1
|
Vilà N, Nguyen L, Lacroix JC, Sun X, Walcarius A, Mbomekallé I. Assessing the Influence of Confinement on the Stability of Polyoxometalate-Functionalized Surfaces: A Soft Sequential Immobilization Approach for Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26521-26536. [PMID: 38713480 DOI: 10.1021/acsami.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (Mn+) containing polyoxometalates (POMs) with the formula [M(H2O)P2W17O61](10-n)- on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(H2O)63+, onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [P2W17O61]10- species to generate "in situ" the target [Fe(H2O)P2W17O61]7- moieties. Comparison of the characterized surfaces clearly evidenced a significant improvement in the long-term stability of the nanostructured [Fe(H2O)P2W17O61]7--functionalized silica films compared to the less constrained flat [Fe(H2O)P2W17O61]7--modified ITO electrodes for which a rapid loss of [P2W17O61]10- species was observed. Concordantly, the [Fe(H2O)P2W17O61]7- POM confined in the mesoporous films coated on ITO gave rise to much better and stable electrochromic properties, with a transmittance modulation of 40% at 515 nm.
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Linh Nguyen
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Xiaonan Sun
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Israël Mbomekallé
- Université Paris Saclay CNRS, Institut de Chimie Physique,Orsay F-91405, France
| |
Collapse
|
2
|
Wang L, Zhang B, Zhou W, Zhao Z, Liu X, Zhao R, Sun Z, Li H, Wang X, Zhang T, Jin H, Li W, Elzatahry A, Hassan Y, Fan HJ, Zhao D, Chao D. Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries. J Am Chem Soc 2024; 146:6199-6208. [PMID: 38394360 DOI: 10.1021/jacs.3c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Lipeng Wang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xin Liu
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Ruizheng Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhihao Sun
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongpeng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Xia Wang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongrun Jin
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ahmed Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Yasser Hassan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
4
|
Yan Z, Zhang S, Liu J, Xing J. Homogeneous Electrochemical Aptamer Sensor Based on Two-Dimensional Nanocomposite Probe and Nanochannel Modified Electrode for Sensitive Detection of Carcinoembryonic Antigen. Molecules 2023; 28:5186. [PMID: 37446848 DOI: 10.3390/molecules28135186] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A rapid and convenient homogeneous aptamer sensor with high sensitivity is highly desirable for the electrochemical detection of tumor biomarkers. In this work, a homogeneous electrochemical aptamer sensor is demonstrated based on a two-dimensional (2D) nanocomposite probe and nanochannel modified electrode, which can realize sensitive detection of carcinoembryonic antigen (CEA). Using π-π stacking and electrostatic interaction, CEA aptamer (Apt) and cationic redox probe (hexaammineruthenium(III), Ru(NH3)63+) are co-loaded on graphite oxide (GO), leading to a 2D nanocomposite probe (Ru(NH3)63+/Apt@GO). Vertically ordered mesoporous silica-nanochannel film (VMSF) is easily grown on the supporting indium tin oxide (ITO) electrode (VMSF/ITO) using the electrochemical assisted self-assembly (EASA) method within 10 s. The ultrasmall nanochannels of VMSF exhibits electrostatic enrichment towards Ru(NH3)63+ and size exclusion towards 2D material. When CEA is added in the Ru(NH3)63+/Apt@GO solution, DNA aptamer recognizes and binds to CEA and Ru(NH3)63+ releases to the solution, which can be enriched and detected by VMSF/ITO electrodes. Based on this mechanism, CEA can be an electrochemical detection ranging from 60 fg/mL to 100 ng/mL with a limit of detection (LOD) of 14 fg/mL. Detection of CEA in human serum is also realized. The constructed homogeneous detection system does not require the fixation of a recognitive aptamer on the electrode surface or magnetic separation before detection, demonstrating potential applications in rapid, convenient and sensitive electrochemical sensing of tumor biomarkers.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Shiyue Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
5
|
Laser Cutting Coupled with Electro-Exfoliation to Prepare Versatile Planar Graphene Electrodes for Energy Storage. Int J Mol Sci 2023; 24:ijms24065599. [PMID: 36982686 PMCID: PMC10059886 DOI: 10.3390/ijms24065599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
The study of planar energy storage devices, characterized by low-cost, high capacity, and satisfactory flexibility, is becoming a valuable research hotspot. Graphene, monolayer sp2 hybrid carbon atoms with a large surface area, always acts as its active component, yet there is a tension between its high conductivity and ease of implementation. Although the difficult-to-assemble graphene can easily achieve planar assemblies in its highly oxidized form (GO), the undesirable conductivity, even after proper reduction, still restricts its further applications. Here, a facile “Top-down” method has been proposed to prepare the graphene planar electrode via in situ electro-exfoliation of graphite supported on a piece of laser-cutting patterned scotch tape. Detailed characterizations have been performed to study its physiochemical property evolution during electro-exfoliation. The obtained flexible graphene planar electrodes show decent energy storage performance, e.g., 40.8 mF cm−2 at a current density of 0.5 mA cm−2 and an 81% capacity retention at a current density of 8 mA cm−2 for the optimized sample G-240. Their high conductivity also makes it possible to couple them with other redox-active materials through electrodeposition to improve their performance, e.g., ferrocene-functionalized mesoporous silica film (Fc-MS), MnO2, and polyaniline (PANI). The highest capacity was achieved with the PANI functionalized sample, which achieved a 22-fold capacity increase. In a word, the versatility, practicality, and adaptability of the protocol to prepare the planar graphene electrode proposed in this work make it a potential candidate to meet the continuously growing energy storage demands.
