addition, density functional theory calculations; the optical, electrochemical, light emission, electroluminescence characteristics; and admittance spectroscopic analysis of OLED devices of four representative TPEs have been investigated in detail. As a result, the indole-TPEs are potential blue emitters with AIE features for conventional OLEDs, which is a significant color in displays and lighting.
Collapse
Affiliation(s)
- Ferruh Lafzi
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum25240, Türkiye
| | - Yunus Taskesenligil
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum25240, Türkiye
| | - Betül Canımkurbey
- Sabuncuoglu
Serefeddin Health Services Vocational School, Amasya University, Amasya05100, Türkiye
| | - Selin Pıravadılı
- Materials
Technologies, Marmara Research Center (MAM), The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli 41470, Türkiye
| | - Haydar Kilic
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum25240, Türkiye
| | - Nurullah Saracoglu
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum25240, Türkiye
| |
Collapse
|
39
|
Jia Y, Ma M, Yang J, Liu Z. Synthesis of fluorine-contained hyperbranched polysiloxane with blue photoluminescence and research on its fluorescence properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states. Nat Commun 2022; 13:6892. [DOI: 10.1038/s41467-022-34573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThe harvesting of ‘hot’ triplet excitons through high-lying reverse intersystem crossing mechanism has emerged as a hot research issue in the field of organic light-emitting diodes. However, if high-lying reverse intersystem crossing materials lack the capability to convert ‘cold’ T1 excitons into singlet ones, the actual maximum exciton utilization efficiency would generally deviate from 100%. Herein, through comparative studies on two naphthalimide-based compounds CzNI and TPANI, we revealed that the ‘cold’ T1 excitons in high-lying reverse intersystem crossing materials can be utilized effectively through the triplet-triplet annihilation-mediated high-lying reverse intersystem crossing process if they possess certain triplet-triplet upconversion capability. Especially, quite effective triplet-triplet annihilation-mediated high-lying reverse intersystem crossing can be triggered by endowing the high-lying reverse intersystem crossing process with a 3ππ*→1nπ* character. By taking advantage of the permanent orthogonal orbital transition effect of 3ππ*→1nπ*, spin–orbit coupling matrix elements of ca. 10 cm−1 can be acquired, and hence ultra-fast mediated high-lying reverse intersystem crossing process with rate constant over 109 s−1 can be realized.
Collapse
|
41
|
Synthesis and Spectroscopic Characterization of Selected Phenothiazines and Phenazines Rationalized Based on DFT Calculation. Molecules 2022; 27:molecules27217519. [PMID: 36364378 PMCID: PMC9653876 DOI: 10.3390/molecules27217519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Two unique structures were isolated from the phosphorylation reaction of 10H-phenothiazine. The 5,5-dimethyl-2-(10H-phenothiazin-10-yl)-1,3,2-dioxaphosphinane 2-oxide (2a) illustrates the product of N-phosphorylation of phenothiazine. Moreover, a potential product of 2a instability, a thiophosphoric acid 2b, was successfully isolated and structurally characterized. Molecule 2a, similarly to sulfoxide derivative 3, possesses interesting phosphorescence properties due to the presence of d-pπ bonds. The X-ray, NMR, and DFT computational studies indicate that compound 2a exhibits an anomeric effect. Additionally, the syntheses of selected symmetrical and unsymmetrical pyridine-embedded phenazines were elaborated. To compare the influence of phosphorus and sulfur atoms on the structural characteristics of 10H-phenothiazine derivatives, the high-quality crystals of (4a,12a-dihydro-12H-benzo[5,6][1,4]thiazino[2,3-b]quinoxalin-12-yl)(phenyl)methanone (1) and selected phenazines 5,12-diisopropyl-3,10-dimethyldipyrido[3,2-a:3′,2′-h]phenazine (5) and 5-isopropyl-N,N,3-trimethylpyrido[3,2-a]phenazin-10-amine (6a) were obtained. The structures of molecules 1, 2a, 2-mercapto-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (2b), 3,7-dinitro-10H-phenothiazine 5-oxide (3), 5 and 6a were determined by single-crystal X-ray diffraction measurements.
