1
|
Riddhi RK, Penas-Hidalgo F, Chen H, Quadrelli EA, Canivet J, Mellot-Draznieks C, Solé-Daura A. Experimental and computational aspects of molecular frustrated Lewis pairs for CO 2 hydrogenation: en route for heterogeneous systems? Chem Soc Rev 2024; 53:9874-9903. [PMID: 39212094 DOI: 10.1039/d3cs00267e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Catalysis plays a crucial role in advancing sustainability. The unique reactivity of frustrated Lewis pairs (FLPs) is driving an ever-growing interest in the transition metal-free transformation of small molecules like CO2 into valuable products. In this area, there is a recent growing incentive to heterogenize molecular FLPs into porous solids, merging the benefits of homogeneous and heterogeneous catalysis - high activity, selectivity, and recyclability. Despite the progress, challenges remain in preventing deactivation, poisoning, and simplifying catalyst-product separation. This review explores the expanding field of FLPs in catalysis, covering existing molecular FLPs for CO2 hydrogenation and recent efforts to design heterogeneous porous systems from both experimental and theoretical perspectives. Section 2 discusses experimental examples of CO2 hydrogenation by molecular FLPs, starting with stoichiometric reactions and advancing to catalytic ones. It then examines attempts to immobilize FLPs in porous matrices, including siliceous solids, metal-organic frameworks (MOFs), covalent organic frameworks, and disordered polymers, highlighting current limitations and challenges. Section 3 then reviews computational studies on the mechanistic details of CO2 hydrogenation, focusing on H2 splitting and hydride/proton transfer steps, summarizing efforts to establish structure-activity relationships. It also covers the computational aspects on grafting FLPs inside MOFs. Finally, Section 4 summarizes the main design principles established so far, while addressing the complexities of translating computational approaches into the experimental realm, particularly in heterogeneous systems. This section underscores the need to strengthen the dialogue between theoretical and experimental approaches in this field.
Collapse
Affiliation(s)
- Riddhi Kumari Riddhi
- IRCELYON, UMR 5256, Université LYON 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Francesc Penas-Hidalgo
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | - Hongmei Chen
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | | | - Jérôme Canivet
- IRCELYON, UMR 5256, Université LYON 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | - Albert Solé-Daura
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| |
Collapse
|
2
|
Wang YC, Chen MH, Fan ZW, Wang Y, Huang CX, Wang HF, Lang JP, Niu Z. Enhanced water stability of MOFs via multiple hydrogen bonds and their application in water harvesting. Chem Commun (Camb) 2024; 60:10692-10695. [PMID: 39239662 DOI: 10.1039/d4cc03654a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A mechanism based on multiple hydrogen bonds was proposed to describe the great water stability of some hydrated Cu paddle-wheel-based MOFs, which was demonstrated through density functional theory (DFT) calculations and single-crystal X-ray diffraction (SCXRD) of water-loaded MOFs. This mechanism endowed Cu-TDPAT with exceptional water stability and outstanding atmospheric water harvesting capability.
Collapse
Affiliation(s)
- Yi-Chao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Mo-Han Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zi-Wen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Cai-Xiang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hui-Fang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Xin R, Wang C, Zhang Y, Peng R, Li R, Wang J, Mao Y, Zhu X, Zhu W, Kim M, Nam HN, Yamauchi Y. Efficient Removal of Greenhouse Gases: Machine Learning-Assisted Exploration of Metal-Organic Framework Space. ACS NANO 2024. [PMID: 38951518 DOI: 10.1021/acsnano.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Global warming is a crisis that humanity must face together. With greenhouse gases (GHGs) as the main factor causing global warming, the adoption of relevant processes to eliminate them is essential. With the advantages of high specific surface area, large pore volume, and tunable synthesis, metal-organic frameworks (MOFs) have attracted much attention in GHG storage, adsorption, separation, and catalysis. However, as the pool of MOFs expands rapidly with new syntheses and discoveries, finding a suitable MOF for a particular application is highly challenging. In this regard, high-throughput computational screening is considered the most effective research method for screening a large number of materials to discover high-performance target MOFs. Typically, high-throughput computational screening generates voluminous and multidimensional data, which is well suited for machine learning (ML) training to improve the screening efficiency and explore the relationships between the multidimensional data in depth. This Review summarizes the general process and common methods for using ML to screen MOFs in the field of GHG removal. It also addresses the challenges faced by ML in exploring the MOF space and potential directions for the future development of ML for MOF screening. This aims to enhance the understanding of the integration of ML and MOFs in various fields and broaden the application and development ideas of MOFs.
Collapse
Affiliation(s)
- Ruiqi Xin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yingchao Zhang
- School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Rui Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
4
|
Akagi K, Naito H, Saikawa T, Kotani M, Yoshikawa H. Linear regression model for metal-organic frameworks with CO 2 adsorption based on topological data analysis. Sci Rep 2024; 14:12021. [PMID: 38797807 PMCID: PMC11128442 DOI: 10.1038/s41598-024-62858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Metal-organic frameworks (MOFs), self-assembled porous materials synthesized from metal ions and organic ligands, are promising candidates for the direct capture of CO2 from the atmosphere. In this work, we developed a regression model to predict the optimal component of the MOF that governs the amount of CO2 adsorption per volume based on experimentally observed adsorption and structure data combined with MOF adsorption sites. The structural descriptors were generated by topological data analysis with persistence diagrams, an advanced mathematical method for quantifying the rings and cavities within the MOF. This enables us to analyze direct effects and significance of the geometric structure of the MOF on the efficiency of CO2 adsorption in a novel way. The proposed approach is proved to be highly correlated with experimental data and thus offers an effective screening tool for MOFs with optimized structures.