Collapse
|
6
|
Antifouling electrochemical sensor-based on mesoporous silica film for imidacloprid detection in Traditional Chinese medicine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
In situ one-step electrochemical preparation of mesoporous molecularly imprinted sensor for efficient determination of indole-3-acetic acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
9
|
Ahoulou S, Vilà N, Pillet S, Carteret C, Schaniel D, Walcarius A. Multi-stimuli Photo and Redox-active Nanostructured Mesoporous Silica Films on Transparent Electrodes. Chemphyschem 2021; 22:2464-2477. [PMID: 34708493 DOI: 10.1002/cphc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels. Further derivatization of the bpy'-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2 (bpy')]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) F e L S b p y 2 b p y ' 2 + species to paramagnetic (S=1/2) oxidized F e L S b p y 2 b p y ' 3 + species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) F e H S b p y 2 b p y ' 2 + excited state. [Fe(bpy)2 (bpy')]2+ -functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.
Collapse
Affiliation(s)
- Samuel Ahoulou
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France.,Université de Lorraine, CRM2 UMR 7036, 54000, Nancy, France
| | - Neus Vilà
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Cédric Carteret
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Alain Walcarius
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| |
Collapse
|
10
|
Walcarius A. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Acc Chem Res 2021; 54:3563-3575. [PMID: 34469107 DOI: 10.1021/acs.accounts.1c00233] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular soft-templating approaches to mesoporous materials have revolutionized the generation of regular nanoarchitectures exhibiting unique features such as uniform pore structure with tunable dimensions, large surface area, and high pore volume, variability of composition, and/or ease of functionalization with a wide range of organo-functional groups or good hosts for the in situ synthesis of nano-objects. One appealing concept in this field is the development of ordered mesoporous thin films as such a configuration has proven to be essential for various applications including separation, sensing, catalysis (electro and photo), energy conversion and storage, photonics, solar cells, photo- and electrochromism, and low-k dielectric coatings for microelectronics, bio and nanobio devices, or biomimetic surfaces. Supported or free-standing mesoporous films are mostly prepared by evaporation induced self-assembly methods, thanks to their good processing capability and flexibility to manufacture mesostructured oxides and organic-inorganic hybrids films with periodically organized porosity.One important challenge is the control of pore orientation, especially in one-dimensional nanostructures, which is not straightforward from the above evaporation induced self-assembly methods. Accessibility of the pores represents another critical issue, which can be basically ensured in the event of effective interconnections between the pores, but the vertical alignment of mesopore channels will definitely offer the best configuration to secure the most efficient transfer processes through the mesoporous membranes. The orthogonal growth of mesochannels is however not thermodynamically favored, requiring the development of methods enabling self-organization through nonequilibrium states. We found that electrochemistry afforded a real boon to tackle this problem via the electrochemically assisted self-assembly (EASA) method, which not only provides a fast and versatile way to generate highly ordered and hexagonally packed mesopore channels but also constitutes a real platform for the development of functionalized oriented films carrying a wide range of organo-functional groups of adjustable composition and properties.This Account introduces the EASA concept and discusses its development along with the significant progress made from its discovery, notably in view of recent advances on the functionalization of oriented mesoporous silica films, which expand their fields of application. EASA is based on the in situ combination of electrochemically triggered pH-induced polycondensation of silica precursors with electrochemical interfacial surfactant templating, leading to the very fast (a few seconds) growth of vertically aligned silica walls through self-assembly around surfactant hemimicelles transiently formed onto the underlying support. This method benefits from the possibility to deposit uniform thin films onto surfaces of different natures and complex morphologies including at the microscale. From this discovery, our research expanded to cover domains beyond the simple production of bare silica films, turning to the challenge of incorporation and exploitation of organo-functional groups or nanofilaments. So far, the great majority of methods developed for the functionalization of mesoporous silica is based on postsynthesis grafting or co-condensation approaches, which suffer from serious limitations with oriented films (pore blocking, lack of ordering). We demonstrated the uniqueness of EASA combined with click chemistry to afford a versatile and universal route to oriented mesoporous films bearing organo-functional groups of multiple composition. This opened perspectives for future developments and applications, some of which (sensing, permselective coatings, energy storage, electrocatalysis, electrochromism) are also considered in this Account.