Collapse
|
42
|
Zeng Q, Chen Y, Yan Y, Wan R, Li Y, Fu H, Liu Y, Liu S, Yan XX, Cui M. D-π-A-Based Trisubstituted Alkenes as Environmentally Sensitive Fluorescent Probes to Detect Lewy Pathologies. Anal Chem 2022; 94:15261-15269. [DOI: 10.1021/acs.analchem.2c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yingying Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Rong Wan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yanjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Sen Liu
- Beijing Seven Dimension Neuroscience Research Center, Beijing Seven Dimension Biotechnology Inc., Beijing101500, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Hunan410013, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai519087, China
| |
Collapse
|
43
|
Ding W, Chen S, Du X, Cheng X. A self-assembled aza-BODIPY linked dicyanostilbenzene with a large Stokes shift, AIE, mechanochromism and singlet oxygen yield. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Song G, He H, Chen W, Lv Y, Chu PK, Wang H, Li P. Reversibly Migratable Fluorescent Probe for Precise and Dynamic Evaluation of Cell Mitochondrial Membrane Potentials. BIOSENSORS 2022; 12:798. [PMID: 36290933 PMCID: PMC9599583 DOI: 10.3390/bios12100798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The mitochondrial membrane potential (MMP, ΔΨmito) provides the charge gradient required for mitochondrial functions and is a key indicator of cellular health. The changes in MMP are closely related to diseases and the monitoring of MMP is thus vital for pathological study and drug development. However, most of the current fluorescent probes for MMP rely solely on the cell fluorescence intensity and are thus restricted by poor photostability, rendering them not suitable for long-term dynamic monitoring of MMP. Herein, an MMP-responsive fluorescent probe pyrrolyl quinolinium (PQ) which is capable of reversible migration between mitochondria and nucleolus is developed and demonstrated for dynamic evaluation of MMP. The fluorescence of PQ translocates from mitochondria to nucleoli when MMP decreases due to the intrinsic RNA-specificity and more importantly, the translocation is reversible. The cytoplasm to nucleolus fluorescence intensity ratio is positively correlated with MMP so that this method avoids the negative influence of photostability and imaging parameters. Various situations of MMP can be monitored in real time even without controls. Additionally, long-term dynamic evaluation of MMP is demonstrated for HeLa cells using PQ in oxidative environment. This study is expected to give impetus to the development of mitochondria-related disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Guofen Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiwei He
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanling Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanliang Lv
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Hlavatsch M, Mizaikoff B. Advanced mid-infrared lightsources above and beyond lasers and their analytical utility. ANAL SCI 2022; 38:1125-1139. [PMID: 35780446 PMCID: PMC9420685 DOI: 10.1007/s44211-022-00133-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/11/2022] [Indexed: 11/05/2022]
Abstract
In the mid-infrared (MIR) spectral range, a series of applications have successfully been shown in the fields of sensing, security and defense, energy conservation, and communications. In particular, rapid and recent developments in MIR light sources have significantly increased the interest in developing MIR optical systems, sensors, and diagnostics especially for chem/bio detection schemes and molecular analytical application scenarios. In addition to the advancements in optoelectronic light sources, and especially quantum and interband cascade lasers (QCLs, ICLs) largely driving the increasing interest in the MIR regime, also thermal emitters and light emitting diodes (LEDs) offer opportunities to alternatively fill current gaps in spectral coverage specifically with analytical applications and chem/bio sensing/diagnostics in the focus. As MIR laser technology has been broadly covered in a variety of articles, the present review aims at summarizing recent developments in MIR non-laser light sources highlighting their analytical utility in the MIR wavelength range.
Collapse
Affiliation(s)
- Michael Hlavatsch
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Hahn-Schickard, Institute for Microanalysis Systems, Sedanstrasse 14, 89077, Ulm, Germany.
| |
Collapse
|
46
|
AIEE-TICT quadrupolar push-pull quinoxaline derivatives displaying solvatochromism, acidofluorochromism and logic gate operation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Haiya S, Rong S, Juan S, Jinrui G, Ruofei L, Yuchen Z, Dongzhi L, Zhiqi L, Jinhong Z, Yinbang Z, Junfeng N, Shengli L. Donor-Acceptor structured phenylmethylene pyridineacetonitrile derivative with aggregation-induced emission characteristics: photophysical, mechanofluorochromic and electroluminescent properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
|
49
|
Lei M, Zheng J, Yang Y, Yan L, Liu X, Xu B. Carbon Dots-Based Delayed Fluorescent Materials: Mechanism, Structural Regulation and Application. iScience 2022; 25:104884. [PMID: 36039289 PMCID: PMC9418853 DOI: 10.1016/j.isci.2022.104884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Delayed fluorescent (DF) materials have high internal quantum efficiency because of the triplet excitons involved in the radiation transition, and the spin-forbidden transition can effectively improve their luminescent lifetime. Compared with traditional afterglow materials including metal-containing inorganic coordination compounds and organic compounds, the DF materials based on carbon dots (CDs) have drawn extensive attention because of their advantages of low toxicity, environmental friendliness, stable luminescence, easy preparation and low cost. Most CDs-based DF materials can be realized by embedding CDs in matrix with covalent bonds, hydrogen bonds or/and other supramolecular interactions. Recently, matrix-free self-protective CDs-based DF materials are emerging. This review systematically summarizes the DF mechanism and structural regulation strategies of CDs-based DF materials, and the applications of CDs-based DF materials in anti-counterfeiting, information encryption, temperature sensing and other fields are introduced. Finally, the existing problems and future potentials of CDs-based DF materials are proposed and prospected.
Collapse
Affiliation(s)
- Mingxiu Lei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jingxia Zheng
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
50
|
Hogan DT, Sutherland TC. Multiple aggregates from multiple polymorphs: structural and mechanistic insight into organic dye aggregates. NANOSCALE 2022; 14:10327-10334. [PMID: 35822504 DOI: 10.1039/d2nr03211b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This case study provides evidence for the appearance of multiple aggregation forms of a single organic dye, arising from its packing polymorphs in the solid state. Each aggregate can be spectroscopically matched to one polymorph, acquiring nanoscopic structural information even in the absence of conventional H- or J-type aggregation spectral features. The conversion from one polymorphic aggregate to another supports the action of Ostwald's rule of stages in organic aggregates suspended in solution. Mechanistically, dye molecules from one aggregate dissociate then renucleate the more stable aggregate form, the first demonstration for an aggregation-induced emission-active organic dye.
Collapse
Affiliation(s)
- David T Hogan
- Department of Chemistry, University of Calgary, 2500 University Dr NW, T2N 1N4, Calgary, Alberta, Canada.
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Dr NW, T2N 1N4, Calgary, Alberta, Canada.
| |
Collapse
|