Collapse
Affiliation(s)
- Kazuto Akagi
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan.
| | - Hisashi Naito
- Graduate School of Mathematics, Nagoya University, Furocho, Nagoya, 464-8602, Japan
| | - Takafumi Saikawa
- Graduate School of Mathematics, Nagoya University, Furocho, Nagoya, 464-8602, Japan
| | - Motoko Kotani
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan
| | - Hirofumi Yoshikawa
- Program of Materials Science, School of Engineering, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
5
|
Rezayati S, Morsali A. Functionalization of Magnetic UiO-66-NH 2 with a Chiral Cu(l-proline) 2 Complex as a Hybrid Asymmetric Catalyst for CO 2 Conversion into Cyclic Carbonates. Inorg Chem 2024; 63:6051-6066. [PMID: 38501387 DOI: 10.1021/acs.inorgchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
6
|
Eskemech A, Chand H, Karmakar A, Krishnan V, Koner RR. Zn-MOF as a Single Catalyst with Dual Lewis Acidic and Basic Reaction Sites for CO 2 Fixation. Inorg Chem 2024; 63:3757-3768. [PMID: 38354394 DOI: 10.1021/acs.inorgchem.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Continuous increase in carbon dioxide (CO2) emissions are causing imbalances in the environment, which impact biodiversity and human health. The conversion of CO2 to cyclic carbonates by means of metal-organic frameworks (MOFs) as a heterogeneous catalyst is a prominent strategy for rectifying this imbalance. Herein, we have developed nitrogen-rich Zn (II) based metal-organic framework, [Zn(CPMT)(bipy)]n (CPMT = 1-(4-carboxyphenyl)-5-mercapto-1H-tetrazole; bipy = 4,4'-bipyridine), synthesized via a mixed ligand strategy. This Zn-MOF showed high chemical stability in both acidic and basic conditions, and in organic solvents for a long time. On account of the concurrent presence of acid-base active sites and strong chemical stability under abrasive conditions, this Zn-MOF was employed as an effective catalyst for the coupling of CO2 and epoxides, under atmospheric pressure, mild temperature, and neat conditions. This Zn-MOF shows remarkable activity by producing high yields of epichlorohydrin carbonate (98%) and styrene carbonate (82%) at atmospheric CO2 pressure, 70 °C temperature, and 24 h reaction time, with turnover numbers (TON) of 217 and 181, respectively. The Zn-MOF could be reused for up to seven cycles with structural and framework integrity. Overall, this work demonstrates the synthesis of a novel and highly efficient MOF for CO2 conversion.
Collapse
Affiliation(s)
- Alehegn Eskemech
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hushan Chand
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
7
|
Zhao X, Chang G, Xu H, Yao Y, Dong D, Yang S, Tian G, Yang X. A Hierarchical Metal-Organic Framework Composite Aerogel Catalyst Containing Integrated Acid, Base, and Metal Sites for the One-Pot Catalytic Synthesis of Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7364-7373. [PMID: 38303137 DOI: 10.1021/acsami.3c18885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Catalysis has played a decisive role in the development of unique chemical reactions to produce important chemicals. However, conventional stepwise synthetic routes that rely on individual catalysts to promote each step often suffer from ponderous processes for the isolation of intermediates that result in massive material losses and large economic expenditures. In addition, traditional powder forms of these catalysts suffer from poor processability and recoverability. Herein, we designed and prepared a hierarchical metal-organic framework (MOF) composite monolithic catalyst IL-Au@UiO-66-NH2/CMC that contains integrated acid (Zr4+), base (ionic liquid (IL)), and metal sites (Au nanoparticles (NPs)) to promote the one-pot preparation of cyclic carbonates from styrene derivatives and CO2. Highly dispersed Au NPs, IL 1-aminoethyl-3-methylimidazolium bromide ([C2NH2 MIM] [Br]), and MOF-positioned Lewis acid sites within this composite aerogel are separately responsible for catalyzing selective epoxidation of the styrene derivatives and the subsequent cycloaddition reaction of CO2 with intermediate styrene oxides. Importantly, inclusion of the imidazolium-based IL effectively modulates the size and chemical microenvironment of the Au NPs via electrostatic protection, leading to catalyst stability and its selective oxidation of styrene. Benefiting from the rapid mass transfer and high exposure of active sites within the pore-rich hierarchical nanostructure, IL-Au@UiO-66-NH2/CMC promotes high conversion (90.5%) of the styrene and selectivity (80.5%) for styrene carbonate (SC) formation in the one-pot process, a performance level that far exceeds those of related catalysts containing only Au NPs or IL (the selectivity of SC < 42%). Furthermore, the composite aerogel catalyst can be readily separated and recycled at least five times without a remarkable loss of activity and selectivity. The controllable integration of various active components in the hierarchical MOF composite aerogel herein should serve as the foundation for the design of multifunctional monolithic catalysts for other valuable tandem processes.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Hongjian Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Didi Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shujie Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Zhao X, Tang Y, Wang Y, Rong X, Wu P, Li Z, Cai N, Deng X, Wang J. Zirconium metal-organic cage decorated with squaramides imparts dual activation for chemical fixation of CO 2 under mild conditions. Chem Commun (Camb) 2023; 59:10944-10947. [PMID: 37606520 DOI: 10.1039/d3cc02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A "two-in-one" dual activation strategy has been developed to give high-density hydrogen-bonding (HB) active units and Lewis acid (LA) active centres by immobilizing squaramides into metal-organic cages (MOCs). The obtained MOC served as an efficient catalyst for the chemical fixation of CO2 under mild conditions up to 99% yields with good recyclability, and the mechanism of high catalytic activity has been further explored.