Collapse
Affiliation(s)
- Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), 405 Rue de Vandoeuvre, F-54000 Nancy, France
| |
Collapse
|
11
|
Synthesis of Vertically Aligned Porous Silica Thin Films Functionalized by Silver Ions. Int J Mol Sci 2021; 22:ijms22147505. [PMID: 34299121 PMCID: PMC8306079 DOI: 10.3390/ijms22147505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022] Open
Abstract
In this work, we have developed a chemical procedure enabling the preparation of highly ordered and vertically aligned mesoporous silica films containing selected contents of silver ions bonded inside the mesopore channels via anchoring propyl-carboxyl units. The procedure involves the electrochemically assisted self-assembly co-condensation of tetraethoxysilane and (3-cyanopropyl)triethoxysilane in the presence of cetyltrimethylammonium bromide as a surfactant, the subsequent hydrolysis of cyano groups into carboxylate ones, followed by their complexation with silver ions. The output materials have been electrochemically characterized with regard to the synthesis effectiveness in order to confirm and quantify the presence of the silver ions in the material. The mesostructure has been observed by transmission electron microscopy. We have pointed out that it is possible to finely tune the functionalization level by controlling the co-condensation procedure, notably the concentration of (3-cyanopropyl)triethoxysilane in the synthesis medium.
Collapse
|
12
|
Wang J, Vilà N, Walcarius A. Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Vilà N, Walcarius A. Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials. Front Chem 2020; 8:830. [PMID: 33094099 PMCID: PMC7523427 DOI: 10.3389/fchem.2020.00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Recent and potential applications of electrochromic materials include smart windows, optoelectronic devices, and energy conversion. In this study, we have incorporated bis(terpyridine) iron (II) complexes into vertically-oriented silica thin films deposited on indium-tin oxide (ITO) and their electrochromic behavior has been investigated. If 2,2′:6′,2″-terpyridine is commonly used as a ligand for forming metallo-supramolecular assemblies, with the objective to get metal-terpyridine complexes with multiple stable redox states, their simple and reliable arrangement into linear structures enabling effective electronic communication is however more challenging. We propose to overcome this difficulty by generating such complexes within vertical nanochannels on electrode. Terpyridine ligands were firstly immobilized by combining a click chemistry azide/alkyne approach with an electrochemically-assisted self-assembly (EASA) method used to grow an oriented mesoporous silica membrane bearing azide groups which were further derivatized with 4′-ethynyl-terpyridine ligands. The resulting terpyridine-functionalized films were consecutively dipped in an aqueous solution of Fe(BF4)2 and then in a solution of terpyridine in acetonitrile to form the bis(terpyridine) iron (II) complexes in situ. The electrochromic properties of the films functionalized at various levels were examined by monitoring the changes in their UV/Vis spectra upon electrochemical oxidation at controlled potential of +1.2 V vs. Ag/AgCl. Due to facile charge delocalization during the Fe2+ to Fe3+ redox process, the bis(terpyridine) iron (II) functionalized silica films exhibited electrochromic properties by changing from violet to non-colored using TBABF4 in acetonitrile as an electrolyte. The bis(terpyridine) iron(II) film experienced reversible electrochromic switching by applying +0.5 V in a reverse reduction electrochemical process. The Fe(tpy)2-functionalized silica thin films displayed a good contrast ratio (ΔT%) of 47% and relatively high coloration efficiency (CE) of about 245 cm2/C with a response time of coloring and bleaching of a few seconds (< 4 s).
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy, France
| | | |
Collapse
|
14
|
Basnig D, Vilá N, Herzog G, Walcarius A. Voltammetric behaviour of cationic redox probes at mesoporous silica film electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Permeability of Dawson–type polyoxometalates through vertically oriented nanoporous silica membranes on electrode: Effect of pore size and probe charge. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Wang J, Vilà N, Walcarius A. Redox-Active Vertically Aligned Mesoporous Silica Thin Films as Transparent Surfaces for Energy Storage Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24262-24270. [PMID: 32366093 DOI: 10.1021/acsami.0c03650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic hybrid membranes, made of a high density of redox active moieties covalently bonded to the internal surfaces of vertically aligned mesoporous silica thin films, are relevant for applications in transparent energy storage devices. This is demonstrated here on the basis of functionalized transparent mesoporous silica thin films prepared on the indium-tin oxide electrode from the combination of an electrochemically induced self-assembly method (to generate azide-functionalized silica) and a copper-catalyzed azide-alkyne click reaction (to derivatize the material with electroactive groups). The very small thickness (105 nm) and the uniformly distributed vertical mesochannels with ultranarrow diameter (2 nm) make the hybrid film a promising substrate that not only achieves a transparency of 82% but also provides large surface area to accommodate a high density of redox active species such as ferrocene. In such rigid and insulating porous membranes, the charge transfer reactions take place through a pure electron-hopping mechanism between adjacent redox sites, which are favored by the ordered and oriented mesostructure containing large amounts of uniformly distributed ferrocene functions in the mesochannels. Their performance results from both high charge transfer rates (electron hopping) and easy mass transport (fast diffusion of counter ions). The most effective system is the ferrocene-functionalized silica film prepared from 40% organosilane, which is able to deliver a capacity of 105 C cm-3 (1.10 mC cm-2) at a current density of 0.4 A cm-3 (with up to 48% capacity retention achieved at a charging time as short as 2.8 s). Such an electrode can be associated to an electrodeposited graphene anode in a solid-state battery-capacitor hybrid device, which can deliver 0.74 mC cm-2 at a potential scan rate of 20 mV s-1. The azide-functionalized mesoporous silica film is actually a versatile platform that can be functionalized with different redox molecules, as shown here for cobaltocenium moieties, which may broaden its application field.
Collapse
Affiliation(s)
- Jianren Wang
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| |
Collapse
|
18
|
Ahoulou S, Vilà N, Pillet S, Schaniel D, Walcarius A. Non‐covalent Immobilization of Iron‐triazole (Fe(Htrz)
3
) Molecular Mediator in Mesoporous Silica Films for the Electrochemical Detection of Hydrogen Peroxide. ELECTROANAL 2019. [DOI: 10.1002/elan.201900444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Samuel Ahoulou
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
- Université de Lorraine, CNRS, CRM2 UMR7036 54000 Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | | | | | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
19
|
Zhou P, Yao L, Chen K, Su B. Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Crit Rev Anal Chem 2019; 50:424-444. [DOI: 10.1080/10408347.2019.1642735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Laskowski Ł, Laskowska M, Vila N, Schabikowski M, Walcarius A. Mesoporous Silica-Based Materials for Electronics-Oriented Applications. Molecules 2019; 24:molecules24132395. [PMID: 31261814 PMCID: PMC6651352 DOI: 10.3390/molecules24132395] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022] Open
Abstract
Electronics, and nanoelectronics in particular, represent one of the most promising branches of technology. The search for novel and more efficient materials seems to be natural here. Thus far, silicon-based devices have been monopolizing this domain. Indeed, it is justified since it allows for significant miniaturization of electronic elements by their densification in integrated circuits. Nevertheless, silicon has some restrictions. Since this material is applied in the bulk form, the miniaturization limit seems to be already reached. Moreover, smaller silicon-based elements (mainly processors) need much more energy and generate significantly more heat than their larger counterparts. In our opinion, the future belongs to nanostructured materials where a proper structure is obtained by means of bottom-up nanotechnology. A great example of a material utilizing nanostructuring is mesoporous silica, which, due to its outstanding properties, can find numerous applications in electronic devices. This focused review is devoted to the application of porous silica-based materials in electronics. We guide the reader through the development and most crucial findings of porous silica from its first synthesis in 1992 to the present. The article describes constant struggle of researchers to find better solutions to supercapacitors, lower the k value or redox-active hybrids while maintaining robust mechanical properties. Finally, the last section refers to ultra-modern applications of silica such as molecular artificial neural networks or super-dense magnetic memory storage.