Collapse
Affiliation(s)
- Xiaoli Zhao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yue Tang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yuxuan Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinjing Rong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zihan Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Ning Cai
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinyi Deng
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
9
|
Flores JG, Obeso JL, Martínez-Jiménez V, Martín-Guaregua N, Islas-Jácome A, González-Zamora E, Serrano-Espejel H, Mondragón-Rodríguez B, Leyva C, Solís-Casados DA, Ibarra IA, Peralta RA, Aguilar-Pliego J, Antonio de Los Reyes J. Evaluation of the catalytic activity of Zn-MOF-74 for the alcoholysis of cyclohexene oxide. RSC Adv 2023; 13:27174-27179. [PMID: 37701278 PMCID: PMC10493851 DOI: 10.1039/d3ra03122e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
In the present work, nanocrystalline Zn-MOF-74 is shown to be a heterogeneous catalyst for the acid-catalyzed ring-opening alcoholysis of cyclohexene oxide. The results corroborated that accessible open metal sites within the material are critical conditions (Zn(ii) Lewis acid sites) for this reaction. Zn-MOF-74 was tested at three different temperatures (30, 40, and 50 °C) for the alcoholysis reaction. Furthermore, the cyclohexene oxide conversion was 94% in less than two days. A comparison of the catalytic activity with different crystal sizes of Zn-MOF-74 and the homogenous phase, zinc acetate, was conducted. Zn-MOF-74 exhibited excellent catalytic cyclability for three cycles without losing its activity. The material showed chemical stability by retaining its crystalline structure after the reaction and cyclability process.
Collapse
Affiliation(s)
- J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azc Apotzalco 02200 Ciudad de México Mexico
| | - Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua) Legaria 694 Irrigación, Miguel Hidalgo CDMX Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU Coyoacán 04510, Ciudad de México Mexico
| | - V Martínez-Jiménez
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Nancy Martín-Guaregua
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Eduardo González-Zamora
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Héctor Serrano-Espejel
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Britney Mondragón-Rodríguez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua) Legaria 694 Irrigación, Miguel Hidalgo CDMX Mexico
| | - D A Solís-Casados
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano Toluca 50200 Estado de México Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU Coyoacán 04510, Ciudad de México Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| | - Julia Aguilar-Pliego
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azc Apotzalco 02200 Ciudad de México Mexico
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa 09340 Ciudad de México Mexico
| |
Collapse
|
10
|
Manna K, Kumar R, Sundaresan A, Natarajan S. Fixing CO 2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies. Inorg Chem 2023; 62:13738-13756. [PMID: 37586090 DOI: 10.1021/acs.inorgchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
New copper compounds, [Cu(C14H8O6)(C10H8N2)(H2O)] (1), [Cu(C14H8O6)(C10H8N2)(H2O)]·(C3H7ON)2 (2), [Cu(C14H8O6)(C10H8N2)(H2O)2]·(C3H7ON) (3), [Cu(C14H8O6)(C10H8N4)] (4), and [Cu(C14H8O6)(C10H8N4)]·(H2O) (5), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (1-3) and 4,4'-azopyridine (4-5) as the secondary ligands. Single-crystal studies indicated that compounds 1-4 have two-dimensional layer structures and compound 5 has a three-dimensional structure. Compounds 1-3 were isolated from the same reaction mixture but by varying the time of reaction. The framework structures of compounds 1-3 are similar and may be considered as polymorphic structures. Compounds 4 and 5 can also be considered polymorphic with a change in dimensionality of the structure. Compounds 1-3 can be formed through a single-crystal-to-single-crystal transformation under a suitable solvent mixture. The Cu center was explored for the Lewis acid-catalyzed cycloaddition reaction of epoxide and CO2 under ambient conditions in a solventless condition and also for the synthesis of propargylamine derivatives by three-component coupling reactions (A3 coupling) in a DCM medium. The Lewis basic functionality of the MOF (-N═N- group) has been explored for the Henry reaction (aldol condensation) in a solventless condition. In all of the catalytic reactions, good yields and recyclability were observed. The magnetic studies indicated that compounds 1 and 4 have antiferromagnetic interactions and compound 5 has ferromagnetic interactions. The present studies illustrated the rich diversity that the copper-containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| | - Rahul Kumar
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Athinarayanan Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Obeso JL, Flores JG, Flores CV, Huxley MT, de Los Reyes JA, Peralta RA, Ibarra IA, Leyva C. MOF-based catalysts: insights into the chemical transformation of greenhouse and toxic gases. Chem Commun (Camb) 2023; 59:10226-10242. [PMID: 37554029 DOI: 10.1039/d3cc03148a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Metal-organic framework (MOF)-based catalysts are outstanding alternative materials for the chemical transformation of greenhouse and toxic gases into high-add-value products. MOF catalysts exhibit remarkable properties to host different active sites. The combination of catalytic properties of MOFs is mentioned in order to understand their application. Furthermore, the main catalytic reactions, which involve the chemical transformation of CH4, CO2, NOx, fluorinated gases, O3, CO, VOCs, and H2S, are highlighted. The main active centers and reaction conditions for these reactions are presented and discussed to understand the reaction mechanisms. Interestingly, implementing MOF materials as catalysts for toxic gas-phase reactions is a great opportunity to provide new alternatives to enhance the air quality of our planet.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
12
|
Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AMZ, Zhou Y, Kirillov AM. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37300-37311. [PMID: 37497576 DOI: 10.1021/acsami.3c04506] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
Collapse
Affiliation(s)
- Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
| | | | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
13
|
Liu H, Liu W, Xue G, Tan T, Yang C, An P, Chen W, Zhao W, Fan T, Cui C, Tang Z, Li G. Modulating Charges of Dual Sites in Multivariate Metal-Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J Am Chem Soc 2023; 145:11085-11096. [PMID: 37162302 DOI: 10.1021/jacs.3c00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective aerobic epoxidation of alkenes without any additives is of great industrial importance but still challenging because the competitive side reactions including C═C bond cleavage and isomerization are difficult to avoid. Here, we show fabricating Cu(I) single sites in pristine multivariate metal-organic frameworks (known as CuCo-MOF-74) via partial reduction of Cu(II) to Cu(I) ions during solvothermal reaction. Impressively, CuCo-MOF-74 is characteristic with single Cu(I), Cu(II), and Co(II) sites, and they exhibit the substantially enhanced selectivity of styrene oxide up to 87.6% using air as an oxidant at almost complete conversion of styrene, ∼25.8% selectivity increased over Co-MOF-74, as well as good catalytic stability. Contrast experiments and theoretical calculation indicate that Cu(I) sites contribute to the substantially enhanced selectivity of epoxides catalyzed by Co(II) sites. The adsorption of two O2 molecules on dual Co(II) and Cu(I) sites is favorable, and the projected density of state of the Co-3d orbital is closer to the Fermi level by modulating with Cu(I) sites for promoting the activation of O2 compared with dual-site Cu(II) and Co(II) and Co(II) and Co(II), thus contributing to the epoxidation of the C═C bond. When other kinds of alkenes are used as substrates, the excellent selectivity of various epoxides is also achieved over CuCo-MOF-74. We also prove the universality of fabricating Cu(I) sites in other MOF-74 with various divalent metal nodes.
Collapse
Affiliation(s)
- Hanlin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ting Tan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chengqian Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
He Y, Boone P, Lieber AR, Tong Z, Das P, Hornbostel KM, Wilmer CE, Rosi NL. Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23337-23342. [PMID: 37141279 DOI: 10.1021/acsami.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Adsorption-based capture of CO2 from flue gas and from air requires materials that have a high affinity for CO2 and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO2, and the shell MOF is designed to block H2O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO2, N2, and H2O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO2 capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO2/H2O diffusion selectivity can significantly reduce the effect of water on CO2 uptake.
Collapse
Affiliation(s)
- Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul Boone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Austin R Lieber
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Zi Tong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Katherine M Hornbostel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Clinical and Translational Science Institute, University of Pittsburgh, Meyran Avenue, Suite 7057, Pittsburgh, Pennsylvania 15213, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Christian MS, Nenoff TM, Rimsza JM. Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal-Organic Frameworks. J Phys Chem A 2023; 127:2881-2888. [PMID: 36947182 DOI: 10.1021/acs.jpca.2c07751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with -OH, -NH2, and -SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.
Collapse
Affiliation(s)
- Matthew S Christian
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Advanced Science & Technology, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
16
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Ma T, Wang W, Wang R. Thermal Degradation and Carbonization Mechanism of Fe-Based Metal-Organic Frameworks onto Flame-Retardant Polyethylene Terephthalate. Polymers (Basel) 2023; 15:polym15010224. [PMID: 36616573 PMCID: PMC9823990 DOI: 10.3390/polym15010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, the metal-organic framework (MOF) is a promising candidate for flame-retardant polymers. In this study, a Fe-based MOF, MIL-88B(Fe), was introduced to polyethylene terephthalate (PET) and 3-hydroxyphenylphosphinyl-propanoic acid copolymer (P-PET) to reduce the fire hazard involved in using PET. The limiting oxygen indexes (LOIs) of MIL-PET and MIL-P-PET improved by 27% and 30%, respectively. The UL-94 level achieved for MIL-P-PET was V-0 rating. The thermal degradation and carbonization mechanisms of MIL-PET and MIL-P-PET were systematically investigated through thermogravimetric analysis coupled with a Fourier transform infrared spectroscopy (TG-IR), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), x-ray photoelectron spectroscopy (XPS), and Raman spectrum combined with quantum chemical molecular dynamics simulation. With the addition of MIL-88B(Fe), high graphitization and a hard flammability char residual were generated. Compared with neat PET, the ferric ions efficiently catalyzed the homolytic cleavage and dehydrogenation of PET to produce a large amount of CO2 and terephthalic acid for MIL-PET in gas phase. Rough and hierarchical char residual with ferric oxide was also generated when temperatures exceeded 600 °C. However, the carbonization process was inhibited due to the coordinated complex between phosphorus and ferric ions in MIL-P-PET, invaliding the decarboxylation and generating more benzoic acid and its precursor, which led to heavy smoke.