Collapse
Affiliation(s)
- Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Neus Vila
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Mateusz Schabikowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| |
Collapse
|
21
|
pH-modulated ion transport and amplified redox response of Keggin-type polyoxometalates through vertically-oriented mesoporous silica nanochannels. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Abstract
AbstractAs a preparation method for organic–inorganic or mesoporous inorganic materials via sol–gel condensation of a metal alkoxide, the combination of lyotropic liquid crystals (LLCs) and sol–gel chemistry is a versatile tool to fabricate various nanostructures. Despite previous investigations into such systems, no attempt has been made to utilize the dynamic switching functions of such nanostructures via the phase transition of LLCs in films. A polysiloxane containing an amine-hydrochloride group and a vinyl group was recently synthesized. By controlling the relative humidity, we achieved the phase transition of LLCs and on-demand UV-curing of LLC phases in the polysiloxane film. We further developed vertically oriented organic–inorganic nanochannels by using π−π interactions between discotic molecules and the substrate surface or the spontaneous vertical alignment of LLC containing azobenzene units.
Collapse
|
23
|
Kovalyk A, Tananaiko O, Borets A, Etienne M, Walcarius A. Voltammetric and microscopic characteristics of MnO2 and silica-MnO2hybrid films electrodeposited on the surface of planar electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Thickness control in electrogenerated mesoporous silica films by wet etching and electrochemical monitoring of the process. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Lah NAC, Trigueros S. Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:225-261. [PMID: 30956731 PMCID: PMC6442207 DOI: 10.1080/14686996.2019.1585145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 05/04/2023]
Abstract
The recent interest to nanotechnology aims not only at device miniaturisation, but also at understanding the effects of quantised structure in materials of reduced dimensions, which exhibit different properties from their bulk counterparts. In particular, quantised metal nanowires made of silver, gold or copper have attracted much attention owing to their unique intrinsic and extrinsic length-dependent mechanical properties. Here we review the current state of art and developments in these nanowires from synthesis to mechanical properties, which make them leading contenders for next-generation nanoelectromechanical systems. We also present theories of interatomic interaction in metallic nanowires, as well as challenges in their synthesis and simulation.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Innovative Manufacturing, Mechatronics and Sports Lab (iMAMS), Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
- CONTACT Nurul Akmal Che Lah
| | | |
Collapse
|
26
|
Three-dimensional mesoporous silica networks with improved diffusion and interference-abating properties for electrochemical sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
HARA M. On-Demand Control of Phase Transition and Orientation of Organic-Inorganic Complex Lyotropic Liquid Crystals. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2018-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsuo HARA
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University
| |
Collapse
|
28
|
Nasir T, Vodolazkaya NA, Herzog G, Walcarius A. Critical Effect of Film Thickness on Preconcentration Electroanalysis with Oriented Mesoporous Silica Modified Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Natalya A. Vodolazkaya
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
- Chemical Faculty; Department of Physical Chemistry; V.N. Karazin Kharkov National University; 61022 Kharkov Ukraine
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
29
|
Nasir T, Herzog G, Hébrant M, Despas C, Liu L, Walcarius A. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sens 2018; 3:484-493. [PMID: 29338195 DOI: 10.1021/acssensors.7b00920] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively charged mesoporous channels. Square wave voltametry (SWV) was then used to detect paraquat via its one electron reduction process. Influence of various experimental parameters (i.e., pH, electrolyte concentration, and nature of electrolyte anions) on sensitivity was investigated and discussed with respect to the mesopore characteristics and accumulation efficiency, pointing out the key role of charge distribution in such confined spaces on these processes. Calibration plots for paraquat concentration ranging from 10 nM to 10 μM were constructed at mesoporous silica modified GCE which were linear with increasing paraquat concentration, showing dramatically enhanced sensitivity (almost 30 times) as compared to nonmodified electrodes. Finally, real samples from Meuse River (France) spiked with paraquat, without any pretreatment (except filtration), were analyzed by SWV, revealing the possible detection of paraquat at very low concentration (10-50 nM). Limit of detection (LOD) calculated from real sample analysis was found to be 12 nM, which is well below the permissible limits of paraquat in drinking water (40-400 nM) in various countries.
Collapse
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Marc Hébrant
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Christelle Despas
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Liang Liu
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| |
Collapse
|
30
|
Ai Y, Smida H, Ghilane J, Vilà N, Ghanbaja J, Walcarius A, Lacroix JC. Copper Nanowires through Oriented Mesoporous Silica: A Step towards Protected and Parallel Atomic Switches. Sci Rep 2017; 7:17752. [PMID: 29259182 PMCID: PMC5736686 DOI: 10.1038/s41598-017-17048-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022] Open
Abstract
The formation of copper atomic contacts has been investigated. Copper nanowires were grown by electrochemical deposition, in the scanning electrochemical microscopy (SECM) configuration, from a platinum microelectrode to an indium tin oxide (ITO) substrate. Self-termination leaves copper filaments between the two electrodes with an atomic point contact at the ITO electrode. Histogram analysis shows that the conductance of this contact is close to, or less than, 1 G0. Atomic contacts were also fabricated on ITO electrodes covered with vertically-aligned mesoporous silica films. Scanning Transmission Electron Microscopy images show that copper filaments occupy individual isolated nanopores. Contacts generated on bare ITO break down rapidly in sodium salicylate, whereas those generated in ITO/nanopores are unaffected; the nanopores protect the copper filaments. Finally, atomic switch behaviour was obtained using these ITO and ITO/nanopores electrodes.
Collapse
Affiliation(s)
- Yong Ai
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, F-75205, Paris, Cedex 13, France
| | - Hassiba Smida
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, F-75205, Paris, Cedex 13, France
| | - Jalal Ghilane
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, F-75205, Paris, Cedex 13, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 CNRS and Université de Lorraine, 405 rue de Vandoeuvre, F-54600, Villers-lès-Nancy, France
| | - Jaafar Ghanbaja
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011, Nancy, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 CNRS and Université de Lorraine, 405 rue de Vandoeuvre, F-54600, Villers-lès-Nancy, France
| | - Jean Christophe Lacroix
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, F-75205, Paris, Cedex 13, France.
| |
Collapse
|
31
|
Liu Y, Shen D, Chen G, Elzatahry AA, Pal M, Zhu H, Wu L, Lin J, Al-Dahyan D, Li W, Zhao D. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702274. [PMID: 28719071 DOI: 10.1002/adma.201702274] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m2 g-1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale.
Collapse
Affiliation(s)
- Yupu Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Dengke Shen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Ahmed A Elzatahry
- Materials Science and Tech Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Manas Pal
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Hongwei Zhu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Longlong Wu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Jianjian Lin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | | | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
32
|
Laskowska M, Kityk I, Dulski M, Jędryka J, Wojciechowski A, Jelonkiewicz J, Wojtyniak M, Laskowski Ł. Functionalized mesoporous silica thin films as a tunable nonlinear optical material. NANOSCALE 2017; 9:12110-12123. [PMID: 28800139 DOI: 10.1039/c7nr02786a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The article is about a novel material for application in optoelectronic devices: mesoporous silica in the form of thin films with vertically aligned channels containing anchored propyl-copper-phosphonate functional groups. We described a synthesis route and carried out characterization of the structure to obtain its nonlinear optical (NLO) properties (second and third order harmonic generation). A quasi phase transition was found in the material resulting from modification of the functional group content. We also demonstrated that it is possible to modify NLO susceptibilities by tuning the distance between active polar units.
Collapse
Affiliation(s)
- Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1863. [PMID: 28800106 PMCID: PMC5579580 DOI: 10.3390/s17081863] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France.