Collapse
Affiliation(s)
- Tianyi Ma
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Wenqing Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
- Correspondence: (W.W.); (R.W.)
| | - Rui Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
- Correspondence: (W.W.); (R.W.)
| |
Collapse
|
18
|
Jana A, Snyder SW, Crumlin EJ, Qian J. Integrated carbon capture and conversion: A review on C 2+ product mechanisms and mechanism-guided strategies. Front Chem 2023; 11:1135829. [PMID: 36874072 PMCID: PMC9978511 DOI: 10.3389/fchem.2023.1135829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
The need to reduce atmospheric CO2 concentrations necessitates CO2 capture technologies for conversion into stable products or long-term storage. A single pot solution that simultaneously captures and converts CO2 could minimize additional costs and energy demands associated with CO2 transport, compression, and transient storage. While a variety of reduction products exist, currently, only conversion to C2+ products including ethanol and ethylene are economically advantageous. Cu-based catalysts have the best-known performance for CO2 electroreduction to C2+ products. Metal Organic Frameworks (MOFs) are touted for their carbon capture capacity. Thus, integrated Cu-based MOFs could be an ideal candidate for the one-pot capture and conversion. In this paper, we review Cu-based MOFs and MOF derivatives that have been used to synthesize C2+ products with the objective of understanding the mechanisms that enable synergistic capture and conversion. Furthermore, we discuss strategies based on the mechanistic insights that can be used to further enhance production. Finally, we discuss some of the challenges hindering widespread use of Cu-based MOFs and MOF derivatives along with possible solutions to overcome the challenges.
Collapse
Affiliation(s)
- Asmita Jana
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Seth W Snyder
- Energy & Environment S&T, Idaho National Laboratory, Idaho Falls, ID, United States
| | - Ethan J Crumlin
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jin Qian
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
19
|
Wang W, Chen W, Yuan W, Xu HQ, Liu B. Hexagonal Cages and Lewis Acid–Base Sites in a Metal–Organic Framework for Synergistic CO 2 Capture and Conversion under Mild Conditions. Inorg Chem 2022; 61:17937-17942. [DOI: 10.1021/acs.inorgchem.2c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Weize Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Weixuan Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wenke Yuan
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Hai-Qun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Bo Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
20
|
Tapiador J, Leo P, Gándara F, Calleja G, Orcajo G. Robust Cu-URJC-8 with mixed ligands for mild CO2 cycloaddition reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Yan Q, Liang H, Wang S, Hu H, Su X, Xiao S, Xu H, Jing X, Lu F, Gao Y. Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO 2 to Epoxides. Molecules 2022; 27:6204. [PMID: 36234750 PMCID: PMC9570866 DOI: 10.3390/molecules27196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.
Collapse
Affiliation(s)
- Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hao Liang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Xuechao Jing
- Liaocheng Luxi Polycarbonate Co., Ltd., Liaocheng 252000, China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
22
|
Yang K, Jiang J. Highly efficient CO2 conversion on a robust metal-organic framework Cu(I)-MFU-4l: Prediction and mechanistic understanding from DFT calculations. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Su H, Bai S, Bing L, Deng H, Zhuang Y, Sun J. Fabrication of Small-Sized ZIF-8 Confined in the Mesoporous SBA-15 with Synergistic Enhancement for CO2 Fixation with Epoxides. Catal Letters 2022. [DOI: 10.1007/s10562-022-03995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Liu LH, Liu L, Chi HR, Li CN, Han ZB. A [(M 2) 6L 8] metal-organic polyhedron with high CO 2 uptake and efficient chemical conversion of CO 2 under ambient conditions. Chem Commun (Camb) 2022; 58:6417-6420. [PMID: 35543549 DOI: 10.1039/d2cc01734b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new metal-organic polyhedron with a high surface area of 407 m2 g-1, possessing high CO2 uptake, is reported, which is synthesized using 4-connected Cu2(CO2)4 paddle-wheel moieties and 3-connected semi-rigid tripodal carboxylates. This material possesses a high density of Cu(II) Lewis acidic sites and demonstrates excellent performance as a heterogeneous catalyst for the chemical fixation of CO2 into cyclic carbonates under ambient conditions.
Collapse
Affiliation(s)
- Li-Hua Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Hao-Ran Chi
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
25
|
Recent Achievements in the Synthesis of Cyclic Carbonates from Olefins and CO2: The Rational Design of the Homogeneous and Heterogeneous Catalytic System. Catalysts 2022. [DOI: 10.3390/catal12050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
With the consumption of fossil fuels, the level of CO2 in the atmosphere is growing rapidly, which leads to global warming. Hence, the chemical conversion of CO2 into high value-added products is one of the most important approaches to reducing CO2 emissions. Due to being simple, inexpensive and environmentally friendly, the direct synthesis of cyclic carbonates from olefins and CO2 is a promising project for industrial application. In this review, we discuss the design of the homogeneous and heterogeneous catalytic system for the synthesis of cyclic carbonates from the reaction of olefins and CO2. Usually, the catalyst contains the epoxidation active site and the cycloaddition active site, which could achieve the oxidation of oleifins and the CO2-insert, respectively. This review will provide a comprehensive overview of the direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by homogeneous and heterogeneous catalysts. The focus mainly lies on the rational fabrication of multifunctional catalysts, and provides a new perspective for the design of catalysts.