| |
Collapse
|
34
|
Gamero-Quijano A, Karman C, Vilà N, Herzog G, Walcarius A. Vertically Aligned and Ordered One-Dimensional Mesoscale Polyaniline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4224-4234. [PMID: 28398065 DOI: 10.1021/acs.langmuir.7b00892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth of vertically aligned and ordered polyaniline nanofilaments is controlled by potentiostatic polymerization through hexagonally packed and oriented mesoporous silica films. In such small pore template (2 nm in diameter), quasi-single PANI chains are likely to be produced. From chronoamperometric experiments and using films of various thicknesses (100-200 nm) it is possible to evidence the electropolymerization transients, wherein each stage of polymerization (induction period, growth, and overgrowth of polyaniline on mesoporous silica films) is clearly identified. The advantageous effect of mesostructured silica thin films as hard templates for the generation of isolated polyaniline nanofilaments is demonstrated from enhancement of the reversibility between the conductive and the nonconductive states of polyaniline and the higher electroactive surface areas displayed for all mesoporous silica/PANI composites. The possibility to control and tailor the growth of conducting polymer nanofilaments offers numerous opportunities for applications in various fields including energy, sensors and biosensors, photovoltaics, nanophotonics, or nanoelectronics.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Cheryl Karman
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Neus Vilà
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Grégoire Herzog
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Alain Walcarius
- CNRS-Université de Lorraine, LCPME UMR 7564 , 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| |
Collapse
|
35
|
Giordano G, Vilà N, Aubert E, Ghanbaja J, Walcarius A. Multi-layered, vertically-aligned and functionalized mesoporous silica films generated by sequential electrochemically assisted self-assembly. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Lu J, Fan Y, Howard MD, Vaughan JC, Zhang B. Single-Molecule Electrochemistry on a Porous Silica-Coated Electrode. J Am Chem Soc 2017; 139:2964-2971. [PMID: 28132499 DOI: 10.1021/jacs.6b10191] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we report the direct observation and quantitative analysis of single redox events on a modified indium-tin oxide (ITO) electrode. The key in the observation of single redox events are the use of a fluorogenic redox species and the nanoconfinement and hindered redox diffusion inside 3-nm-diameter silica nanochannels. A simple electrochemical process was used to grow an ultrathin silica film (∼100 nm) consisting of highly ordered parallel nanochannels exposing the electrode surface from the bottom. The electrode-supported 3-nm-diameter nanochannels temporally trap fluorescent resorufin molecules resulting in hindered molecular diffusion in the vicinity of the electrode surface. Adsorption, desorption, and heterogeneous redox events of individual resorufin molecules can be studied using total-internal reflection fluorescence (TIRF). The rate constants of adsorption and desorption processes of resorufin were characterized from single-molecule analysis to be (1.73 ± 0.08) × 10-4 cm·s-1 and 15.71 ± 0.76 s-1, respectively. The redox events of resorufin to the non-fluorescent dihydroresorufin were investigated by analyzing the change in surface population of single resorufin molecules with applied potential. The scan-rate-dependent molecular counting results (single-molecule fluorescence voltammetry) indicated a surface-controlled electrochemical kinetics of the resorufin reduction on the modified ITO electrode. This study demonstrates the great potential of mesoporous silica as a useful modification scheme for studying single redox events on a variety of transparent substrates such as ITO electrodes and gold or carbon film coated glass electrodes. The ability to electrochemically grow and transfer mesoporous silica films onto other substrates makes them an attractive material for future studies in spatial heterogeneity of electrocatalytic surfaces.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Yunshan Fan
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Marco D Howard
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| |
Collapse
|
37
|
Indirect amperometric detection of non-redox ions using a ferrocene-functionalized and oriented mesoporous silica thin film electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Xie L, Huang X, Lin X, Su B. Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Liu L, Walcarius A. Kinetics of the electrochemically-assisted deposition of sol–gel films. Phys Chem Chem Phys 2017; 19:14972-14983. [DOI: 10.1039/c7cp01775h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first report on the kinetics of the electrochemically-assisted deposition of sol–gel films, which is a typical indirect electrodeposition process.
Collapse
Affiliation(s)
- Liang Liu
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-lès-Nancy
- France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-lès-Nancy
- France
| |
Collapse
|
40
|
Karman C, Vilà N, Walcarius A. Amplified Charge Transfer for Anionic Redox Probes through Oriented Mesoporous Silica Thin Films. ChemElectroChem 2016. [DOI: 10.1002/celc.201600303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheryl Karman
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
41
|
Ogawa M. Mesoporous Silica Layer: Preparation and Opportunity. CHEM REC 2016; 17:217-232. [DOI: 10.1002/tcr.201600068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Makoto Ogawa
- School of Energy Science and Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| |
Collapse
|
42
|
One-pot Synthesis of Terminal Vinylphosphonates Catalyzed by Pyridine Grafted GO as Reusable Acid-Base Bifunctional Catalyst. ChemistrySelect 2016. [DOI: 10.1002/slct.201600517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Noureddine A, Gary-Bobo M, Lichon L, Garcia M, Zink JI, Wong Chi Man M, Cattoën X. Bis-clickable Mesoporous Silica Nanoparticles: Straightforward Preparation of Light-Actuated Nanomachines for Controlled Drug Delivery with Active Targeting. Chemistry 2016; 22:9624-30. [PMID: 27258427 DOI: 10.1002/chem.201600870] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/10/2022]
Abstract
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co-condensation of TEOS with variable amounts (2-5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on-demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans-to-cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on-command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin-loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.