Collapse
|
26
|
Zhang R, Lu L, Chen Z, Zhang X, Wu B, Shi W, Cheng P. Bimetallic Cage‐Based Metal–Organic Frameworks for Electrochemical Hydrogen Evolution Reaction with Enhanced Activity. Chemistry 2022; 28:e202200401. [DOI: 10.1002/chem.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Zhe Zhang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Le‐Le Lu
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zhong‐Hang Chen
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xiaoping Zhang
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Bo‐Yuan Wu
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wei Shi
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Department of Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Peng Cheng
- Department of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Department of Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
27
|
Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Tapiador J, Leo P, Rodríguez-Diéguez A, Choquesillo-Lazarte D, Calleja G, Orcajo G. A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Kuruppathparambil RR, Robert TM, Pillai RS, Pillai SKB, Kalamblayil Shankaranarayanan SK, Kim D, Mathew D. Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Lei L, Cheng Y, Chen C, Kosari M, Jiang Z, He C. Taming structure and modulating carbon dioxide (CO 2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO 2 capture. J Colloid Interface Sci 2022; 612:132-145. [PMID: 34992014 DOI: 10.1016/j.jcis.2021.12.163] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Though the highest CO2 capture capacity belongs to liquid amine-solutions, solid matters capable of CO2 capture are also highly sought, providing that, they offer at least analogous CO2 adsorption capacity and CO2/N2 selectivity. Herein, a surprisingly high-performance Ni-based metal-organic framework for CO2 adsorption, namely MOF-74(Ni), was synthesized by a facile condensation reflux approach. It was found that the structure and CO2 adsorption isosteric heat of MOF-74(Ni) could tune upon varying the synthesis duration under various temperatures. The optimized MOF-74(Ni)-24-140 (synthesized at 140 °C for 24 h) displays outstanding CO2 adsorption capacity of 8.29/6.61 mmol/g at 273/298 K under normal pressure of 1.0 bar, several times higher than previously reported MOF-74-Ni (2.0/2.1 times), UTSA-16 (1.5/1.6 times), and DA-CMP-1 (3.6/4.9 times) under similar conditions. The excellent CO2 capture capacity is associated to the abundant adsorption sites (mainly arising from the cationic Ni2+ ions) and narrow micropore channels (mainly arising from the cage structure of Ni2+ ions coordinated with organic linkers). Offering a high CO2 selectivity (CO2/N2 = 49) and a well-tuned isosteric heat of CO2 adsorption (27-52 kJ/mol) besides its decent CO2 capture capacity, MOF-74(Ni) strongly stands out as an efficient and strong CO2 capturing material with industrial scale applicability.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China
| | - Yan Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China; State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710048, Shaanxi, PR China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710048, Shaanxi, PR China; Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710048, Shaanxi, PR China.
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710048, Shaanxi, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| |
Collapse
|
31
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Liu X, Hu C, Wu J, Cui P, Wei F. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Emelyanov MA, Lisov AA, Medvedev MG, Maleev VI, Larionov VA. Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail A. Emelyanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Alexey A. Lisov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| | - Michael G. Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Chemistry Leninsky prospect 47 119991 Moscow RUSSIAN FEDERATION
| | - Victor I. Maleev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Laboratory of Asymmetric Catalysis Vavilov Street 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
34
|
Khan MU, Khan SU, Kiriratnikom J, Zareen S, Zhang X. CoCo-PBA/tetrabutylammonium bromide as highly efficient catalyst for CO2 and epoxides coupling reaction under mild conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Tsai CY, Chen YH, Lee S, Lin CH, Chang CH, Dai WT, Liu WL. Uniform Core-Shell Microspheres of SiO 2@MOF for CO 2 Cycloaddition Reactions. Inorg Chem 2022; 61:2724-2732. [PMID: 35089029 DOI: 10.1021/acs.inorgchem.1c01570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A SiO2@MOF core-shell microsphere for environmentally friendly applications was introduced in this study. Several types of metal-organic framework core-shell microspheres were successfully synthesized. To achieve high stability and favorable catalytic performance, modification and coating methods were necessary for optimization. The improved SiO2@MOF core-shell microspheres were used in the cycloaddition reaction of carbon dioxide and propylene oxide. Dispersion ability was enhanced by the addition of core-shell microspheres, which also produced high catalytic activity. Accompanied with tetrabutylammonium bromide as a co-catalyst, SiO2@ZIF-67 had a maximum conversion of 97%, and the results revealed that SiO2@ZIF-67 could be used for 5 reaction cycles while maintaining high catalytic performance. This recycling catalyst was also reacted with a series of terminal epoxides to form corresponding cyclic carbonates with high conversion rates, indicating that SiO2@MOF core-shell microspheres exhibit promise in the field of catalysis.
Collapse
Affiliation(s)
- Chen-Yen Tsai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Yi-Hsuan Chen
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| | - Szetsen Lee
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 24449, Taiwan
| | - Chu-Han Chang
- Department of Chemistry, National Taiwan Normal University, Taipei 24449, Taiwan
| | - Wan-Ting Dai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Wan-Ling Liu
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| |
Collapse
|
36
|
Ma LN, Zhang L, Zhang WF, Wang ZH, Hou L, Wang YY. Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO2 Catalytic Fixation. Inorg Chem 2022; 61:2679-2685. [DOI: 10.1021/acs.inorgchem.1c03821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| |
Collapse
|
37
|
Xu X, Sui Y, Huang W, Chen W, Li X, Li Y, Wang G, Ye H, Zhong H. Upgraded Heterogenization of Homogeneous Catalytic Systems by Hollow Porous Organic Frameworks with Hierarchical Porous Shell for Efficient Carbon Dioxide Conversion. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiahong Xu
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wei Huang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wentong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Xiaodan Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yuntong Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Guanhui Wang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Huixian Ye
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Hong Zhong
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| |
Collapse
|
38
|
Bhadra BN, Ahmed I, Lee HJ, Jhung SH. Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Wang K, Duan Y, Chen J, Wang H, Liu H. A dye encapsulated zinc-based metal-organic framework as a dual-emission sensor for highly sensitive detection of antibiotics. Dalton Trans 2021; 51:685-694. [PMID: 34909812 DOI: 10.1039/d1dt03950d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of two Zn-MOFs, [Zn2L(DMF)3]·H2O·5DMF (1) and [Zn2L(H2O)2]·4H2O·3DMF (2), was achieved with an amide-functionalized tetracarboxylate ligand under similar conditions. Incorporated amide groups make the tetratopic linkers exhibit different configurations, tetrahedron and square, and subsequently combine tetrahedral [Zn2(CO2)4] clusters or square paddle-well [Zn2(CO2)4] clusters to afford a lon net for 1 and a nbo net for 2. Remarkably, 2 demonstrated high porosity and amide group decorated cages, and thereby proved to be a good capturing agent for a fluorescent dye molecule (DMASM). Consequently, a dual-emitting DMASM@2 sensor was successfully fabricated based on effective energy transfer from the host framework to DMASM with the variable luminescent color being visible to the naked eye. DMASM@2 could be used for the detection of metronidazole (MDZ) and dimetridazole (DTZ) with high sensitivity and remarkable recyclability.
Collapse
Affiliation(s)
- Kang Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yuhan Duan
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Jiajing Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
40
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
41
|
Zheng Z, He F, Xue Y, Li Y. Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1387-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Musa SG, Aljunid Merican ZM, Akbarzadeh O. Study on Selected Metal-Organic Framework-Based Catalysts for Cycloaddition Reaction of CO 2 with Epoxides: A Highly Economic Solution for Carbon Capture and Utilization. Polymers (Basel) 2021; 13:3905. [PMID: 34833202 PMCID: PMC8619864 DOI: 10.3390/polym13223905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance. The applications of both homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic carbonates.
Collapse
Affiliation(s)
- Suleiman Gani Musa
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Department of Chemistry, Al-Qalam University Katsina, PMB 2137, Tafawa Balewa Way, Dutsin-ma Road, Katsina 820252, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Omid Akbarzadeh
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
43
|
Pirzada BM, Dar AH, Shaikh MN, Qurashi A. Reticular-Chemistry-Inspired Supramolecule Design as a Tool to Achieve Efficient Photocatalysts for CO 2 Reduction. ACS OMEGA 2021; 6:29291-29324. [PMID: 34778605 PMCID: PMC8581999 DOI: 10.1021/acsomega.1c04018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
Photocatalytic CO2 reduction into C1 products is one of the most trending research subjects of current times as sustainable energy generation is the utmost need of the hour. In this review, we have tried to comprehensively summarize the potential of supramolecule-based photocatalysts for CO2 reduction into C1 compounds. At the outset, we have thrown light on the inert nature of gaseous CO2 and the various challenges researchers are facing in its reduction. The evolution of photocatalysts used for CO2 reduction, from heterogeneous catalysis to supramolecule-based molecular catalysis, and subsequent semiconductor-supramolecule hybrid catalysis has been thoroughly discussed. Since CO2 is thermodynamically a very stable molecule, a huge reduction potential is required to undergo its one- or multielectron reduction. For this reason, various supramolecule photocatalysts were designed involving a photosensitizer unit and a catalyst unit connected by a linker. Later on, solid semiconductor support was also introduced in this supramolecule system to achieve enhanced durability, structural compactness, enhanced charge mobility, and extra overpotential for CO2 reduction. Reticular chemistry is seen to play a pivotal role as it allows bringing all of the positive features together from various components of this hybrid semiconductor-supramolecule photocatalyst system. Thus, here in this review, we have discussed the selection and role of various components, viz. the photosensitizer component, the catalyst component, the linker, the semiconductor support, the anchoring ligands, and the peripheral ligands for the design of highly performing CO2 reduction photocatalysts. The selection and role of various sacrificial electron donors have also been highlighted. This review is aimed to help researchers reach an understanding that may translate into the development of excellent CO2 reduction photocatalysts that are operational under visible light and possess superior activity, efficiency, and selectivity.