Collapse
Affiliation(s)
- Achraf Noureddine
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier-ENSCM, 8, rue de l'école normale, 34296, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093, Montpellier cedex 05, France
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093, Montpellier cedex 05, France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093, Montpellier cedex 05, France
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, California, 90095-1569, USA
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier-ENSCM, 8, rue de l'école normale, 34296, Montpellier, France.
| | - Xavier Cattoën
- Univ. Grenoble Alpes, Inst NEEL, 38042, Grenoble, France. .,CNRS, Inst NEEL, 38042, Grenoble, France.
| |
Collapse
|
44
|
Nasir T, Zhang L, Vilà N, Herzog G, Walcarius A. Electrografting of 3-Aminopropyltriethoxysilane on a Glassy Carbon Electrode for the Improved Adhesion of Vertically Oriented Mesoporous Silica Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4323-4332. [PMID: 27065214 DOI: 10.1021/acs.langmuir.6b00798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vertically oriented mesoporous silica has proven to be of interest for applications in a variety of fields (e.g., electroanalysis, energy, and nanotechnology). Although glassy carbon is widely used as an electrode material, the adherence of silica deposits is rather poor, causing mechanical instability. A solution to improve the adhesion of mesoporous silica films onto glassy carbon electrodes without compromising the vertical orientation and the order of the mesopores will greatly contribute to the use of this kind of modified carbon electrode. We propose here the electrografting of 3-aminopropyltriethoxysilane on glassy carbon as a molecular glue to improve the mechanical stability of the silica film on the electrode surface without disturbing the vertical orientation and the order of the mesoporous silica obtained by electrochemically assisted self-assembly. These findings are supported by a series of surface chemistry techniques such as X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and cyclic voltammetry. Finally, methylviologen was used as a model redox probe to investigate the cathodic potential region of both glassy carbon and indium tin oxide electrodes modified with mesoporous silica in order to demonstrate further the interest in the approach developed here.
Collapse
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Lin Zhang
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| |
Collapse
|
45
|
Yan F, Lin X, Su B. Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst 2016; 141:3482-95. [DOI: 10.1039/c6an00146g] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vertically-aligned mesoporous silica films were used for electrochemical sensing and molecular separation in terms of molecular size, charge and lipophilicity.
Collapse
Affiliation(s)
- Fei Yan
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Xingyu Lin
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| |
Collapse
|
46
|
Robertson C, Lodge A, Basa P, Carravetta M, Hector AL, Kashtiban RJ, Sloan J, Smith DC, Spencer J, Walcarius A. Surface modification and porosimetry of vertically aligned hexagonal mesoporous silica films. RSC Adv 2016. [DOI: 10.1039/c6ra23059h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Grafting vertically aligned mesoporous silica films with small organosilane precursors increases pore hydrophobicity, whereas larger reagents change only the film surfaces.
Collapse
Affiliation(s)
| | | | - Peter Basa
- Semilab Semiconductor Physics Laboratory Co. Ltd
- H-1117 Budapest
- Hungary
| | | | | | | | - Jeremy Sloan
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - David C. Smith
- Physics and Astronomy
- University of Southampton
- Southampton
- UK
| | - Joseph Spencer
- Physics and Astronomy
- University of Southampton
- Southampton
- UK
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement
- UMR 7564 CNRS – Université de Lorraine
- 54600 Villers-les-Nancy
- France
| |
Collapse
|
47
|
Poltorak L, Morakchi K, Herzog G, Walcarius A. Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.169] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Vilà N, Allain C, Audebert P, Walcarius A. Tetrazine-functionalized and vertically-aligned mesoporous silica films with electrochemical activity and fluorescence properties. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Audebert P, Vilà N, Allain C, Maisonneuve F, Walcarius A, Hapiot P. Highly Organized Ferrocene-Functionalized Nanoporous Silica Films with an Extremely Fast Electron-Transfer Rate for an Intrinsically Nonconducting Oxide-Modified Electrode. ChemElectroChem 2015. [DOI: 10.1002/celc.201500227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pierre Audebert
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement; UMR 7564, CNRS; Université de Lorraine, 405; rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Clémence Allain
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Franck Maisonneuve
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement; UMR 7564, CNRS; Université de Lorraine, 405; rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Philippe Hapiot
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE); CNRS, UMR 6226; Université de Rennes 1, Campus de Beaulieu, Bat 10C; 35042 Rennes Cedex France
| |
Collapse
|