Collapse
Affiliation(s)
- Bilal Masood Pirzada
- Department
of Chemistry, Khalifa University of Science
and Technology (KU), Abu Dhabi 127788, United Arab Emiratus
- ,
| | - Arif Hassan Dar
- Institute
of NanoScience and Technology (INST), Mohali 160062, India
| | - M. Nasiruzzaman Shaikh
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ahsanulhaq Qurashi
- Department
of Chemistry, Khalifa University of Science
and Technology (KU), Abu Dhabi 127788, United Arab Emiratus
| |
Collapse
|
44
|
Singh G, Nagaraja C. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Wang Y, Zhou YN, Liang Y, Cheng L, Fang Y. Chiral Fluorescent Metal-Organic Framework with a Pentanuclear Copper Cluster as an Efficient Luminescent Probe for Dy 3+ Ion and Cyano Compounds. Inorg Chem 2021; 60:15085-15090. [PMID: 34569231 DOI: 10.1021/acs.inorgchem.1c01349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent probes have been used for the detection of various heavy metals and toxic compounds. A novel sensor with excellent sensitivity and selectivity is in high demand. Herein, we designed and synthesized a three-dimensional copper-organic framework of "pcu" α-Po primitive cubic topology with a Schläfli symbol of {4.4.4.4.4.4.4.4.4.4.4.4.*.*.*}. By taking advantage of metal clusters and a triazole ligand as the metal-organic framework (MOF) components, the newly obtained MOF is stable in various environments and can be potentially used as the sensor. Remarkably, this MOF-based sensor shows high sensitivity and selectivity toward a dysprosium ion (Dy3+) in a multiple-lanthanide mixed solution. Besides, it exhibits luminescent quenching toward various cyano compounds. This chiral cluster-based network provides a potential luminescent probe for various inorganic and organic compounds with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Ying Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yan Ni Zhou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yu Liang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan China
| | - Lin Cheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan China
| |
Collapse
|
48
|
Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 2021. [DOI: 10.3390/catal11091133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Combination of capture and simultaneous conversion of CO2 into valuable chemicals is a fascinating strategy for reducing CO2 emissions. Therefore, searching for heterogeneous catalysts for efficient catalytic conversion of CO2 is of great importance for carbon capture and utilization. Herein, we report a metalloporphyrin-based covalent organic framework (Co(II)@TA-TF COF) that can capture CO2 and simultaneously convert it into cyclic carbonates under mild conditions. The COF was designed to possess micropores for the adsorption of CO2 and integrated with cobalt(II) porphyrin (Co(II)@TAPP) units as catalytic sites into the vertices of the layered tetragonal networks. The structure of the Co(II)@TA-TF COF is unique where Co(II)@TAPP units are alternately stacked along the z direction with a slipped distance of 1.7 Å, which gives an accessible space to accommodate small molecules, making it possible to expose catalytic sites to substrates within the adjacent stacked layers. As a result, this COF is found to be highly effective for the addition of CO2 and epoxides. Importantly, the Co(II)@TA-TF COF exhibited a dramatic size selectivity for substrates. In conjunction with its reusability, our results highlight the development of a new function of COFs for targeting simultaneous CO2 absorption and utilization upon complementary exploration of the structural features of skeletons and pores. Such promising catalytic performance of the COF makes it possible for its potential practical application.
Collapse
|
49
|
Al Isawi WA, Zeller M, Mezei G. Capped Nanojars: Synthesis, Solution and Solid-State Characterization, and Atmospheric CO 2 Sequestration by Selective Binding of Carbonate. Inorg Chem 2021; 60:13479-13492. [PMID: 34448565 DOI: 10.1021/acs.inorgchem.1c01826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanojars are a class of supramolecular anion-incarcerating coordination complexes that self-assemble from Cu2+ ions, pyrazole, and a strong base in the presence of highly hydrophilic anions. In this work, we show that if the strong base (e.g., NaOH or Bu4NOH) is replaced by a weak base such as a trialkylamine, capped nanojars of the formula [{Cu3(μ3-OH)(μ-pz)3L3}CO3⊂{Cu(μ-OH)(μ-pz)}n] (pz = pyrazolate anion; L = neutral donor molecule; n = 27-31) are obtained instead of the conventional nanojars. Yet, to obtain capped nanojars, the conjugate acid side product originating from the weak base must be separated by transferring it to water either by precipitation of the water-insoluble capped nanojars or by liquid-liquid extraction. Full characterization using electrospray ionization mass spectrometry, UV-vis and variable-temperature 1H NMR spectroscopy in solution, and single-crystal X-ray diffraction, elemental analysis, and solubility studies in the solid state reveals similarities as well as drastic differences between capped nanojars and nanojars lacking the [Cu3(μ3-OH)(μ-pz)3L3]2+ cap. Acid-base reactivity studies demonstrate that capped nanojars are intermediates in the pH-controlled assembly-disassembly of nanojars. During the self-assembly of capped nanojars, CO2 is selectively sequestered from air in the presence of other atmospheric gases and converted to carbonate, the binding of which is selective in the presence of NO3-, ClO4-, BF4-, Cl-, and Br- ions.
Collapse
Affiliation(s)
- Wisam A Al Isawi
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
50
|
Feng X, Song Y, Lin W. Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions. J Am Chem Soc 2021; 143:8184-8192. [PMID: 34018731 DOI: 10.1021/jacs.1c03561] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to hindered diffusions, the application of porous catalytic materials has been limited to relatively simple organic transformations with small substrates. Herein we report a dimensional reduction strategy to construct a two-dimensional metal-organic framework (MOF), Zr6OTf-BTB, with 96% accessible Lewis acidic sites as probed by the bulky Lewis base pivalonitrile. With nearly free substrate accessibility, Zr6OTf-BTB outperformed two three-dimensional MOF counterparts of similar Lewis acidity (Zr6OTf-BPDC and Zr6OTf-BTC) in catalyzing sterically hindered multicomponent reactions (MCRs) for the construction of tetrahydroquinoline and aziridine carboxylate derivatives with high turnover numbers (TONs). Zr6OTf-BTB was also superior to the homogeneous benchmark Sc(OTf)3 with nearly 14 times higher TON and 9 times longer catalyst lifetime. Furthermore, the topology-activity relationships in these Zr-based Lewis acidic MOFs were rationalized by comparing their Lewis acidity, numbers of Lewis acidic sites, and sterically accessible Lewis acidic sites. Zr6OTf-BTB was successfully used to construct several bioactive molecules via MCRs with excellent efficiency. This dimensional reduction strategy should allow the development of other MOF catalysts for synthetically useful and complicated organic transformations.
Collapse
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|